跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯孟良
研究生(外文):HOU, MENG-LIANG
論文名稱:光捕捉微米級物體之捕捉效率與光纖蝕刻長度之研究
論文名稱(外文):Study on Trapping Efficiencies and Etched Fiber Length for Optically Trapping Micro-meter Objects
指導教授:劉世崑劉世崑引用關係
指導教授(外文):LIU, SHIH-KUN
口試委員:陳麗琴施天從劉世崑
口試委員(外文):CHEN, LI-QINSHIH, TIEN-TSORNGLIU, SHIH-KUN
口試日期:2018-06-29
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:103
中文關鍵詞:光鑷夾光纖微透鏡光纖蝕刻長度捕捉效率塑膠微粒酵母菌
外文關鍵詞:Optical tweezerFiber microlensEtched fiber lengthTrapping efficirncyPolystyrene particleYeast
相關次數:
  • 被引用被引用:6
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本光鑷夾相關研究依時序分為三階段,第一階段使用濕式化學蝕刻法研製光纖微透鏡,並使用Matlab影像處理功能進行光纖微透鏡之錐形角度測定。第二階段選用相同直徑與錐形角度但不同光纖蝕刻長度之圓錐形光纖微透鏡並分別建構光鑷夾系統,並使用650 nm雷射做為系統光源。第三階段分別對塑膠微粒、燕子牌即發酵母菌 (酵母菌A)及伯爵牌釀酒酵母(酵母菌B)進行光捕捉實驗,共分五項實驗。前四項實驗分別使用兩款相同直徑與錐形角度但不同光纖蝕刻長度之圓錐形光纖微透鏡建構出光鑷夾系統,並分別針對塑膠微粒與酵母菌A進行光捕捉實驗。藉由不同光纖蝕刻長度所架構之光鑷夾系統,探討其光纖蝕刻長度與捕捉效率之關係。第五項實驗使用此四項實驗中最高捕捉效率之光纖微透鏡建構出光鑷夾系統,並對酵母菌B進行捕捉實驗。從實驗結果得知,不同種類酵母菌具有不同逃脫速度及捕捉效率,藉此可鑑別兩廠牌酵母菌。
在光捕捉塑膠微粒之實驗中,使用蝕刻長度1.5 mm之圓錐形光纖微透鏡組成光鑷夾,光鑷夾之最佳捕捉效率為10.1%;然而,具蝕刻長度1.1 mm之系統之最佳捕捉效率為8.9%。在光捕捉酵母菌A之實驗中,使用蝕刻長度1.5 mm之圓錐形光纖微透鏡組成光鑷夾,光鑷夾之最佳捕捉效率為6.9%;然而,具蝕刻長度1.1 mm之系統之最佳捕捉效率為6.1%。最後在光捕捉酵母菌B的實驗中,使用蝕刻長度1.5 mm之系統之最佳捕捉效率為5.3%。在相同捕捉條件下捕捉酵母菌A與酵母菌B,其酵母菌A捕捉效率為6.9%;酵母菌B捕捉效率為5.3%。因兩種不同酵母菌之捕捉效率與對應之逃脫速度皆不相同,所以此方法可用來鑑別細菌種類之異同。

These are three phases in the study of optical tweezers. In the first phase, fiber microlenses are sequentially made by wet chemical etching. The resultant cone-shaped lenses are analyzed by a Matlab code with image processing ability to obtain the corresponding taper angles. In the second phase, construct several optical tweezer systems, each with a cone-shaped microlens. The microlenses used here are identical in diameter and taper angel but different in their etched fiber lengths. A 650-nm laser is used as the light source. In the third phase, there are totally five optical trapping experiments conducted individually and sequentially on polystyrene particles, instant yeasts (yeast A), and saccharomyces cerevisiae (yeasts B). The first four experiments have something to do with systems with various etched fiber lengths and two different samples: polystyrene particles and yeast A. The purpose of doing so is to study the relation between the etched firer lengths and the trapping efficiencies. The system with the best results is used to conduct the fifth and the last experiment to optically trap yeast B. The experimental results show that yeast A and yeast B are different in their escape velocities and trapping efficiencies. The results also provide a simple way to identify the brand name and type of yeasts.
