跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/02 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇百薇
研究生(外文):Pai-Wei Su
論文名稱:探討院內鮑氏不動桿菌之抗藥性、生物膜形成和抗藥基因/酶的交互作用
論文名稱(外文):Relationship between antibiotic resistance, biofilm formation, and specific-resistant genes/enzymes in nosocomial Acinetobacter baumannii strains
指導教授:莊麗月莊麗月引用關係
指導教授(外文):Li-Yeh Chuang
學位類別:博士
校院名稱:義守大學
系所名稱:化學工程學系暨生物技術與化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:107
中文關鍵詞:鮑氏不動桿菌抗藥性基因分型生物膜生成
外文關鍵詞:Acinetobacter baumanniibiofilm formationantibiotic resistancegenotyping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
抗藥菌問題已成為全球規模性的公眾議題,抗藥性的產生不僅限制了治療上的選擇,也造成致病率、死亡率和治療成本的增加。多重抗藥性鮑氏不動桿菌被認為是最難控制和治療的院內感染菌株,尤其近年來出現的多重抗藥性鮑氏不動桿菌 (Multidrug-resistant Acinetobacter baumannii, MDRAB)、碳青黴烯類抗藥性鮑氏不動桿菌(Carbapenem resistant Acinetobacter baumannii , CRAB)、超廣譜乙內醯胺酶格蘭氏陰性菌(Extended-spectrum β-lactamases producing gram-negative bacteria,ESBL producing GNB) ,高度抗藥性 (Extensively drug-resistant Acinetobacter baumannii, XDRAB)及泛抗藥性 (Pandrug-resistant Acinetobacter baumannii, PDRAB)等菌株。由於抗藥性機轉的不同,雖然許多醫療單位已著手管控抗生素的使用與關注抗藥性的議題,但唯有瞭解院內抗藥菌的傳播路徑與抗藥機制,方能有效即時掌控、制定預防之道。本研究收集自嘉義基督醫院所分離的臨床菌株,並應用統計方法進行抗藥性、特定抗藥基因組合與生物膜生成的交互作用分析。利用紙錠擴散法和最低抑菌濃度進行抗生素敏感性測試,包括11種抗生素,分別為Cephalexin, Ceftazidime, Imipenem, Gentamycin, Amikacin, Streptomycin, Piperacillin, Ticarcillin, Carbenicillin, Tetracyline, Sulfamethoxazole-Triethoprim。 基因分型探討計分析9個與抗藥性有關的基因,包括: blaOXA-51-like, blaOXA-23-like, blaOXA-58-like, blaOXA-24-like, blaOXA-143-like, tnpA, ISAba1, blaNDM和blaADC。此外,利用Carba NP test快速檢測抗藥菌所攜帶的基因,及分析碳青黴烯類抗藥性鮑氏不動桿菌其抗藥基因的關聯性。生物膜生成利用分光光度測量法及掃描式電子顯微鏡觀察,並分析生物膜生成相關的基因bap, blaPER, ompA和csuE。本研究結果顯示大部分測試菌株具有多重抗藥性,且多數的碳青黴烯類抗藥性鮑氏不動桿菌 (93%) 攜帶ISAba1基因,其中高達68%的菌株同時攜帶tnpA和ISAba1基因。在生物膜生成分析,發現具有抗藥基因的菌株其生物膜形成量明顯較高,且多數具有多重抗藥性。本研究證實測試菌株的抗藥性、生物膜的生成和攜帶的抗藥基因型具有關聯性,分析其抗藥機轉有助於臨床抗藥菌的篩選、鑑定、診斷、治療與管控,可提供預防菌株產生抗藥性的重要參考指標。
The problem of antibiotic-resistant strains has become a global public issue; antibiotic resistance not only limits the choice of treatments but also increases the morbidity, mortality and treatment costs. The multi-drug resistant Acinetobacter baumannii is occurring simultaneously in hospital and has become a major public health issue worldwide. Antimicrobial-resistant strains of Acinetobacter baumannii, including multidrug-resistant Acinetobacter baumannii (MDRAB), carbapenem resistant Acinetobacter baumannii (CRAB), extended-spectrum β-lactamases producing gram-negative bacteria (ESBL producing GNB), extensively drug-resistant Acinetobacter baumannii (XDRAB) and pandrug resistant Acinetobacter baumannii (PDRAB) strains, endanger the efficacy of antibiotics and threaten with millions of lives of the world. Although many medical units have begun to control the use of antibiotics and paid attention to the issue of drug resistance, understanding of the transmission pathways of clinical drug-resistant bacteria and drug-resistant mechanisms can be effective to real-time control and prevent the outbreak of antibiotic resistant pathogens. In this study, a total of 154 isolates of Acinetobacter baumannii obtained from Chia-Yi Christian hospital were collected for antibiotic-susceptibility assay, specific resistance genotyping and biofilm formation analysis. The statistical analysis was used to determine the interaction between antibiotic-susceptibility, specific resistance genotype combinations and biofilm formation. Antibiotic-susceptibility assays were conducted with disc diffusion method and minimum inhibitory concentration determination; a total of 11 antibiotics included cephalexin, ceftazidime, imipenem, gentamycin, amikacin, streptomycin, piperacillin, ticarcillin, carbenicillin, tetracyline and sulfamethoxazole-triethoprim were used for the assays. Nine genes related to drug resistance, including blaOXA-51-like , blaOXA-23-like, blaOXA-58-like, blaOXA-24-like, blaOXA-143-like, tnpA, ISAba1, blaNDM and blaADC were selected for genotyping analysis. In addition, Carba NP test was used to rapidly analyze the resistant genes. The analysis of biofilm formation was determined by spectrophotometry and scanning electron microscope observation, and the biofilm related genes, including bap, blaPER, ompA and csuE, were analyzed. The results showed that most of the tested strains possessed multiple drug resistance against most of the test antibiotics. Among the carbapenem resistant strains of Acinetobacter baumannii, 93% of the strains carried ISAba1 gene and 68% of the highly multidrug-resistant strains carried tnpA and ISAba1 genes. In the biofilm formation analysis, it was found that the multiple drug resistant isolates usually provided a higher biofilm formation. The experimental results indicated that the antibiotic resistance, the formation of biofilm and the resistant genotype were significantly related. The results of this study can effectively help to understand the correlation between drug resistance, biofilm formation and its resistant genotype. The analysis on the antibiotic resistant mechanism provides the valuable information to the screening, identification, diagnosis, treatment and control of clinical antibiotic-resistant pathogens, and an important reference pointer to prevent strains from producing resistance.
