跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/14 14:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昭瑾
研究生(外文):Zhao-Jin Chen
論文名稱:大型龍門工具機環溫熱變位效應與熱平衡溫控策略之研究
論文名稱(外文):A study of the environmental temperature variation induced thermal deformation and the thermal balance strategy for a large gantry type CNC machining center
指導教授:李明蒼
口試委員:陳玉彬劉建宏
口試日期:2018-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:119
中文關鍵詞:工具機熱變形熱變位類神經網路粒子群最佳化
外文關鍵詞:Machine toolsthermal displacementthermal deformationneural networkparticle swarm optimization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討兩臺不同結構國產五軸大型龍門工具機的熱變位特性,主要為環境溫度變化對於整機結構溫升及熱變形的影響。在實驗量測部分,於機台上設置多個關鍵溫度測量點,同時使用非接觸式渦電流位移計量測機台結構關鍵位置以及切削點即時的熱變位。本研究並透過實驗量測的環境與結構溫度以及切削點熱變位修正模擬分析設定之邊界條件,建立可分析機台溫升、溫度分佈以及熱變形的熱、流、固多重物理耦合模型。
為達到靈活的機台結構關鍵點熱平衡溫度調控,本研究嘗試於橫樑上設置多個小型溫控裝置。以本研究所建立且經過實驗結果修正及驗證的多重物理耦合熱變位模型為基礎,獲得環境與橫樑溫度觀測及控制點與機台結構熱變位的模擬實驗數據,再將觀測點的溫度值以及所對應的切削點熱變位數據輸入類神經網路進行學習訓練,建立可有效準確預測機台結構溫升熱變形的類神經網路模型。透過此類神經網路模型,同時搭配運用粒子群最佳化演算法,於機台橫樑上配置多個冷卻水塊,測試調整冷卻水塊的冷卻點參數,調控機台關鍵結構的溫度分佈,進而控制橫樑彎曲幅度及切削點的熱變位。
從側掛式機型觀察到主要為橫樑受環境溫度變化下,使橫樑結構溫度分佈不均,造成刀尖點x軸產生熱變位變化最大。運用風扇以及冷卻水塊針對刀尖點x軸和橫樑彎曲幅度改善;而Box-in-box式機型同樣為橫樑受環境溫度變化下,使橫樑結構溫度分佈不均,造成刀尖點z軸產生熱變位變化最大。運用冷卻水塊針對橫樑彎曲幅度改善,於補償下較容易改善刀尖點z軸熱變位。後續驗證實驗於侧掛式機型,利用模擬所得出參數改善,在風扇實驗改善約10%刀尖點x軸熱變位量,而運用冷卻水塊最高改善約45%的刀尖點x軸熱變位量。
This study investigated the thermal displacement characteristics of two domestic 5-axis large gantry type CNC machining center with different structures, mainly affecting the temperature variation and thermal deformation of the entire machine structure due to environmental temperature changes. In the experimental measurement section, multiple critical temperature measurement points are placed on the machine, and the non-contact eddy current displacement meter is used to obtain the instantaneous thermal displacement. Based on the experimental measurements, a multi-physics simulation model was constructed.
In order to achieve more flexible thermal balance technology to temperature control of the key points of the machine structure, this study attempts to use small cooling water blocks for temperature control on the beam. The study based on the multiple physical coupled thermal displacement model established, the temperature value of the measured point and the corresponding cutting point thermal displacement input neural network are used for learning and training, and a neural network model for effectively predicting the temperature variation and thermal deformation of the machine structure is established respectively. Through the neural network model, multiple cooling water blocks are placed on the beam area of machine tools, adjust the cooling point parameters of multiple cooling water blocks to control the temperature distribution of the key structural positions of the machine, and then achieve the control of the thermal displacement of the cutting point and the bending degree of the beam.
The temperature of the beam is unevenly distributed due to the change of the ambient temperature was observed from the side-mounted model, which causes the thermal displacement of the x-axis of the tool tip to change the most. Use fan and cooling water block to improve the x-axis of the tool tip point and the bending degree of the beam. The Box-in-box model is also caused by the variation of the ambient temperature of the beam, which makes the temperature distribution of the beam structure uneven, resulting in the largest thermal displacement change of the z-axis of the tool tip point. The cooling water block is used to improve the bending degree of the beam, and it is easier to improve the z-axis thermal displacement of the tool tip point under compensation. The follow-up verification experiment was carried out on the side-mounted model, and the parameters obtained by the simulation were improved. In the fan experiment, the x-axis thermal displacement amount of the tool tip point was improved by about 10%, and the cooling water block was used to improve the x-axis thermal displacement amount of the tool tip point about 45%.
中文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 xii
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的與動機 6
第2章 理論簡介 7
2.1 模擬原理 7
2.1.1 連續方程式 7
2.1.2 動量方程式 7
2.1.3 能量方程式 8
2.1.4 熱彈性力學方程式 9
第3章 數值模擬及最佳化分析 11
3.1 數值分析 11
3.2 模擬流程 11
3.3 物理模型 12
3.3.1 模型建立 12
3.3.2 材料性質 15
3.4 邊界條件設定 16
3.4.1 馬達熱源 16
3.4.2 軸承熱源 17
3.4.3 自然對流邊界 17
3.5 網格收斂性 18
3.6 最佳化分析 24
3.6.1 類神經網路系統原理 24
3.6.2 粒子群最佳化演算法原理 29
第4章 實驗架構 36
4.1 機台設備 36
4.2 溫度測量系統 38
4.3 位移量測系統 42
4.4 冷卻系統 45
第5章 結果與討論 46
5.1 模擬結果 46
5.1.1 側掛式初始模擬模型 46
5.1.2 側掛式模擬風扇改善 53
5.1.3 側掛式模擬冷卻水塊改善 57
5.1.4 Box-in-box式初始模擬模型 73
5.1.5 側掛式與Box-in-box式機型受環溫差異 87
5.1.6 Box-in-box式模擬冷卻水塊改善 88
5.2 實驗結果 96
5.2.1 風扇調控的實驗結果 96
5.2.2 冷卻水塊調控的實驗結果 98
第6章 結論與建議 114
Reference 117
[1]J. Bryan, "International Status of Thermal Error Research (1990)," CIRP Annals, vol. 39, no. 2, pp. 645-656, 1990.
