|
1.Cantarel, B.L., et al., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research, 2009. 37(Database): p. D233-D238. 2.Ducros, V.M.A., et al., Anatomy of GlycosynthesisStructure and Kinetics of the Humicola insolens Cel7B E197A and E197S Glycosynthase Mutants. Chemistry & Biology, 2003. 10(7): p. 619-628. 3.Knowles, J.K.C., et al., Stereochemical course of the action of the cellobioside hydrolases I and II of Trichoderma reesei. Journal of the Chemical Society, Chemical Communications, 1988(21): p. 1401-1402. 4.Kuhls, K., et al., Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci U S A, 1996. 93(8755548): p. 7755-7760. 5.Divne, C., et al., The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science, 1994. 265(8036495): p. 524-528. 6.Ståhlberg, J., et al., Activity Studies and Crystal Structures of Catalytically Deficient Mutants of Cellobiohydrolase I fromTrichoderma reesei. Journal of Molecular Biology, 1996. 264(2): p. 337-349. 7.MacKenzie, L.F., et al., Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2 Å resolution and identification of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate. Biochem J, 1998. 335 ( Pt 2)(9761741): p. 409-416. 8.Ducros, V.M.A., et al., Anatomy of Glycosynthesis: Structure and Kinetics of the Humicola insolens Cel7B E197A and E197S Glycosynthase Mutants. Chemistry & Biology, 2003. 10(7): p. 619-628. 9.Klarskov, K., et al., Cellobiohydrolase I from Trichoderma reesei: Identification of an active-site nucleophile and additional information on sequence including the glycosylation pattern of the core protein. Carbohydrate Research, 1997. 304(2): p. 143-154. 10.Sulzenbacher, G., M. Schülein, and G.J. Davies, Structure of the Endoglucanase I from Fusarium oxysporum: Native, Cellobiose, and 3,4-Epoxybutyl b-D-Cellobioside-Inhibited Forms, at 2.3 Å Resolution. Biochemistry, 1997. 36(19): p. 5902-5911. 11.Viladot, J.-L., et al., Probing the Mechanism of Bacillus 1,3-1,4-b-D-Glucan 4-Glucanohydrolases by Chemical Rescue of Inactive Mutants at Catalytically Essential Residues. Biochemistry, 1998. 37(32): p. 11332-11342. 12.Sulzenbacher, G., et al., Structure of the Fusarium oxysporum Endoglucanase I with a Nonhydrolyzable Substrate Analogue: Substrate Distortion Gives Rise to the Preferred Axial Orientation for the Leaving Group. Biochemistry, 1996. 35(48): p. 15280-15287. 13.Divne, C., et al., High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. Journal of Molecular Biology, 1998. 275(2): p. 309-325. 14.Ubhayasekera, W., et al., Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors. FEBS Journal, 2005. 272(8): p. 1952-1964. 15.Parkkinen, T., et al., Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Science, 2008. 17(8): p. 1383-1394. 16.Wicki, J., et al., Recruitment of Both Uniform and Differential Binding Energy in Enzymatic Catalysis: Xylanases from Families 10 and 11. Biochemistry, 2007. 46(23): p. 6996-7005. 17.Miao, S., et al., Identification of Glutamic Acid 78 as the Active Site Nucleophile in Bacillus subtilis Xylanase Using Electrospray Tandem Mass Spectrometry. Biochemistry, 1994. 33(23): p. 7027-7032. 18.Lawson, S.L., W.W. Wakarchuk, and S.G. Withers, Effects of both Shortening and Lengthening the Active Site Nucleophile of Bacillus circulans Xylanase on Catalytic Activity+. Biochemistry, 1996. 35(31): p. 10110-10118. 19.MacLeod, A.M., et al., The Acid/Base Catalyst in the Exoglucanase/Xylanase from Cellulomonas fimi Is Glutamic Acid 127: Evidence from Detailed Kinetic Studies of Mutants. Biochemistry, 1994. 33(20): p. 6371-6376. 20.McIntosh, L.P., et al., The pKa of the General Acid/Base Carboxyl Group of a Glycosidase Cycles during Catalysis: A 13C-NMR Study of Bacillus circulans Xylanase. Biochemistry, 1996. 35(31): p. 9958-9966. 