中文摘要….............................................I
Abstract.............................................III
Acknowledgements......................................V
Table of Contents.....................................VI
List of Tables........................................IX
List of Figures........................................X
Chapter 1.Introduction.................................1
1.1 Introduction.......................................1
1.2. Objectives........................................3
Chapter 2. Literature review...........................4
2.1 Acinetobacter......................................4
2.1.1 Clinical manifestations of A. baumannii infections...8
2.1.2 Multidrug resistance in MDRAB....................8
2.2 β-Lactamase activity...............................9
2.2.1 β-Lactamase classification......................10
2.3 Antimicrobial and antibiotic resistance mechanisms...13
2.4 Antibiotics introduction.........................16
2.4.1 β-Lactam antibiotics............................16
2.4.2 Penicillins.....................................17
2.4.3 Ampicillin......................................18
2.4.4 Cephalosporins..................................18
2.4.5 Carbapenems.....................................20
2.4.6 Tetracyclines...................................21
2.4.7 Tigecycline.....................................21
2.4.8 Aminoglycosides.................................22
2.4.9 Sulfamethoxazole – Trimethoprim................23
2.5 Biofilm Development...............................24
2.5.1 Environmental factors affecting biofilm formation 24
2.5.2 Relationship of A. baumannii resistance with biofilm formation..............................................24
2.5.3 Biofilm formation in A. baumannii................25
Chapter 3. Materials and methods.......................27
3.1 Bacterial Strains..................................27
3.2 Antibiotic susceptibility test.....................27
3.3 Molecular characterization of antimicrobial resistance determinants...........................................28
3.4 Repetitive element PCR-mediated DNA fingerprinting (Rep-PCR)...................................................30
3.5 Carba NP test......................................30
3.6 Detection of biofilm related genes..................30
3.7 Quantitative assay of biofilm formation............31
3.8 Microscopic analysis of biofilm formation..........31
3.9 Statistical Analyses...............................32
Chapter 4. Results.....................................34
4.1 Antibiotic susceptibility test by the disk diffusion method.................................................34
4.2 Minimum inhibitory concentrations..................35
4.3 Relationship between antibiotic susceptibility and biofilm formation......................................37
4.4 Various virulence determinants are involved in the biofilm formation of A baumannii……………………………………………………………………….38
4.5 Biofilm formation quantification...................42
4.6 Microscopic analysis of biofilm formation ability..43
4.7 Molecular characterization of the antimicrobial resistance determinants................................45
4.8 Detection of OXA Carbapenemases expression.........47
4.9 Repetitive element PCR-mediated DNA fingerprinting (Rep-PCR)...................................................50
4.10 Carba NP test.....................................51
4.11 Correlation between resistant gene, DISK, MIC and biofilm determinants...................................52
Chapter 5. Discussion and conclusion...................61
5.1 Future Work........................................68
Publications...........................................69
List of papers.........................................69
List of conference papers..............................69
Supplementary Table....................................71
Supplementary Table 1. Distribution of gene, DISK and MIC results in different biofilm stress classification (n=154)71
Supplementary Table 2. Distribution of gene, DISK and MIC results in high and low biofilm producer category...... 74
Supplementary Table 3. Logistic regression analysis for association between biofilm stress category and gene, DISK and MIC results........................................75
Supplementary Table 4. Forest plot showing associations of higher odds to obtain high biofilm formation in clustering results with five clustering inclusion criteria........ 76
References…………………………………………………………………………77
[1]J. A. Gaddy and L. A. Actis, "Regulation of Acinetobacter baumannii biofilm formation," Future Microbiol, vol. 4, pp. 273-8, 2009.
[2]L. Dijkshoorn, A. Nemec, and H. Seifert, "An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii," Nat Rev Microbiol, vol. 5, pp. 939-51, 2007.
[3]E. Freeman, A. Semeere, M. Wenger, M. Bwana, F. C. Asirwa, N. Busakhala, et al., "Pitfalls of practicing cancer epidemiology in resource-limited settings: the case of survival and loss to follow-up after a diagnosis of Kaposi''s sarcoma in five countries across sub-Saharan Africa," BMC Cancer, vol. 16, p. 65, 2016.
[4]Y. Smani, M. J. McConnell, and J. Pachon, "Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells," PLoS One, vol. 7, p. e33073, 2012.
[5]D. M. Sengstock, R. Thyagarajan, J. Apalara, A. Mira, T. Chopra, and K. S. Kaye, "Multidrug-resistant Acinetobacter baumannii: an emerging pathogen among older adults in community hospitals and nursing homes," Clin Infect Dis, vol. 50, pp. 1611-6, 2010.
[6]J. M. Pogue, T. Mann, K. E. Barber, and K. S. Kaye, "Carbapenem-resistant Acinetobacter baumannii: epidemiology, surveillance and management," Expert Rev Anti Infect Ther, vol. 11, pp. 383-93, 2013.
[7]H. C. Flemming and J. Wingender, "The biofilm matrix," Nat Rev Microbiol, vol. 8, pp. 623-33, 2010.
[8]J. Lerchner, A. Wolf, F. Buchholz, F. Mertens, T. R. Neu, H. Harms, et al., "Miniaturized calorimetry - a new method for real-time biofilm activity analysis," J Microbiol Methods, vol. 74, pp. 74-81, 2008.
[9]S. Niveditha, S. Pramodhini, S. Umadevi, S. Kumar, and S. Stephen, "The Isolation and the Biofilm Formation of Uropathogens in the Patients with Catheter Associated Urinary Tract Infections (UTIs)," J Clin Diagn Res, vol. 6, pp. 1478-82, 2012.
[10]F. Longo, C. Vuotto, and G. Donelli, "Biofilm formation in Acinetobacter baumannii," New Microbiol, vol. 37, pp. 119-27, 2014.
[11]B. D. Hoyle and J. W. Costerton, "Bacterial resistance to antibiotics: the role of biofilms," Prog Drug Res, vol. 37, pp. 91-105, 1991.
[12]G. M. Cerqueira and A. Y. Peleg, "Insights into Acinetobacter baumannii pathogenicity," IUBMB Life, vol. 63, pp. 1055-60, 2011.
[13]M. E. Falagas, P. K. Koletsi, and I. A. Bliziotis, "The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa," J Med Microbiol, vol. 55, pp. 1619-29, Dec 2006.
[14]D. M. Livermore and N. Woodford, "The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter," Trends Microbiol, vol. 14, pp. 413-20, 2006.
[15]J. L. Garcia-Garmendia, C. Ortiz-Leyba, J. Garnacho-Montero, F. J. Jimenez-Jimenez, C. Perez-Paredes, A. E. Barrero-Almodovar, et al.,"Risk factors for Acinetobacter baumannii nosocomial bacteremia in critically ill patients: a cohort study.," Clin Infect Dis, vol. 33, pp. 939-46, 2001.
[16]M. F. Lin, K. C. Chang, C. Y. Lan, J. Chou, J. W. Kuo, C. K. Chang, et al., "Molecular epidemiology and antimicrobial resistance determinants of multidrug-resistant Acinetobacter baumannii in five proximal hospitals in Taiwan," Jpn J Infect Dis, vol. 64, pp. 222-7, 2011.
[17]J. Garnacho-Montero and R. Amaya-Villar, "Multiresistant Acinetobacter baumannii infections: epidemiology and management," Curr Opin Infect Dis, vol. 23, pp. 332-9, Aug 2010.
[18]A. Nemec, M. Musilek, M. Maixnerova, T. De Baere, T. J. van der Reijden, M. Vaneechoutte, et al., "Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans," Int J Syst Evol Microbiol, vol. 59, pp. 118-24, 2009.
[19]A. Nemec, L. Krizova, M. Maixnerova, T. J. van der Reijden, P. Deschaght, V. Passet, et al., "Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU)," Res Microbiol, vol. 162, pp. 393-404, 2011.
[20]S. D. Henriksen, "Moraxella, Acinetobacter, and the Mimeae," Bacteriol Rev, vol. 37, pp. 522-61, 1973.
[21]P. J. Bouvet and A. D. Grimont,"Taxonomy of the Genus Acinetobacter with the Recognition of Acinetobacter baumannii sp. nov. Acinetobacter haemolyticus sp.nov. Acinetobacter johnsonii sp. nov. and cinetobacter junii sp.nov. and Emended Descriptions of Acinetobacter calcoaceticus and Acinetobacter lwofii " Int. J. Syst. Evol. Microbiol. vol. 36, pp. 228-40 1986.
[22]I. Tjernberg and J. Ursing, "Clinical strains of Acinetobacter classified by DNA-DNA hybridization," APMIS, vol. 97, pp. 595-605, 1989.
[23]L. Dijkshoorn, B. M. Ursing, and J. B. Ursing, "Strain, clone and species: comments on three basic concepts of bacteriology," J Med Microbiol, vol. 49, pp. 397-401, 2000.
[24]R. M. Stirland, V. F. Hillier, and M. G. Steyger, "Analysis of hospital bacteriological data," J Clin Pathol Suppl Coll Pathol, vol. 3, pp. 82-6, 1969.
[25]L. C. Antunes, P. Visca, and K. J. Towner, "Acinetobacter baumannii: evolution of a global pathogen," Pathog Dis, vol. 71, pp. 292-301, 2014.