[2]R. Ramesh, M. A. Mannan, and A. N. Poo, "Error compensation in machine tools — a review: Part I: geometric, cutting-force induced and fixture-dependent errors," International Journal of Machine Tools and Manufacture, vol. 40, no. 9, pp. 1235-1256, 2000.
[3]L. Uriarte et al., "Machine tools for large parts," CIRP Annals, vol. 62, no. 2, pp. 731-750, 2013.
[4]OKUMA, "Thermo-friendly concept helps cnc machines take the heat," 2002.
[5]E. Gomez-Acedo, A. Olarra, and L. N. Lopez de la Calle, "A method for thermal characterization and modeling of large gantry-type machine tools," The International Journal of Advanced Manufacturing Technology, journal article vol. 62, no. 9, pp. 875-886, 2012.
[6]J. Mayr et al., "Thermal issues in machine tools," CIRP Annals, vol. 61, no. 2, pp. 771-791, 2012.
[7]M. Weck, P. McKeown, R. Bonse, and U. Herbst, "Reduction and Compensation of Thermal Errors in Machine Tools," CIRP Annals, vol. 44, no. 2, pp. 589-598, 1995.
[8]J. Huang et al., "Real-time measurement of temperature field in heavy-duty machine tools using fiber Bragg grating sensors and analysis of thermal shift errors," Mechatronics, vol. 31, pp. 16-21, 2015.
[9]Y. Li, W. Zhao, S. Lan, J. Ni, W. Wu, and B. Lu, "A review on spindle thermal error compensation in machine tools," International Journal of Machine Tools and Manufacture, vol. 95, pp. 20-38, 2015.
[10]S. N. Grama, A. Mathur, R. Aralaguppi, and T. Subramanian, "Optimization of High Speed Machine Tool Spindle to Minimize Thermal Distortion," Procedia CIRP, vol. 58, pp. 457-462, 2017.
[11]C. Zhang, F. Gao, and L. Yan, "Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature," Precision Engineering, vol. 47, pp. 231-238, 2017.
[12]B. Tan et al., "A thermal error model for large machine tools that considers environmental thermal hysteresis effects," International Journal of Machine Tools and Manufacture, vol. 82-83, pp. 11-20, 2014.
[13]Z. Haitao, Y. Jianguo, and S. Jinhua, "Simulation of thermal behavior of a CNC machine tool spindle," International Journal of Machine Tools and Manufacture, vol. 47, no. 6, pp. 1003-1010, 2007.
[14]M. Mori, H. Mizuguchi, M. Fujishima, Y. Ido, N. Mingkai, and K. Konishi, "Design optimization and development of CNC lathe headstock to minimize thermal deformation," CIRP Annals, vol. 58, no. 1, pp. 331-334, 2009.
[15]S. M. Shinde and K. S. Bhole, "Review of accuracy improvement techniques in high speed 5 axis machining," 2015 International Conference on Nascent Technologies in the Engineering Field (ICNTE), pp. 1-5, 2015.
[16]P. Blaser, F. Pavliček, K. Mori, J. Mayr, S. Weikert, and K. Wegener, "Adaptive learning control for thermal error compensation of 5-axis machine tools," Journal of Manufacturing Systems, vol. 44, pp. 302-309, 2017.
[17]C. Ahilan, S. Kumanan, N. Sivakumaran, and J. Edwin Raja Dhas, "Modeling and prediction of machining quality in CNC turning process using intelligent hybrid decision making tools," Applied Soft Computing, vol. 13, no. 3, pp. 1543-1551, 2013.
[18]A. M. Abdulshahed, A. P. Longstaff, S. Fletcher, and A. Potdar, "Thermal error modelling of a gantry-type 5-axis machine tool using a Grey Neural Network Model," Journal of Manufacturing Systems, vol. 41, pp. 130-142, 2016.
[19]E. Uhlmann and J. Hu, "Thermal Modelling of a High Speed Motor Spindle," Procedia CIRP, vol. 1, pp. 313-318, 2012.
[20]C. Ma, X. Mei, J. Yang, L. Zhao, and H. Shi, "Thermal characteristics analysis and experimental study on the high-speed spindle system," The International Journal of Advanced Manufacturing Technology, journal article vol. 79, no. 1, pp. 469-489, 2015.
[21]I. O. f. Standardization, "Test Code for Machine Tools – Part 3: Determination of Thermal Effects, in: ISO 230-3," 2007.
[22]ANSYS, "ANSYS Fluent Theory Guide."
[23]NSK, "Super Precision Bearings," 2006.
[24]F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, "Introduction to Heat Transfer," in John Wiley & Sons, ed, 2007.
[25]W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," The bulletin of mathematical biophysics, journal article vol. 5, no. 4, pp. 115-133, 1943.
[26]D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, p. 533, 1986.
[27]J. Kennedy and R. Eberhart, "Particle swarm optimization," 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.
[28]Y. Shi and R. Eberhart, "A modified particle swarm optimizer," 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), pp. 69-73, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