21.Wakarchuk, W.W., et al., Mutational and crystallographic analyses of the active site residues of the bacillus circulans xylanase. Protein Science, 1994. 3(3): p. 467-475. 22.Gilbert, H.J., H. Stålbrand, and H. Brumer, How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Current Opinion in Plant Biology, 2008. 11(3): p. 338-348. 23.Schou, C., et al., Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases. European Journal of Biochemistry, 1993. 217(3): p. 947-953. 24.Sulzenbacher, G., et al., The Streptomyces lividans Family 12 Endoglucanase: Construction of the Catalytic Core, Expression, and X-ray Structure at 1.75 Å Resolution. Biochemistry, 1997. 36(51): p. 16032-16039. 25.Zechel, D.L., et al., Identification of Glu-120 as the catalytic nucleophile in Streptomyces lividans endoglucanase celB. Biochem. J., 1998. 336(1): p. 139-145. 26.Baumann, M.J., et al., Structural Evidence for the Evolution of Xyloglucanase Activity from Xyloglucan Endo-Transglycosylases: Biological Implications for Cell Wall Metabolism. The Plant Cell Online, 2007. 19(6): p. 1947-1963. 27.Malet, C., et al., Stereochemical course and structure of the products of the enzymic action of endo-1,3-1,4-b-D-glucan 4-glucanohydrolase from Bacillus licheniformis. Biochem. J., 1993. 296(3): p. 753-758. 28.Hoj, P., et al., Identification of glutamic acid 105 at the active site of Bacillus amyloliquefaciens 1,3-1,4-b-D-glucan 4-glucanohydrolase using epoxide-based inhibitors. J. Biol. Chem., 1992. 267(35): p. 25059-25066. 29.Antoni, P., Bacterial 1,3-1,4-b-glucanases: structure, function and protein engineering. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 2000. 1543(2): p. 361-382. 30.Keitel, T., et al., Molecular and active-site structure of a Bacillus 1,3-1,4-b-glucanase. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(11): p. 5287-91. 31.Johansson, P., Crystal Structures of a Poplar Xyloglucan Endotransglycosylase Reveal Details of Transglycosylation Acceptor Binding. The Plant Cell Online, 2004. 16(4): p. 874-886. 32.Ilari, A., et al., Crystal structure of a family 16 endoglucanase from the hyperthermophile Pyrococcus furiosus– structural basis of substrate recognition. FEBS Journal, 2009. 276(4): p. 1048-1058. 33.Barbeyron, T., et al., The kappa-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases. Molecular Biology and Evolution, 1998. 15(5): p. 528-537. 34.Michel, G., et al., The k-carrageenase of P. carrageenovora Features a Tunnel-Shaped Active Site: A Novel Insight in the Evolution of Clan-B Glycoside Hydrolases. Structure, 2001. 9(6): p. 513-525. 35.Rose, P.W., et al., The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Research, 2010. 39(Database): p. D392-D401. 36.Kleywegt, G.J., et al., The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes. Journal of Molecular Biology, 1997. 272(3): p. 383-397. 37.von Ossowski, I., et al., Engineering the Exo-loop of Trichoderma reesei Cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. Journal of Molecular Biology, 2003. 333(4): p. 817-829. 38.Parkkinen, T., et al., Crystal structures of Melanocarpus albomycescellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Science, 2008. 17(8): p. 1383-1394. 39.Grassick, A., et al., Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. European Journal of Biochemistry, 2004. 271(22): p. 4495-4506. 40.Sabini, E., et al., Catalysis and specificity in enzymatic glycoside hydrolysis: a 2,5B conformation for the glycosyl-enzyme intermediate revealed by the structure of the Bacillus agaradhaerens family 11 xylanase. Chemistry & Biology, 1999. 6(7): p. 483-492. 41.Yazawa, R., et al., A Calcium-Dependent Xylan-Binding Domain of Alkaline Xylanase from Alkaliphilic Bacillus sp. Strain 41M-1. Bioscience, Biotechnology, and Biochemistry, 2011. 75(2): p. 379-381. 