[26]H. W. Lee, Y. M. Koh, J. Kim, J. C. Lee, Y. C. Lee, S. Y. Seol, et al., "Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces," Clin Microbiol Infect, vol. 14, pp. 49-54, 2008.
[27]H. F. Retailliau, A. W. Hightower, R. E. Dixon, and J. R. Allen, "Acinetobacter calcoaceticus: a nosocomial pathogen with an unusual seasonal pattern," J Infect Dis, vol. 139, pp. 371-5, 1979.
[28]Y. C. Lin, W. H. Sheng, Y. C. Chen, S. C. Chang, K. C. Hsia, and S. Y. Li, "Differences in carbapenem resistance genes among Acinetobacter baumannii, Acinetobacter genospecies 3 and Acinetobacter genospecies 13TU in Taiwan," Int J Antimicrob Agents, vol. 35, pp. 439-43, 2010.
[29]Acinetobacter species. Available: http://www.bacterio.net/
[30]L. Krizova, M. Maixnerova, O. Sedo, and A. Nemec, "Acinetobacter albensis sp. nov., isolated from natural soil and water ecosystems," Int J Syst Evol Microbiol, vol. 65, pp. 3905-12, 2015.
[31]A. Nemec, M. Musilek, O. Sedo, T. De Baere, M. Maixnerova, T. J. van der Reijden, et al., "Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively," Int J Syst Evol Microbiol, vol. 60, pp. 896-903, Apr 2010.
[32]L. Radolfova-Krizova, M. Maixnerova, and A. Nemec, "Acinetobacter pragensis sp. nov., found in soil and water ecosystems," Int J Syst Evol Microbiol, vol. 66, pp. 3897-3903, 2016.
[33]R. Krizova. L. Nemec A, "Acinetobacter guangdongensis Feng et al. 2014 is a junior heterotypic synonym of Acinetobacter indicus Malhotra et al. 2012," Int J Syst Evol Microbiol, vol. 67, pp. 4080-2, 2017.
[34]P. J. Bouvet and S. Jeanjean, "Delineation of new proteolytic genomic species in the genus Acinetobacter," Res Microbiol, vol. 140, pp. 291-9, 1989.
[35]P. C. Annemieke Smet, Lenka Krizova, Martina Maixnerova , Ondrej Sedo , Freddy Haesebrouck , Marie Kempf ,Alexandr Nemec ,Mario Vaneechoutte, "Acinetobacter gandensis sp. nov. isolated from horse and cattle," Int. J. Syst. Evol. Microbiol, vol. 64, pp. 4007-15, 2014.
[36]P. J. M. Bouvet and P. A. D. Grimont "Taxonomy of the Genus Acinetobacter with the Recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and Emended Descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii,"Int. J. Syst. Evol. Microbiol, vol. 36, pp. 228-40, 1986.
[37]M. C. Touchon, J.Yoon, E. J.Krizova, L.Cerqueira, G. C., C. F. Murphy, M.Wortman, J.Clermont, D., T. G.-C. Lambert, C.Nemec, A.Courvalin, P., and E. P. Rocha, "The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences," Genome Biol Evol, vol. 6, pp. 2866-82, Oct 13 2014.
[38]A. Nemec, L. Krizova, M. Maixnerova, T. J. van der Reijden, P. Deschaght, V. Passet, et al., "Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU)," Res Microbiol, vol. 162, pp. 393-404, May 2011.
[39]L. D. Alexandr Nemec , Ilse Cleenwerck , Thierry De Baere , Danielle Janssens , Tanny J. K. van der Reijden , Petr Ježek , Mario Vaneechoutte, "Acinetobacter parvus sp. nov., a small-colony-forming species isolated from human clinical specimens," Int. J. Syst. Evol. Microbiol, vol. 53, pp. 1563-7, 2003.
[40]A. Nemec and L. Radolfova-Krizova, "Acinetobacter pakistanensis Abbas et al. 2014 is a later heterotypic synonym of Acinetobacter bohemicus Krizova et al. 2014," Int J Syst Evol Microbiol, vol. 66, pp. 5614-5617, Dec 2016.
[41]A .Nemec, De Baere T, Tjernberg I, Vaneechoutte M, Van der Reijden TJ, and D. L., "Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens.," Int. J. Syst. Evol. Microbiol, vol. 51, pp. 1891-9, 2001.
[42]P. Gerner-Smidt and I. Tjernberg, "Acinetobacter in Denmark: II. Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex," APMIS, vol. 101, pp. 826-32, 1993.
[43]U. Gerischer, Acinetobacter Molecular Biology: Caister Academic PressUlrike Gerischer, 2008.
[44]S. Yamamoto, P. J. Bouvet, and S. Harayama, "Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization," Int J Syst Bacteriol, vol. 49 Pt 1, pp. 87-95, 1999.
[45]B. Krawczyk, K. Lewandowski, and J. Kur, "Comparative studies of the Acinetobacter genus and the species identification method based on the recA sequences," Mol Cell Probes, vol. 16, pp. 1-11, 2002.
[46]B. La Scola, V. A. Gundi, A. Khamis, and D. Raoult, "Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species," J Clin Microbiol, vol. 44, pp. 827-32, 2006.
[47]J. Vila, J. Ruiz, P. Goni, A. Marcos, and T. Jimenez de Anta, "Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii," Antimicrob. Agents Chemother, vol. 39, pp. 1201-3, 1995.
[48]L. Dolzani, E. Tonin, C. Lagatolla, L. Prandin, and C. Monti-Bragadin, "Identification of Acinetobacter isolates in the A. calcoaceticus-A. baumannii complex by restriction analysis of the 16S-23S rRNA intergenic-spacer sequences," J Clin Microbiol, vol. 33, pp. 1108-13, 1995.
[49]S. G. Bartual, H. Seifert, C. Hippler, M. A. Luzon, H. Wisplinghoff, and F. Rodriguez-Valera, "Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii," J Clin Microbiol, vol. 43, pp. 4382-90, 2005.
[50]B. Ehrenstein, A. T. Bernards, L. Dijkshoorn, P. Gerner-Smidt, K. J. Towner, P. J. Bouvet, et al., "Acinetobacter species identification by using tRNA spacer fingerprinting," J Clin Microbiol, vol. 34, pp. 2414-20, 1996.
[51]C. Lagatolla, L. Dolzani, E. Tonin, A. Lavenia, M. Di Michele, T. Tommasini, et al., "PCR ribotyping for characterizing Salmonella isolates of different serotypes," J Clin Microbiol, vol. 34, pp. 2440-3, 1996.
[52]G.Smidt. P, "Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex," J Clin Microbiol, vol. 30, pp. 2680-5, 1992.
[53]L. Dijkshoorn, A. Van Ooyen, W. C. Hop, M. Theuns, and M. F. Michel, "Comparison of clinical Acinetobacter strains using a carbon source growth assay," Epidemiol Infect, vol. 104, pp. 443-53, 1990.
[54]H. Seifert and P. Gerner-Smidt, "Comparison of ribotyping and pulsed-field gel electrophoresis for molecular typing of Acinetobacter isolates," J Clin Microbiol, vol. 33, pp. 1402-7, 1995.
[55]S. Vourli, F. Frantzeskaki, J. Meletiadis, L. Stournara, A. Armaganidis, L. Zerva, et al., "Synergistic interactions between colistin and meropenem against extensively drug-resistant and pandrug-resistant Acinetobacter baumannii isolated from ICU patients," Int J Antimicrob Agents, vol. 45, pp. 670-1, 2015.
[56]A. Y. Peleg, H. Seifert, and D. L. Paterson, "Acinetobacter baumannii: emergence of a successful pathogen," Clin Microbiol Rev, vol. 21, pp. 538-82, 2008.
[57]J. Garnacho-Montero, A. Escoresca-Ortega, and E. Fernandez-Delgado, "Antibiotic de-escalation in the ICU: how is it best done?," Curr Opin Infect Dis, vol. 28, pp. 193-8, 2015.
