跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊貴閎
研究生(外文):Chuang, Kuei-Hung
論文名稱:敗血症病患之光學血氧動力訊號研究
論文名稱(外文):Study on oxygenation dynamics of sepsis patients with far infrared intervention based on near infrared spectroscopy
指導教授:孫家偉孫家偉引用關係
指導教授(外文):Sun, Chia-Wei
口試委員:郭浩中莊銘隆鍾仁傑吳造中郭博昭
口試委員(外文):Kuo, Hao-ChungChuang, Ming-LungChung, Ren-JeiWu, Chau-ChungKuo, Bo-Jhao
口試日期:2015-05-26
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:41
中文關鍵詞:微循環敗血症近紅外光生理干預法遠紅外光
外文關鍵詞:NIRSFIRsepsismicrocirculation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於敗血症的死亡成長率居高不下,老人的感染問題漸漸受到重視,微循環問題的改善逐漸被醫院視為醫療目標,量測微循環的最常見的方式為使用近紅外光光譜術,然而商業上最為常見的近紅外光光譜儀為光源連續式的,主要的缺陷是只能量測在肌肉組織中的含缺氧血改變濃度,且必須要配合物理干預法改變血氧狀態,最常見的物理干預法為血管束縛,但是這樣的方法容易造成不好的使用者體驗,所以本實驗室便推出以遠紅外光干預的方法來取代。
在前期的研究中已證明運用遠紅外線可以取代血管束縛,且男生與女生之間有著不同的血氧變化,本篇論文的目標為實際運用遠紅外光干預法於臨床敗血症的微循環診斷,包含監控44個正常人和35個敗血症患者的血流光學訊號,藉以評判肱橈肌區域局部的微循環,在成對和不成對t檢驗的統計分析下,健康的受測者不僅僅在遠紅外光照射期間,甚至於之後都能觀察到含氧血液的上升,罹患敗血病的病患在初照射遠紅外光時,含氧血增加顯著,與正常人幾乎無異,但令人驚奇的是在5分鐘的遠紅外光照射後含氧血即達到停滯的狀態而不再增加,這樣的研究有機會成為判斷血管調控與內皮細胞功能性的方法,幫助醫生持續監控微循環狀況。

Sepsis is defined as the systemic inflammatory response syndrome during an infection. More and more articles demonstrated that the disease is related to the microcirculation of patients such as blood perfusion, tissue oxygenation and even cellular or organ dysfunction. Depending on these parameters, microcirculations could be released clearly. Near-infrared spectroscopy (NIRS) has been proposed as a real-time and noninvasive system for monitoring regional circulation.
Our blood oxygenation was intervened by FIR illumination and NIRS could monitor the change non-invasively. The method still needs more study clinically. In this article, we present the variance of HbO2 and Hb of healthy subjects and patients with sepsis during exposure of FIR and the following time. The difference between them has been found by statistics analysis. The study shows the hemodynamics in 44 normal subjects and 35 patients with sepsis during the exposure of FIR as a physical intervention by near infrared spectroscopy. Local microcirculation of their brachioradialis have been monitored during the exposure and recovery time. The differences in blood flow and microvascular reaction has been released by paired and unpaired t-test. The oxy-hemoglobin of healthy volunteers increased continuously even in the recovery time. Surprisingly, only oxy-hemoglobin of the patients reach a plateau nearly at 5 minutes of FIR illumination. The method has potential applications in ensuring efficient treatment and helping doctors to diagnosis the functions of vessels in ICU.