42.Balakrishnan, H., et al., Structural and active site modification studies implicate Glu, Trp and Arg in the activity of xylanase from alkalophilic Bacillus sp. (NCL 87-6-10). Enzyme and Microbial Technology, 2006. 39(1): p. 67-73. 43.Oakley, A.J., et al., Characterization of a family 11 xylanase from Bacillus subtillis B230 used for paper bleaching. Acta Crystallographica Section D-Biological Crystallography, 2003. 59: p. 627-636. 44.Murakami, M., et al., Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1). FEBS Letters, 2005. 579(28): p. 6505-6510. 45.McCarthy, A.A., et al., Structure of XynB, a highly thermostable b-1,4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8 Å resolution. Acta Crystallographica Section D, 2000. 56(11): p. 1367-1375. 46.Wouters, J., et al., Crystallographic analysis of family 11 endo-b-1,4-xylanase Xyl1 from Streptomyces sp S38. Acta Crystallographica Section D-Biological Crystallography, 2001. 57: p. 1813-1819. 47.Hakulinen, N., et al., Three-dimensional structures of thermophilic b-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. European Journal of Biochemistry, 2003. 270(7): p. 1399-1412. 48.Dumon, C., et al., Engineering Hyperthermostability into a GH11 Xylanase Is Mediated by Subtle Changes to Protein Structure. Journal of Biological Chemistry, 2008. 283(33): p. 22557-22564. 49.Fushinobu, S., et al., Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Engineering, 1998. 11(12): p. 1121-1128. 50.Vandermarliere, E., et al., Crystallographic analysis shows substrate binding at the −3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-b-xylanases. Biochemical Journal, 2008. 410(1): p. 71. 51.Jänis, J., et al., Determination of thioxylo-oligosaccharide binding to family 11 xylanases using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and X-ray crystallography. FEBS Journal, 2005. 272(9): p. 2317-2333. 52.Torronen, A. and J. Rouvinen, Sturctural comparison of 2 major endo-1,4-xylanases from Tricoderma-reesei. Biochemistry, 1995. 34(3): p. 847-856. 53.Pompidor, G., et al., A dipicolinate lanthanide complex for solving protein structures using anomalous diffraction. Acta Crystallographica Section D-Biological Crystallography, 2010. 66: p. 762-769. 54.Krengel, U., et al., Crystallization and preliminary crystallographic analysis of endo-1,4-b-xylanase I from Aspergillus niger. Acta Crystallographica Section D-Biological Crystallography, 1996. 52: p. 571-576. 55.Vardakou, M., et al., Understanding the Structural Basis for Substrate and Inhibitor Recognition in Eukaryotic GH11 Xylanases. Journal of Molecular Biology, 2008. 375(5): p. 1293-1305. 56.Kumar, P.R., et al., The tertiary structure at 1.59 Å resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti Bainier. Journal of Molecular Biology, 2000. 295(3): p. 581-593. 57.Payan, F., The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases. Journal of Biological Chemistry, 2004. 279(34): p. 36029-36037. 58.Michaux, C., et al., Structural insights into the acidophilic pH adaptation of a novel endo-1,4-b-xylanase from Scytalidium acidophilum. Biochimie, 2010. 92(10): p. 1407-1415. 59.Gruber, K., et al., Thermophilic xylanase from Thermomyces lanuginosus: High-resolution X-ray structure and modeling studies. Biochemistry, 1998. 37(39): p. 13475-13485. 60.Moukhametzianov, R., et al., Protein crystallography with a micrometre-sized synchrotron-radiation beam. Acta Crystallographica Section D Biological Crystallography, 2008. 64(2): p. 158-166. 61.Gloster, T.M., et al., Characterization and Three-dimensional Structures of Two Distinct Bacterial Xyloglucanases from Families GH5 and GH12. Journal of Biological Chemistry, 2007. 282(26): p. 19177-19189. 62.Kapoor, D., et al., Replacement of the active surface of a thermophile protein by that of a homologous mesophile protein through structure-guided ‘protein surface grafting’. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 2008. 1784(11): p. 1771-1776. 63.Sulzenbacher, G., et al., The crystal structure of a 2-fluorocellotriosyl complex of the Streptomyces lividans endoglucanase CelB2 at 1.2 Å resolution. Biochemistry, 1999. 38(15): p. 4826-4833. 64.Sandgren, M., Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability. Protein Science, 2003. 12(4): p. 848-860. 65.Forse, G.J., et al., Synthetic symmetrization in the crystallization and structure determination of CelA from Thermotoga maritima. Protein Science, 2011. 20(1): p. 168-178. 66.Khademi, S., et al., Determination of the structure of an endoglucanase from Aspergillus niger and its mode of inhibition by palladium chloride. Acta Crystallographica Section D-Biological Crystallography, 2002. 58: p. 660-667. 67.Sandgren, M., et al., Crystal Complex Structures Reveal How Substrate is Bound in the −4 to the +2 Binding Sites of Humicola grisea Cel12A. Journal of Molecular Biology, 2004. 342(5): p. 1505-1517. 68.Sandgren, M., et al., The Humicola grisea Cel12A enzyme structure at 1.2 Å resolution and the impact of its free cysteine residues on thermal stability. Protein Science, 2003. 12(12): p. 2782-2793. 69.Ilari, A., et al., Crystal structure of a family 16 endoglucanase from the hyperthermophile Pyrococcus furiosus - structural basis of substrate recognition. FEBS Journal, 2009. 276(4): p. 1048-1058. 70.Addington, T., et al., Re-engineering specificity in 1,3-1,4-b-glucanase to accept branched xyloglucan substrates. Proteins: Structure, Function, and Bioinformatics, 2011. 79(2): p. 365-375. 71.Tempel, W., et al., Three-dimesional structure of GlcNAcα1-4Gal releasing Endo-b-Galactosidase from Clostridium perfringens. Proteins: Structure, Function, and Bioinformatics, 2005. 59(1): p. 141-144. 72.Tsai, L.-C., et al., Crystal Structure of Truncated Fibrobacter succinogenes 1,3-1,4-b-D-Glucanase in Complex with b-1,3-1,4-Cellotriose. Journal of Molecular Biology, 2005. 354(3): p. 642-651. 73.Fibriansah, G., et al., The 1.3 Å crystal structure of a novel endo-b-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp. strain F96. Proteins: Structure, Function, and Bioinformatics, 2007. 69(3): p. 683-690. 74.Gaiser, O., et al., Structural Basis for the Substrate Specificity of a Bacillus 1,3-1,4-b-Glucanase. Journal of Molecular Biology, 2006. 357(4): p. 1211-1225. 75.Michel, G., et al., The kappa-carrageenase of P-carrageenovora features a tunnel-shaped active site: A novel insight in the evolution of clan-B glycoside hydrolases. Structure, 2001. 9(6): p. 513-525. 76.Hong, T.-Y., et al., The 1.5 Å structure of endo-1,3-b-glucanase from Streptomyces sioyaensis: evolution of the active-site structure for 1,3-b-glucan-binding specificity and hydrolysis. Acta Crystallographica Section D, 2008. 64(9): p. 964-970. 77.Hehemann, J.-H., et al., Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 2010. 464(7290): p. 908-912. 78.Allouch, J., The Three-dimensional Structures of Two b-Agarases. Journal of Biological Chemistry, 2003. 278(47): p. 47171-47180. 79.Allouch, J., et al., Parallel Substrate Binding Sites in a b-Agarase Suggest a Novel Mode of Action on Double-Helical Agarose. Structure, 2004. 12(4): p. 623-632. 80.Vasur, J., et al., Synthesis of Cyclic b-Glucan Using Laminarinase 16A Glycosynthase Mutant from the Basidiomycete Phanerochaete chrysosporium. Journal of the American Chemical Society, 2010. 132(5): p. 1724-1730. 81.Mark, P., et al., Analysis of nasturtiumTmNXG1 complexes by crystallography and molecular dynamics provides detailed insight into substrate recognition by family GH16 xyloglucanendo-transglycosylases andendo-hydrolases. Proteins: Structure, Function, and Bioinformatics, 2009. 75(4): p. 820-836.
|