[58]N. C. Gordon and D. W. Wareham, "Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance," Int J Antimicrob Agents, vol. 35, pp. 219-26, 2010.
[59]J. J. Ye, C. T. Huang, S. S. Shie, P. Y. Huang, L. H. Su, C. H. Chiu, et al., "Multidrug resistant Acinetobacter baumannii: risk factors for appearance of imipenem resistant strains on patients formerly with susceptible strains," PLoS One, vol. 5, p. e9947, 2010.
[60]L. C. Antunes, F. Imperi, A. Carattoli, and P. Visca, "Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity," PLoS One, vol. 6, p.e22674, 2011.
[61]A. P. Tomaras, M. J. Flagler, C. W. Dorsey, J. A. Gaddy, and L. A. Actis, "Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology," Microbiology, vol. 154, pp. 3398-409, 2008.
[62]Y. Fattahian, I. Rasooli, S. L. Mousavi Gargari, M. R. Rahbar, S. Darvish Alipour Astaneh, and J. Amani, "Protection against Acinetobacter baumannii infection via its functional deprivation of biofilm associated protein (Bap)," Microb Pathog, vol. 51, pp. 402-6, 2011.
[63]P. J. Turner, "Meropenem activity against European isolates: report on the MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) 2006 results," Diagn Microbiol Infect Dis, vol. 60, pp. 185-92, 2008.
[64]K. H. Park, J. H. Shin, S. Y. Lee, S. H. Kim, M. O. Jang, S. J. Kang, et al., "The clinical characteristics, carbapenem resistance, and outcome of Acinetobacter bacteremia according to genospecies," PLoS One, vol. 8, p. e65026, 2014.
[65]T. R. Walsh, "Emerging carbapenemases: a global perspective," Int J Antimicrob Agents, vol. 36, pp. 8-14, 2010.
[66]A. B. Dessens, P. T. Cohen-Kettenis, G. J. Mellenbergh, J. G. Koppe, N. E. Poll, and K. Boer, "Association of prenatal phenobarbital and phenytoin exposure with genital anomalies and menstrual disorders," Teratology, vol. 64, pp. 181-8, 2001.
[67]M. E. Falagas, I. A. Bliziotis, and Siempos, II, "Attributable mortality of Acinetobacter baumannii infections in critically ill patients: a systematic review of matched cohort and case-control studies," Crit Care, vol. 10, p. R48, 2006.
[68]C. Damblon, X. Raquet, L. Y. Lian, J. Lamotte-Brasseur, E. Fonze, P. Charlier, et al., "The catalytic mechanism of beta-lactamases: NMR titration of an active-site lysine residue of the TEM-1 enzyme," Proc Natl Acad Sci U S A, vol. 93, pp. 1747-52, 1996.
[69]J. M. Frere, "Beta-lactamases and bacterial resistance to antibiotics," Mol Microbiol, vol. 16, pp. 385-95, 1995.
[70]K. Poole, "Resistance to beta-lactam antibiotics," Cell Mol Life Sci, vol. 61, pp. 2200-23, 2004.
[71]G. D. Cortivo, A. Gutberlet, J. A. Ferreira, L. E. Ferreira, R. C. Deglmann, G. A. Westphal, et al., "Antimicrobial resistance profiles and oxacillinase genes in carbapenem-resistant Acinetobacter baumannii isolated from hospitalized patients in Santa Catarina, Brazil," Rev Soc Bras Med Trop, vol. 48, pp. 699-705, 2015.
[72]L. Poirel, L. Brinas, A. Verlinde, L. Ide, and P. Nordmann, "BEL-1, a novel clavulanic acid-inhibited extended-spectrum beta-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa," Antimicrob. Agents Chemother, vol. 49, pp. 3743-8, 2005.
[73]L. Poirel, M. Van De Loo, H. Mammeri, and P. Nordmann, "Association of plasmid-mediated quinolone resistance with extended-spectrum beta-lactamase VEB-1," Antimicrob Agents Chemother, vol. 49, pp. 3091-4, 2005.
[74]J. R. Knox and P. C. Moews, "Beta-lactamase of Bacillus licheniformis 749/C. Refinement at 2 A resolution and analysis of hydration," J Mol Biol, vol. 220, pp. 435-55, 1991.
[75]P. Nordmann, T. Naas, and L. Poirel, "Global spread of Carbapenemase-producing Enterobacteriaceae," Emerg Infect Dis, vol. 17, pp. 1791-8, 2011.
[76]R. Cooksey, J. Swenson, N. Clark, E. Gay, and C. Thornsberry, "Patterns and mechanisms of beta-lactam resistance among isolates of Escherichia coli from hospitals in the United States," Antimicrob. Agents Chemother, vol. 34, pp. 739-45, 1990.
[77]C. T. Walsh, S. L. Fisher, I. S. Park, M. Prahalad, and Z. Wu, "Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story," Chem Biol, vol. 3, pp. 21-8, 1996.
[78]T. R. Walsh, "The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria," Clin Microbiol Infect, vol. 11, pp. 2-9, 2005.
[79]A. Makena, A. O. Duzgun, J. Brem, M. A. McDonough, A. M. Rydzik, M. I. Abboud, et al., "Comparison of Verona Integron-Borne Metallo-beta-Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles," Antimicrob. Agents Chemother, vol. 60, pp. 1377-84, 2015.
[80]G. Gupta, V. Tak, and P. Mathur, "Detection of AmpC beta Lactamases in Gram-negative Bacteria," J Lab Physicians, vol. 6, pp. 1-6, 2014.
[81]K. M. Hujer, N. S. Hamza, A. M. Hujer, F. Perez, M. S. Helfand, C. R. Bethel, et al., "Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 beta-lactamase: defining a unique family of class C enzymes," Antimicrob Agents Chemother, vol. 49, pp. 2941-8, Jul 2005.
[82]A. Opazo, M. Dominguez, H. Bello, S. G. Amyes, and G. Gonzalez-Rocha, "OXA-type carbapenemases in Acinetobacter baumannii in South America," J Infect Dev Ctries, vol. 6, pp. 311-6, 2012.
[83]ß-Lactamase Classification and Amino Acid Sequences for TEM, SHV and OXA Extended-Spectrum and Inhibitor Resistant Enzymes. Available: http://www.lahey.org/studies/webt.asp
[84]S. Brown, H. K. Young, and S. G. Amyes, "Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina," Clin Microbiol Infect, vol. 11, pp. 15-23, 2005.
[85]L. Poirel, S. Marque, C. Heritier, C. Segonds, G. Chabanon, and P. Nordmann, "OXA-58, a novel class D {beta}-lactamase involved in resistance to carbapenems in Acinetobacter baumannii," Antimicrob Agents Chemother, vol. 49, pp. 202-8, Jan 2005.
[86]S. Brown and S. Amyes, "OXA (beta)-lactamases in Acinetobacter: the story so far," J Antimicrob Chemother, vol. 57, pp. 1-3, 2006.
[87]S. Corvec, N. Caroff, E. Espaze, C. Giraudeau, H. Drugeon, and A. Reynaud, "AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains," J Antimicrob Chemother, vol. 52, pp. 629-35, 2003.
[88]B. A. Evans and S. G. B. Amyes, "OXA β-Lactamases," Clinical Microbiology Reviews, vol. 27, pp. 241-63, 2014.
[89]L. Poirel, S. Figueiredo, V. Cattoir, A. Carattoli, and P. Nordmann, "Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp," Antimicrob Agents Chemother, vol. 52, pp. 1252-6, 2008.
[90]T. W. Boo and B. Crowley, "Detection of blaOXA-58 and blaOXA-23-like genes in carbapenem-susceptible Acinetobacter clinical isolates: should we be concerned?," J Med Microbiol, vol. 58, pp. 839-41, 2009.