中文摘要 iii
Abstract iv
誌謝 v
目錄 vii
圖目錄 ix
表目錄 x
第一章 緒論 1
1.1 敗血症簡介 1
1.1.1 敗血症定義與臨床分級 1
1.1.2 敗血症與微循環 3
1.2 血管檢查 5
1.2.1 微循環影像 5
1.2.2 間接的微循環診斷方法 6
1.2.3 其他血管功能性檢測工具 7
1.3 近紅外光光譜技術(near infrared spectroscopy; NIRS) 9
1.3.1 近紅外光光譜術原理 9
1.3.2 物理干預法與量測 10
1.4 遠紅外光與生理干預法 12
1.4.1 遠紅外光的生物效應 12
1.4.2 實驗室近期研究 14
1.5 研究動機 16
第二章 實驗方法 17
2.1 實驗儀器 17
2.1.1 遠紅外光治療儀 17
2.1.2 近紅外光光譜儀 18
2.2 受測者 18
2.3 實驗流程 19
2.4 統計與分析 20
2.4.1 成對t檢驗(Paired t-test) 21
2.4.2 非成對t檢驗(Unpaired t-test) 22
第三章 實驗結果 23
3.1 量測結果 23
3.2 成對t檢驗 24
3.3 非成對t檢驗 26
3.4 生理參數 27
3.4.1 APACH II與血氧變化 27
3.4.2 心跳、血壓與血氧變化 29
3.5 結論 31
第四章 結果討論 33
4.1 遠紅外光照射與生理狀態 33
4.2 血管束縛與遠紅外線照射 34
第五章 未來展望 36
5.1 硬體設備的改良 36
5.2 臨床量測的問題 37
5.3 其他疾病 37


[1] P. M. K. Klouwenberg, D. S. Ong, M. J. Bonten, and O. L. Cremer, "Classification of sepsis, severe sepsis and septic shock: the impact of minor variations in data capture and definition of SIRS criteria," Intensive care medicine, vol. 38, pp. 811-819, 2012.
[2] T. Szakmany, B. Hauser, and P. Radermacher, "Intravenous N-acetylcysteine compared to placebo for treatment of systemic inflammatory response syndrome and sepsis in seriously ill adults," Health, 2012.
[3] V. S. Edul, A. Dubin, and C. Ince, "The microcirculation as a therapeutic target in the treatment of sepsis and shock," in Seminars in respiratory and critical care medicine, 2011, p. 558.
[4] G. Hernández Poblete, A holistic approach for perfusion assessment in septic shock: Basic foundations and clinical applications, 2013.
[5] D. De Backer, J. Creteur, J.-C. Preiser, M.-J. Dubois, and J.-L. Vincent, "Microvascular blood flow is altered in patients with sepsis," American journal of respiratory and critical care medicine, vol. 166, pp. 98-104, 2002.
[6] S. Trzeciak, R. P. Dellinger, J. E. Parrillo, M. Guglielmi, J. Bajaj, N. L. Abate, et al., "Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival," Annals of emergency medicine, vol. 49, pp. 88-98. e2, 2007.
[7] Y. Sakr, M.-J. Dubois, D. De Backer, J. Creteur, and J.-L. Vincent, "Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock," CRITICAL CARE MEDICINE-BALTIMORE-, vol. 32, pp. 1825-1831, 2004.
[8] P. W. Elbers and C. Ince, "Bench-to-bedside review: Mechanisms of critical illness–classifying microcirculatory flow abnormalities in distributive shock," Critical care, vol. 10, p. 221, 2006.
[9] D. D. Backer, K. Donadello, and D. O. Cortes, "Monitoring the microcirculation," Journal of clinical monitoring and computing, vol. 26, pp. 361-366, 2012.
[10] P. Goedhart, M. Khalilzada, R. Bezemer, J. Merza, and C. Ince, "Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation," Optics express, vol. 15, pp. 15101-15114, 2007.
[11] A. M. SCHABAUER and T. W. ROOKE, "Cutaneous laser Doppler flowmetry: applications and findings," in Mayo Clinic Proceedings, 1994, pp. 564-574.
[12] A. Lima and J. Bakker, "Noninvasive monitoring of peripheral perfusion," Intensive care medicine, vol. 31, pp. 1316-1326, 2005.
[13] G. Valizadeh and S. Asadi, "Assess the Exposure of Patients and Personnel tests and CT angiography in Interventional Cardiovascular training centers and training of Tabriz in Iran," Bull. Env. Pharmacol. Life Sci, vol. 4, pp. 07-14, 2015.
[14] G. Pichler, B. Urlesberger, P. Jirak, H. Zotter, E. Reiterer, W. Müller, et al., "Reduced forearm blood flow in children and adolescents with type 1 diabetes (measured by near-infrared spectroscopy)," Diabetes Care, vol. 27, pp. 1942-1946, 2004.
[15] R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast," Applied Physics Letters, vol. 74, pp. 874-876, 1999.
[16] F. El-Ghussein, M. A. Mastanduno, S. Jiang, B. W. Pogue, and K. D. Paulsen, "Hybrid photomultiplier tube and photodiode parallel detection array for wideband optical spectroscopy of the breast guided by magnetic resonance imaging," Journal of biomedical optics, vol. 19, pp. 011010-011010, 2014.