In trapping polystyrene particles, the optical tweezer system constructed with single cone-shaped fiber microlenses with an etched fiber length of 1.5 mm is used and the corresponding optimal trapping efficiency is about 10.1%. On the other hand, the system with an etched fiber length of 1.1 mm obtains an optimal trapping efficiency of 8.9%. Likewise in trapping yeast A, the optical tweezer system constructed with a cone-shaped fiber microlens with an etched fiber length of 1.5 mm is used and the corresponding optimal trapping efficiency is about 6.9%. On the other hand, the system with an etched fiber length of 1.1 mm obtains an optimal trapping efficiency of 6.1%. The last in trapping yeast B, the optical tweezer system constructed with a cone-shaped fiber microlens with an etched fiber length of 1.5 mm is used and the corresponding optimal trapping efficiency is about 5.3%. Compared the results of trapping yeasts at the same conditions, the resultant trapping efficiencies for yeast A and yeast B are 6.9% and 5.3%;which provide an evidence and an optical mean that one can use to tell the difference between yeasts and bacteria of different types or brand names.

中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 XI
第1章 光鑷夾緒論 1
1.1 光鑷夾重要發展史 1
1.2 光鑷夾生醫應用 5
1.3 本實驗室光鑷夾研究 12
1.4 研究動機 28
1.5 論文架構 29
第2章 光鑷夾研究方法 30
2.1 研究架構 30
2.2 光捕捉原理 33
2.2.1 光纖微透鏡內部模態數 38
2.3 光纖微透鏡製程 39
2.3.1 濕式化學蝕刻法 40
2.3.2 圓錐形光纖微透鏡比較 41
2.4 光鑷夾硬體系統架構 44
2.5 光捕捉參數設定 53
2.5.1 工作距離計算 53
2.5.2 逃脫速度量測 53
第3章 研究結果與討論 56
3.1 光鑷夾之塑膠微粒捕捉(實驗一) 56
3.1.1 具蝕刻長度1.5 mm之圓錐形角光纖微透鏡 57
3.1.2 具蝕刻長度2.6 mm之圓錐形角光纖微透鏡 58
3.1.3 具蝕刻長度3.2 mm之圓錐形角光纖微透鏡 59
3.1.4 結果分析與比較 60
3.2 光鑷夾之塑膠微粒捕捉(實驗二) 61
3.2.1 具蝕刻長度1.1 mm之圓錐形角光纖微透鏡 61
3.2.2 具蝕刻長度2.1 mm之圓錐形角光纖微透鏡 62
3.2.3 具蝕刻長度3.0 mm之圓錐形角光纖微透鏡 63
3.2.4 結果分析與比較 63
3.3 光鑷夾之酵母菌A捕捉(實驗三) 66
3.3.1 具蝕刻長度1.5 mm之圓錐形角光纖微透鏡 67
3.3.2 具蝕刻長度2.6 mm之圓錐形角光纖微透鏡 68
3.3.3 具蝕刻長度3.2 mm之圓錐形角光纖微透鏡 69
3.3.4 結果分析與比較 71
3.4 光鑷夾之酵母菌A捕捉 (實驗四) 72
3.4.1 具蝕刻長度1.1 mm之圓錐形角光纖微透鏡 72
3.4.2 具蝕刻長度2.1 mm之圓錐形角光纖微透鏡 73
3.4.3 具蝕刻長度3.0 mm之圓錐形角光纖微透鏡 74
3.4.4 結果分析與比較 75
3.5 光鑷夾之酵母菌B捕捉 (實驗五) 77
3.5.1 具蝕刻長度1.5 mm之圓錐形角光纖微透鏡 78
3.5.2 結果分析與比較 79
第4章 結論與未來工作 82
參考文獻 84
簡歷表 87


[1]A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, vol. 24, no. 4, pp. 156-159, 1970.
[2]A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters, vol. 11, no. 5, pp. 288-290, 1986.
[3]A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Optics Express, vol. 18, no. 21, pp. 1867-1869, 1993.
[4]E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Applied Physics Letters, vol. 66, pp. 1584-1586, 1995.
[5]A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Optics Letters, vol.235, no. 5, pp. 288-290, 1987.
[6]R. W. Steubing, S. Cheng, W. H. Wright, Y. Numajiri, and M. W. Berns, “Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap,” Cytometry, vol. 12, no. 6, pp. 505-510, 1991.