[91]L. Han, J. Lei, J. Xu, S. Han, "blaOXA-23-like and blaTEM rather than blaOXA-51-like contributed to a high level of carbapenem resistance in Acinetobacter baumannii strains from a teaching hospital in Xi''an, China," Medicine (Baltimore), vol. 96, p. e8965, 2017.
[92]J. Gao, X. Zhao, Y. Bao, R. Ma, Y. Zhou, X. Li, et al., "Antibiotic resistance and OXA-type carbapenemases-encoding genes in airborne Acinetobacter baumannii isolated from burn wards," Burns, vol. 40, pp. 295-9, 2014.
[93]J. Walther-Rasmussen and N. Hoiby, "OXA-type carbapenemases," J Antimicrob Chemother, vol. 57, pp. 373-83, 2006.
[94]V. Tiwari and R. R. Moganty, "Conformational stability of OXA-51 beta-lactamase explains its role in carbapenem resistance of Acinetobacter baumannii," J Biomol Struct Dyn, vol. 32, pp. 1406-20, 2014.
[95]Lahey Clinic. Available: http://www.lahey.org/Studies/
[96]O. Barraud, E. Badell, F. Denis, N. Guiso, and M. C. Ploy, "Antimicrobial drug resistance in Corynebacterium diphtheriae mitis," Emerg Infect Dis, vol. 17, pp. 2078-80, 2011.
[97]C. Walsh, "Molecular mechanisms that confer antibacterial drug resistance," Nature, vol. 406, pp. 775-81, 2000.
[98]B. G. Spratt, "Biochemical and genetical approaches to the mechanism of action of penicillin," Philos Trans R Soc Lond B Biol Sci, vol. 289, pp. 273-83, 1980.
[99]C. S. Lewin, B. M. Howard, N. T. Ratcliffe, and J. T. Smith, "4-quinolones and the SOS response," J Med Microbiol, vol. 29, pp. 139-44, 1989.
[100]P. J. White and D. D. Woods, "The synthesis of p-aminobenzoic acid and folic acid by staphylococci sensitive and resistant to sulphonamides," J Gen Microbiol, vol. 40, pp. 243-53, 1965.
[101]G. W. Amsden, A. N. Nafziger, G. Foulds, and L. J. Cabelus, "A study of the pharmacokinetics of azithromycin and nelfinavir when coadministered in healthy volunteers," J Clin Pharmacol, vol. 40, pp. 1522-7, 2000.
[102]S. G. Amyes and J. T. Smith, "R-factor mediated dihydrofolate reductases which confer trimethoprim resistance," J Gen Microbiol, vol. 107, pp. 263-71, 1978.
[103]D. M. Livermore, "Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa," Antimicrob Agents Chemother, vol. 36, pp. 2046-8, 1992.
[104]A. Coates, Y. Hu, R. Bax, and C. Page, "The future challenges facing the development of new antimicrobial drugs," Nat Rev Drug Discov, vol. 1, pp. 895-910, 2002.
[105]M. L. Barclay, E. J. Begg, and K. G. Hickling, "What is the evidence for once-daily aminoglycoside therapy?," Clin Pharmacokinet, vol. 27, pp. 32-48, Jul 1994.
[106]L. B. Rice, "Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa," Clin Infect Dis, vol. 43, pp. S100-5, 2006.
[107]J. M. Thomson and R. A. Bonomo, "The threat of antibiotic resistance in Gram-negative pathogenic bacteria: beta-lactams in peril!," Curr Opin Microbiol, vol. 8, pp. 518-24, 2005.
[108]M. A. Mussi, A. S. Limansky, and A. M. Viale, "Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins," Antimicrob Agents Chemother, vol. 49, pp. 1432-40, 2005.
[109]G. Bou and J. Martinez-Beltran, "Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC beta-lactamase in Acinetobacter baumannii," Antimicrob Agents Chemother, vol. 44, pp. 428-32, 2000.
[110]Y. Lee, I. K. Bae, J. Kim, S. H. Jeong, and K. Lee, "Dissemination of ceftazidime-resistant Acinetobacter baumannii clonal complex 92 in Korea," J Appl Microbiol, vol. 112, pp. 1207-11, 2012.
[111]T. Naas, P. Nordmann, and A. Heidt, "Intercountry transfer of PER-1 extended-spectrum beta-lactamase-producing Acinetobacter baumannii from Romania," Int J Antimicrob Agents, vol. 29, pp. 226-8, 2007.
[112]J. F. Turton, M. E. Ward, N. Woodford, M. E. Kaufmann, R. Pike, D. M. Livermore, et al., "The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii," FEMS Microbiol Lett, vol. 258, pp. 72-7, 2006.
[113]S. Figueiredo, L. Poirel, A. Papa, V. Koulourida, and P. Nordmann, "Overexpression of the naturally occurring blaOXA-51 gene in Acinetobacter baumannii mediated by novel insertion sequence ISAba9," Antimicrob Agents Chemother, vol. 53, pp. 4045-7, 2009.
[114]P. G. Higgins, F. J. Perez-Llarena, E. Zander, A. Fernandez, G. Bou, and H. Seifert, "OXA-235, a novel class D beta-lactamase involved in resistance to carbapenems in Acinetobacter baumannii," Antimicrob Agents Chemother, vol. 57, pp. 2121-6, 2013.
[115]P. D. Mugnier, L. Poirel, T. Naas, and P. Nordmann, "Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii," Emerg Infect Dis, vol. 16, pp. 35-40, 2010.
[116]Y. Chen, Z. Yan, M. Wang, X. Zheng, Y. Lu, and S. Lin, "Draft Genome Sequence of a Multidrug-Resistant bla NDM-1-Producing Acinetobacter soli Isolate in China," Indian J Microbiol, vol. 54, pp. 474-5, 2014.
[117]Y. Doi, J. M. Adams, K. Yamane, and D. L. Paterson, "Identification of 16S rRNA methylase-producing Acinetobacter baumannii clinical strains in North America," Antimicrob Agents Chemother, vol. 51, pp. 4209-10, 2007.
[118]G. Cox, P. J. Stogios, A. Savchenko, and G. D. Wright, "Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2'')-Ia," MBio, vol. 6, 2015.
[119]D. M. Rothstein, M. McGlynn, V. Bernan, J. McGahren, J. Zaccardi, N. Cekleniak, et al., "Detection of tetracyclines and efflux pump inhibitors," Antimicrob Agents Chemother, vol. 37, pp. 1624-9, 1993.
[120]M. J. Rybak, "Resistance to antimicrobial agents: an update," Pharmacotherapy, vol. 24, pp. 203S-15S, 2004.
[121]R. W. Barrons, K. M. Murray, and R. M. Richey, "Populations at risk for penicillin-induced seizures," Ann Pharmacother, vol. 26, pp. 26-9, 1992.
[122]A. M. Queenan and K. Bush, "Carbapenemases: the versatile beta-lactamases," Clin Microbiol Rev, vol. 20, pp. 440-58, 2007.
[123]E. Selimoglu, "Aminoglycoside-induced ototoxicity," Curr Pharm Des, vol. 13, pp. 119-26, 2007.
[124]J. F. Fisher, S. O. Meroueh, and S. Mobashery, "Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity," Chem Rev, vol. 105, pp. 395-424, 2005.
[125]K. Bush and G. A. Jacoby, "Updated functional classification of beta-lactamases," Antimicrob Agents Chemother, vol. 54, pp. 969-76, 2010.
[126]K. Bush, G. A. Jacoby, and A. A. Medeiros, "A functional classification scheme for beta-lactamases and its correlation with molecular structure," Antimicrob Agents Chemother, vol. 39, pp. 1211-33, 1995.
[127]T. A. Davies, W. He, K. Bush, and R. K. Flamm, "Affinity of ceftobiprole for penicillin-binding protein 2b in Streptococcus pneumoniae strains with various susceptibilities to penicillin," Antimicrob Agents Chemother, vol. 54, pp. 4510-2, 2010.