[17] V. Gerovasili, S. Dimopoulos, G. Tzanis, M. Anastasiou-Nana, and S. Nanas, "Utilizing the vascular occlusion technique with NIRS technology," International Journal of Industrial Ergonomics, vol. 40, pp. 218-222, 2010.
[18] M. C. Van Beekvelt, W. Colier, R. A. Wevers, and B. G. Van Engelen, "Performance of near-infrared spectroscopy in measuring local O~ 2 consumption and blood flow in skeletal muscle," Journal of Applied Physiology, vol. 90, pp. 511-519, 2001.
[19] A. Masuda, Y. Koga, M. Hattanmaru, S. Minagoe, and C. Tei, "The effects of repeated thermal therapy for patients with chronic pain," Psychotherapy and psychosomatics, vol. 74, pp. 288-294, 2005.
[20] H. Toyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima, H. Nakanishi, et al., "Promotive effects of far-infrared ray on full-thickness skin wound healing in rats," Experimental Biology and Medicine, vol. 228, pp. 724-729, 2003.
[21] C. C. Lin, C. F. Chang, M. Y. Lai, T. W. Chen, P. C. Lee, and W. C. Yang, "Far-infrared therapy: a novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients," Journal of the American Society of Nephrology, vol. 18, pp. 985-992, 2007.
[22] S. Inoue and M. Kabaya, "Biological activities caused by far-infrared radiation," International journal of biometeorology, vol. 33, pp. 145-150, 1989.
[23] S. Y. Yu, J. H. Chiu, S. D. Yang, Y. C. Hsu, W. Y. Lui, and C. W. Wu, "Biological effect of far‐infrared therapy on increasing skin microcirculation in rats," Photodermatology, photoimmunology & photomedicine, vol. 22, pp. 78-86, 2006.
[24] F. Vatansever and M. R. Hamblin, "Far infrared radiation (FIR): its biological effects and medical applications," Photonics and Lasers in Medicine, vol. 1, pp. 255-266, 2012.
[25] Y. Akasaki, M. Miyata, H. Eto, T. Shirasawa, N. Hamada, Y. Ikeda, et al., "Repeated thermal therapy up-regulates endothelial nitric oxide synthase and augments angiogenesis in a mouse model of hindlimb ischemia," Circulation Journal, vol. 70, pp. 463-470, 2006.
[26] Y. Ikeda, S. Biro, Y. Kamogawa, S. Yoshifuku, H. Eto, K. Orihara, et al., "Repeated sauna therapy increases arterial endothelial nitric oxide synthase expression and nitric oxide production in cardiomyopathic hamsters," Circulation Journal, vol. 69, pp. 722-729, 2005.
[27] Y. H. Hsu, Y. C. Chen, T. H. Chen, Y. M. Sue, T. H. Cheng, J. R. Chen, et al., "Far-infrared therapy induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in human umbilical vein endothelial cells," PloS one, vol. 7, p. e30674, 2012.
[28] J. Ishibashi, K. Yamashita, T. Ishikawa, H. Hosokawa, K. Sumida, M. Nagayama, et al., "The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A," Medical Oncology, vol. 25, pp. 229-237, 2008.
[29] Y. J. Lin, Y. Y. Kung, W. J. Kuo, D. M. Niddam, C. M. Cheng, C. C. Chou, et al., "Effects of far-infrared radiation on heart rate variability and central manifestations in healthy subjects: a resting-fMRI study," Lasers in medical science, vol. 30, pp. 295-301, 2015.
[30] C. Y. Wang, M. L. Chuang, C. C. Chuang, Y. S. Hsieh, and C. W. Sun, "The utility of far‐infrared illumination in oxygenation dynamics as measured with near‐infrared spectroscopy," Journal of biophotonics, vol. 5, pp. 719-723, 2012.
[31] W. L. Kao and C. W. Sun, "Gender-Related Effect in Oxygenation Dynamics by Using Far-Infrared Intervention with Near-Infrared Spectroscopy Measurement: A Gender Differences Controlled Trial," PloS one, vol. 10, p. e0135166, 2015.
[32] M. Lipcsey, N. C. Woinarski, and R. Bellomo, "Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care," Ann Intensive Care, vol. 2, 2012.
[33] J. Mesquida, G. Gruartmoner, and C. Espinal, "Skeletal muscle oxygen saturation (StO 2) measured by near-infrared spectroscopy in the critically ill patients," BioMed research international, vol. 2013, 2013.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top