[7]K. Taguchi, H. Ueno, T. Hiramatsu, and M. Ikeda, “Optical trapping of dielectric particle and biological cell using optical fibre,” Electronics Letters, vol. 33, no. 5, pp. 413-414, 1997.
[8]E. Papagiakoumou, D. Pietreanu, M. I. Makropoulou, E. Kovacs, and A. A. Serafetinides, “Evaluation of trapping efficiency of optical tweezers by dielectrophoresis,” Journal of Biomedical Optics, vol. 11, no. 1, pp. 1435-1442, 2006.
[9]Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Optics Express, vol. 17, pp. 13625-13628, 2009.
[10]A. J. Crick, M. Theron, T. Tiffert, V. L. Lew, P. Cicuta, and J. C. Rayner, “Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers,” Biophysical Journal, vol. 107, pp. 846-853, 2014.
[11]T. J. Smart, C. J. Richards, R. Bhatnagar, C. Pavesio, R. Agrawal, and P. H. Jones, “A study of red blood cell deformability in diabetic retinopathy using optical tweezers, ” Trapping and Optical Micromanipulation XII, vol. 9548, 2015
[12]陳國良,光纖光學鑷夾之研製,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,高雄,2009。
[13]陳文堡,光纖光學鑷夾應用於捕捉微粒與酵母菌之研究,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,高雄,2011。
[14]黃文杰,生醫適用光纖光學鑷夾之研製,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,高雄,2012。
[15]陳柏融,三維光纖光學捕捉系統之研製,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,高雄,2013。
[16]許豐閔,應用於光學捕捉系統之化學蝕刻光纖研究,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,高雄,2014。
[17]S. K. Liu, C. C. Tsai, and F. M. Hsu, “Chemiclly etched optical fiber used for optical trapping,” International Symposium on Next-Generation Electronics, Taoyuan, Taiwan, 2014.
[18]蔡佳憬,光纖式光鑷夾應用於人類膀胱癌細胞期別之鑑別,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,高雄,2014。
[19]S. K. Liu, W. K. Hsieh, W. Y. Sung, Y. J. Shen, C. C. Tsai, and F. M. Hsu, “Wavelength dependence of trapping efficiency in optical tweezers,” International Symposium on Next-Generation Electronics, Taipei, Taiwan, 2015.
[20]謝文凱,光捕捉技術應用於人類大腸癌及膀胱癌之期別鑑定,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,高雄,2015。
[21]劉世崑、陳麗琴、蔡佳憬、謝文凱、許豐閔、沈揚傑、宋威億,「光捕捉癌細胞期別鑑定方法」,中華民國發明專利第I569016號。
[22]宋威億,光纖微透鏡製作與光捕捉實驗,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,高雄,2016。
[23]S. K. Liu, W. K. Hsieh, W. Y. Sung, Y. J. Shen, C. C. Tsai, and F. M. Hsu, “Working distance dependence of trapping efficiency in fiber optical tweezers,” International Symposium on Next-Generation Electronics, Hsinchu, Taiwan, 2016.
[24]沈揚傑,光捕捉微米級物體之捕捉效率與工作距離之研究,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,高雄,2016。
[25]林泓樟,使用雷射熔燒光纖微透鏡之光鑷夾生技應用,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,高雄,2017。
[26]陳韋達、侯孟良、劉世崑,「使用光鑷夾系統捕捉塑膠微粒」,資訊管理暨電子商務經營管理研討會,台東,2018
[27]S. K. Liu, M. L. Hou, W. D. Chen, and H. Z. Lin, “Effect of etched length of the fiber microlens on trapping efficiency for fiber optical tweezer,” Electron Devices and Solid-State Circuits (EDSSC), Hsinchu, Taiwan, Oct 18-20, 2017
[28]A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophysical Journal, vol. 61, no. 2, pp. 569-582, 1992.
[29]劉世崑、黃文杰、陳柏融、陳文堡、陳國良,「光纖光學鑷夾之製作方法」,中華民國發明專利第I474061號。
[30]S. O. Kasap, “Optoelectronics and Photonics: Principles and Practices,” Pearson Education International, 2001
[31]陳韋達、侯孟良、劉世崑,「使用光鑷夾系統捕捉塑膠微粒」,國立臺東大學綠色學刊,台東,2018 (受邀投稿,審查中)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