[128]B. B. Tomazic and G. H. Nancollas, "A study of the phase transformation of calcium oxalate trihydrate-monohydrate," Invest Urol, vol. 16, pp. 329-35, 1979.
[129]Penicillin types. Available: https://gdblogs.shu.ac.uk/b1005623/2014/10/23/types-of-penicillin/
[130]C. A. McCartney, A. L. Brule-Babel, and L. Lamari, "Inheritance of ace-Specific Resistance to Mycosphaerella graminicola in Wheat," Phytopathology, vol. 92, pp. 138-44, 2002.
[131]Chemical structure of ampicillin. Available: https://en.wikipedia.org/wiki/Ampicillin
[132]DD.DePestel, SM.Benninger, L.Danziger, LK. LaPlante, C. May, A. Luskin, et al., "Cephalosporin use in treatment of patients with penicillin allergies.," J Am Pharm Assoc, vol. 48, pp. 530-40, 2008.
[133]R. Wise, "The pharmacokinetics of the oral cephalosporins--a review," J Antimicrob Chemother, vol. 26, pp. 13-20, 1990.
[134]P. G. Welling, S. Dean, A. Selen, M. J. Kendall, and R. Wise, "The pharmacokinetics of the oral cephalosporins cefaclor, cephradine and cephalexin," Int J Clin Pharmacol Biopharm, vol. 17, pp. 397-400, 1979.
[135]S. D. Dickson and K. C. Salazar, "Diagnosis and management of immediate hypersensitivity reactions to cephalosporins," Clin Rev Allergy Immunol, vol. 45, pp. 131-42, 2013.
[136]C. Heritier, L. Poirel, and P. Nordmann, "Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii," Clin Microbiol Infect, vol. 12, pp. 123-30, 2006.
[137]B. S. Lopes and S. G. Amyes, "Role of ISAba1 and ISAba125 in governing the expression of blaADC in clinically relevant Acinetobacter baumannii strains resistant to cephalosporins," J Med Microbiol, vol. 61, pp. 1103-8, 2012.
[138]J. M. Adams-Haduch, D. L. Paterson, H. E. Sidjabat, A. W. Pasculle, B. A. Potoski, C. A. Muto, et al., "Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania," Antimicrob Agents Chemother, vol. 52, pp. 3837-43, 2008.
[139]Chemical structure of first-to-fourth-generation cephalosporins. Available: https://www.ebmconsult.com/articles/penicillin-allergy-cross-reactivity-cephalosporin-antibiotics
[140]P. Nordmann, L. Dortet, and L. Poirel, "Carbapenem resistance in Enterobacteriaceae: here is the storm!," Trends Mol Med, vol. 18, pp. 263-72, 2012.
[141]K. M. Papp-Wallace, A. Endimiani, M. A. Taracila, and R. A. Bonomo, "Carbapenems: past, present, and future," Antimicrob Agents Chemother, vol. 55, pp. 4943-60, 2011.
[142]J. S. Kahan, F. M. Kahan, R. Goegelman, S. A. Currie, M. Jackson, E. O. Stapley, et al., "Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties," J Antibiot (Tokyo), vol. 32, pp. 1-12, Jan 1979.
[143]D. M. Livermore, R. L. Hill, H. Thomson, A. Charlett, J. F. Turton, R. Pike, et al., "Antimicrobial treatment and clinical outcome for infections with carbapenem- and multiply-resistant Acinetobacter baumannii around London," Int J Antimicrob Agents, vol. 35, pp. 19-24, 2010.
[144]D. M. Livermore, "beta-Lactamases in laboratory and clinical resistance," Clin Microbiol Rev, vol. 8, pp. 557-84, 1995.
[145]Chemical structure of carbapenems. Available: https://en.wikipedia.org/wiki/Carbapenems
[146]Chemical structure of IPM. Available: http://www.ktgh.com.tw/Medicament_tbDrug_Look.asp?CatID=65&ModuleType=Y&NewsID=701
[147]J. G. Fischer, C. Robin, Analogue-based Drug Discovery, 2006.
[148]M. C. Roberts, "Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution," FEMS Microbiol Rev, vol. 19, pp. 1-24, 1996.
[149]M. C. Roberts, "Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes," Mol Biotechnol, vol. 20, pp. 261-83, 2002.
[150]G. R. Craven, R. Gavin, and T. Fanning, "The transfer RNA binding site of the 30 S ribosome and the site of tetracycline inhibition," Cold Spring Harb Symp Quant Biol, vol. 34, pp. 129-37, 1969.
[151]S. R. Connell, D. M. Tracz, K. H. Nierhaus, and D. E. Taylor, "Ribosomal protection proteins and their mechanism of tetracycline resistance," Antimicrob Agents Chemother, vol. 47, pp. 3675-81, 2003.
[152]General structure of tetracycline. Available: https://en.wikipedia.org/wiki/Tetracyclines
[153]P. Koomanachai, A. Kim, and D. P. Nicolau, "Pharmacodynamic evaluation of tigecycline against Acinetobacter baumannii in a murine pneumonia model," J Antimicrob Chemother, vol. 63, pp. 982-7, 2009.
[154]A. Thomas, F. Khan, N. Uddin, and M. R. Wallace, "Tigecycline for severe Clostridium difficile infection," Int J Infect Dis, vol. 26, pp. 171-2, 2014.
[155]G. A. Noskin, "Tigecycline: a new glycylcycline for treatment of serious infections," Clin Infect Dis, vol. 41, pp. S303-14, 2005.
[156]General structure of tigecycline. Available: https://en.wikipedia.org/wiki/Tigecycline
[157]E. J. Begg, M. L. Barclay, and S. B. Duffull, "A suggested approach to once-daily aminoglycoside dosing," Br J Clin Pharmacol, vol. 39, pp. 605-9, 1995.
[158]R. Mehta and W. S. Champney, "30S ribosomal subunit assembly is a target for inhibition by aminoglycosides in Escherichia coli," Antimicrob Agents Chemother, vol. 46, pp. 1546-9, 2002.
[159]F. J. Schmitz, A. C. Fluit, E. Lindenlauf, S. Scheuring, and K. Kohrer, "Molecular analyses of possible mechanisms coding for low-level mupirocin resistance in clinical Staphylococcus aureus isolates," Eur J Clin Microbiol Infect Dis, vol. 19, pp. 649-50, 2000.
[160]M. S. Ramirez and M. E. Tolmasky, "Aminoglycoside modifying enzymes," Drug Resist Updat, vol. 13, pp. 151-71, Dec 2010.
[161]D. K. B. Aníbal de J. Sosa, Carlos F. Amábile-Cuevas, Po-Ren Hsueh, Samuel Kariuki, Iruka N. Okeke, Antimicrobial Resistance in Developing Countries. Germany: Springer Science & Business Media, 2009.
[162]P. Courvalin and A. Leroy, "Aminosides: mode of action, pharmacology and mechanisms of resistance," Rev Prat, vol. 38, pp. 987-92, 1988.
[163]General structure of gentamicin. Available: http://www.ganfyd.org/index.php?title=Gentamicin
[164]E. Torok, E. Moran, and F. Cooke, Oxford Handbook of Infectious Diseases and Microbiology. OUP Oxford, 2009.
[165]C. J. Thomson, "Trimethoprim and brodimoprim resistance of gram-positive and gram-negative bacteria," J Chemother, vol. 5, pp. 458-64, 1993.
[166]General structure of TMP (top) and SMX (bottom). Available: http://www.ganfyd.org/index.php?title=Trimethoprim-sulfamethoxazole
[167]I. K. Jahid, N. Han, C. Y. Zhang, and S. D. Ha, "Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma," Food Microbiol, vol. 46, pp. 383-394, 2015.
[168]L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, "Bacterial biofilms: from the natural environment to infectious diseases," Nat Rev Microbiol, vol. 2, pp. 95-108, 2004.
[169]M. Toyofuku, T. Inaba, T. Kiyokawa, N. Obana, Y. Yawata, and N. Nomura, "Environmental factors that shape biofilm formation," Biosci Biotechnol Biochem, vol. 80, pp. 7-12, 2016.
[170]C. Staudt, H. Horn, D. C. Hempel, and T. R. Neu, "Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms," Biotechnol Bioeng, vol. 88, pp. 585-92, 2004.
[171]S. Vijayakumar, S. Rajenderan, S. Laishram, S. Anandan, V. Balaji, and I. Biswas, "Biofilm Formation and Motility Depend on the Nature of the Acinetobacter baumannii Clinical Isolates," Front Public Health, vol. 4, p. 105, 2016.
[172]W. Costerton, R. Veeh, M. Shirtliff, M. Pasmore, C. Post, and G. Ehrlich, "The application of biofilm science to the study and control of chronic bacterial infections," J Clin Invest, vol. 112, pp. 1466-77, 2003.
[173]J. C. Nickel and J. W. Costerton, "Bacterial localization in antibiotic-refractory chronic bacterial prostatitis," Prostate, vol. 23, pp. 107-14, 1993.
[174]D. Hogan and R. Kolter, "Why are bacteria refractory to antimicrobials?," Curr Opin Microbiol, vol. 5, pp. 472-7, 2002.
[175]K. Poole, "Mechanisms of bacterial biocide and antibiotic resistance," Symp Ser Soc Appl Microbiol, pp. 55S-64S, 2002.
[176]S. D. Stowe, J. J. Richards, A. T. Tucker, R. Thompson, C. Melander, and J. Cavanagh, "Anti-biofilm compounds derived from marine sponges," Mar Drugs, vol. 9, pp. 2010-35, 2011.
[177]V. Seputiene, A. Bogdaite, M. Ruzauskas, and E. Suziedeliene, "Antibiotic resistance genes and virulence factors in Enterococcus faecium and Enterococcus faecalis from diseased farm animals: pigs, cattle and poultry," Pol J Vet Sci, vol. 15, pp. 431-8, 2012.
[178]S. C. Kuo, S. P. Yang, Y. T. Lee, H. C. Chuang, C. P. Chen, C. L. Chang, et al., "Dissemination of imipenem-resistant Acinetobacter baumannii with new plasmid-borne bla(OXA-72) in Taiwan," BMC Infect Dis, vol. 13, p. 319, 2013.
[179]J. Povilonis, V. Seputiene, R. Krasauskas, R. Juskaite, M. Miskinyte, K. Suziedelis, et al., "Spread of carbapenem-resistant Acinetobacter baumannii carrying a plasmid with two genes encoding OXA-72 carbapenemase in Lithuanian hospitals," J Antimicrob Chemother, vol. 68, pp. 1000-6, 2013.
[180]F. Longo, C. Vuotto, and G. Donelli, "Biofilm formation in Acinetobacter baumannii," New Microbiologica, vol. 37, pp. 119-127, 2014.
[181]J. J. Harrison, R. J. Turner, D. A. Joo, M. A. Stan, C. S. Chan, N. D. Allan, et al., "Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa," Antimicrob Agents Chemother, vol. 52, pp. 2870-81, 2008.
[182]A. P. Tomaras, C. W. Dorsey, R. E. Edelmann, and L. A. Actis, "Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system," Microbiology, vol. 149, pp. 3473-84, 2003.
[183]L. V. Bentancor, J. M. O''Malley, C. Bozkurt-Guzel, G. B. Pier, and T. Maira-Litran, "Poly-N-acetyl-beta-(1-6)-glucosamine is a target for protective immunity against Acinetobacter baumannii infections," Infect Immun, vol. 80, pp. 651-6, 2012.
[184]Performance standards for antimicrobial susceptibility testing: 25th informational supplement. Available: (2015) http://www.facm.ucl.ac.be/intranet/CLSI/CLSI-2015-M100-S25-original.pdf
[185]N. Woodford, M. J. Ellington, J. M. Coelho, J. F. Turton, M. E. Ward, S. Brown, et al., "Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp," Int J Antimicrob Agents, vol. 27, pp. 351-3, 2006.
[186]S. Bagheri Josheghani, R. Moniri, F. Firoozeh, M. Sehat, and Y. Dasteh Goli, "Susceptibility Pattern and Distribution of Oxacillinases and bla PER-1 Genes among Multidrug Resistant Acinetobacter baumannii in a Teaching Hospital in Iran," J Pathog, vol. 2015, p. 957259, 2015.
[187]J. F. Turton, N. Woodford, J. Glover, S. Yarde, M. E. Kaufmann, and T. L. Pitt, "Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species," J Clin Microbiol, vol. 44, pp. 2974-6, 2006.
[188]M. Taherikalani, B. Fatolahzadeh, M. Emaneini, S. Soroush, and M. M. Feizabadi, "Distribution of different carbapenem resistant clones of Acinetobacter baumannii in Tehran hospitals," New Microbiol, vol. 32, pp. 265-71, 2009.
[189]C. A. Smith, N. T. Antunes, N. K. Stewart, M. Toth, M. Kumarasiri, M. Chang, et al., "Structural basis for carbapenemase activity of the OXA-23 beta-lactamase from Acinetobacter baumannii," Chem Biol, vol. 20, pp. 1107-15, 2013.
[190]C. G. Carvalhaes, R. Cayo, D. M. Assis, E. R. Martins, L. Juliano, M. A. Juliano, et al., "Detection of SPM-1-producing Pseudomonas aeruginosa and class D beta-lactamase-producing Acinetobacter baumannii isolates by use of liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization-time of flight mass spectrometry," J Clin Microbiol, vol. 51, pp. 287-90, 2013.
[191]P. G. Higgins, M. Lehmann, and H. Seifert, "Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp," Int J Antimicrob Agents, vol. 35, p. 305, 2010.
[192]C. Rumbo, E. Fernandez-Moreira, M. Merino, M. Poza, J. A. Mendez, N. C. Soares, et al., "Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii," Antimicrob Agents Chemother, vol. 55, pp. 3084-90, 2011.
[193]S. Krongdang, J. D. Evans, J. S. Pettis, and P. Chantawannakul, "Multilocus sequence typing, biochemical and antibiotic resistance characterizations reveal diversity of North American strains of the honey bee pathogen Paenibacillus larvae," PLoS One, vol. 12, p. e0176831, 2017.
[194]M. Ruiz, S. Marti, F. Fernandez-Cuenca, A. Pascual, and J. Vila, "Prevalence of IS(Aba1) in epidemiologically unrelated Acinetobacter baumannii clinical isolates," FEMS Microbiol Lett, vol. 274, pp. 63-6, 2007.
[195]K. A. Brossard and A. A. Campagnari, "The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells," Infect Immun, vol. 80, pp. 228-33, 2012.
[196]F. Fallah, M. Noori, A. Hashemi, H. Goudarzi, A. Karimi, S. Erfanimanesh, et al., "Prevalence of bla NDM, bla PER, bla VEB, bla IMP, and bla VIM Genes among Acinetobacter baumannii Isolated from Two Hospitals of Tehran, Iran," Scientifica (Cairo), vol. 2014, p. 6, 2014.
[197]Y. Liu and X. Liu, "Detection of AmpC beta-lactamases in Acinetobacter baumannii in the Xuzhou region and analysis of drug resistance," Exp Ther Med, vol. 10, pp. 933-36, 2015.
[198]O. Azizi, F. Shahcheraghi, H. Salimizand, F. Modarresi, M. R. Shakibaie, S. Mansouri, et al., "Molecular Analysis and Expression of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii," Rep Biochem Mol Biol, vol. 5, pp. 62-72, 2016.
[199]H. J. Grundmann, K. J. Towner, L. Dijkshoorn, P. Gerner-Smidt, M. Maher, H. Seifert, et al., "Multicenter study using standardized protocols and reagents for evaluation of reproducibility of PCR-based fingerprinting of Acinetobacter spp," J Clin Microbiol, vol. 35, pp. 3071-7, 1997.
[200]G. Bou, G. Cervero, M. A. Dominguez, C. Quereda, and J. Martinez-Beltran, "PCR-based DNA fingerprinting (REP-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant Acinetobacter baumannii," Clin Microbiol Infect, vol. 6, pp. 635-43, 2000.
[201]S. Bakour, V. Garcia, L. Loucif, J. M. Brunel, A. Gharout-Sait, A. Touati, et al., "Rapid identification of carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii using a modified Carba NP test," New Microbes New Infect, vol. 7, pp. 89-93, 2015.
[202]A. M. Bardbari, M. R. Arabestani, M. Karami, F. Keramat, M. Y. Alikhani, and K. P. Bagheri, "Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates," Microb Pathog, vol. 108, pp. 122-8, 2017.
[203]M. Safari, A. S. Mozaffari Nejad, A. Bahador, R. Jafari, and M. Y. Alikhani, "Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU)," Saudi J Biol Sci, vol. 22, pp. 424-9, 2015.
[204]C. Cucarella, M. A. Tormo, C. Ubeda, M. P. Trotonda, M. Monzon, C. Peris, et al., "Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus," Infect Immun, vol. 72, pp. 2177-85, 2004.
[205]S. E. Costello, A. C. Gales, R. Morfin-Otero, R. N. Jones, and M. Castanheira, "Mechanisms of Resistance, Clonal Expansion, and Increasing Prevalence of Acinetobacter baumannii Strains Displaying Elevated Tigecycline MIC Values in Latin America," Microb Drug Resist, vol. 22, pp. 253-8, 2016.
[206]M. Pourhajibagher, M. Mokhtaran, D. Esmaeili, and A. Bahador, "Assessment of biofilm formation among Acinetobacter baumannii strains isolated from burned patients," Der Pharmacia Lettre, vol. 8, pp. 225-9, 2016.
[207]B. S. Everitt and T. Hothorn, " A Handbook of Statistical Analyses Using R (2nd Edition)" , 2017.
[208]R. C. de Amorim, "Feature Relevance in Ward''s Hierarchical Clustering Using the L (p) Norm," Journal of Classification, vol. 32, pp. 46-62, 2015.
[209]J. Berenguer, International Microbiology. Official Journal of the Spanish Society for Microbiology, 2013.
[210]J. A. Gaddy, A. P. Tomaras, and L. A. Actis, "The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells," Infect Immun, vol. 77, pp. 3150-60, 2009.
[211]H. W. Lee, Y. M. Koh, J. Kim, J. C. Lee, Y. C. Lee, S. Y. Seol, et al., "Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces," Clin Microbiol Infect, vol. 14, pp. 49-54, 2008.
[212]R. Seng, T. Kitti, R. Thummeepak, P. Kongthai, U. Leungtongkam, S. Wannalerdsakun, et al., "Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-CoNS) isolated from community and hospital environments," PLoS One, vol. 12, p. e0184172, 2017.
[213]P. Nordmann, L. Poirel, and L. Dortet, "Rapid detection of carbapenemase-producing Enterobacteriaceae," Emerg Infect Dis, vol. 18, pp. 1503-7, 2012.
[214]H. C. Chang, Y. C. Chen, M. C. Lin, S. F. Liu, Y. H. Chung, M. C. Su, et al., "Mortality risk factors in patients with Acinetobacter baumannii ventilator: associated pneumonia," J Formos Med Assoc, vol. 110, pp. 564-71, 2011.
[215]E. Orozco, C. Gomez, and D. G. Perez, "Physiology and molecular genetics of multidrug resistance in Entamoeba histolytica," Drug Resist Updat, vol. 2, pp. 188-197, 1999.
[216]C. He, Y. Xie, L. Zhang, M. Kang, C. Tao, Z. Chen, et al., "Increasing imipenem resistance and dissemination of the ISAba1-associated blaOXA-23 gene among Acinetobacter baumannii isolates in an intensive care unit," J Med Microbiol, vol. 60, pp. 337-41, 2011.
[217]F. Perez, A. M. Hujer, K. M. Hujer, B. K. Decker, P. N. Rather, and R. A. Bonomo, "Global challenge of multidrug-resistant Acinetobacter baumannii," Antimicrob Agents Chemother, vol. 51, pp. 3471-84, 2007.
[218]G. Meletis, "Carbapenem resistance: overview of the problem and future perspectives," Ther Adv Infect Dis, vol. 3, pp. 15-21, 2016.
[219]J. A. Lyon, "Imipenem/cilastatin: the first carbapenem antibiotic," Drug Intell Clin Pharm, vol. 19, pp. 895-9, 1985.
[220]Y. C. Tseng, J. T. Wang, F. L. Wu, Y. C. Chen, W. C. Chie, and S. C. Chang, "Prognosis of adult patients with bacteremia caused by extensively resistant Acinetobacter baumannii," Diagn Microbiol Infect Dis, vol. 59, pp. 181-90, 2007.
[221]T. H. Tsai, J. T. Wang, C. J Chang, S. C chang, "Association between antibiotic usage and subsequent colonization or infection of extensive drug-resistant Acinetobacter baumannii: a matched case-control study in intensive care units," Diagn Microbiol Infect Dis, vol. 62, pp. 298-305, 2008.
[222]H. L. Lihua Qi, Chuanfu Zhang, Beibei Liang, Jie Li, Ligui Wang, Xinying Du, Xuelin Liu, Shaofu Qiu and Hongbin Song, "Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii," Front Microbiol, vol. 7, p. 483, 2016.
[223]O. T. GA, "Microtiter dish biofilm formation assay," J Vis Exp., vol. 30, 2011.
[224]J.T Wen, Y. Zhou, L.Yang, and Y Xu, "Multidrug-resistantgenes of aminoglycoside-modifying enzymes and 16S rRNA methylases in Acinetobacter baumannii strains.," Genet Mol Res 13, pp. 3842-9, 2014
[225]L. R. Hoffman, D. A. D''Argenio, M. J. MacCoss, Z. Zhang, R. A. Jones, and S. I. Miller, "Aminoglycoside antibiotics induce bacterial biofilm formation," Nature, vol. 436, p. 1171, 2005.
[226]T. W. Loehfelm, N. R. Luke, and A. A. Campagnari, "Identification and characterization of an Acinetobacter baumannii biofilm-associated protein," J Bacteriol, vol. 190, pp. 1036-44, 2008.
[227]L. A. Sechi, A. Karadenizli, A. Deriu, S. Zanetti, F. Kolayli, E. Balikci, et al., "PER-1 type beta-lactamase production in Acinetobacter baumannii is related to cell adhesion," Med Sci Monit, vol. 10, pp. BR180-4, 2004.
[228]S. K. I. Soumya El Abed, Hassan Latrache and Fatima Hamadi. (2012). Scanning Electron Microscopy (SEM) and Environmental SEM: Suitable Tools for Study of Adhesion Stage and Biofilm Formation.
[229]N. Minoura, S. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, "Attachment and growth of fibroblast cells on silk fibroin," Biochem Biophys Res Commun, vol. 208, pp. 511-6, 1995.
[230]P. M. Motta, S. Makabe, T. Naguro, and S. Correr, "Oocyte follicle cells association during development of human ovarian follicle. A study by high resolution scanning and transmission electron microscopy," Arch Histol Cytol, vol. 57, pp. 369-94, 1994.
[231]J. Gurung, A. B. Khyriem, A. Banik, W. V. Lyngdoh, B. Choudhury, and P. Bhattacharyya, "Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit," Indian J Crit Care Med, vol. 17, pp. 214-8, 2013.
[232]J. C. Araujo, F. C. Teran, R. A. Oliveira, E. A. Nour, M. A. Montenegro, J. R. Campos, et al., "Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge," J Electron Microsc (Tokyo), vol. 52, pp. 429-33, 2003.
[233]J. Tankovic, P. Legrand, G. De Gatines, V. Chemineau, C. Brun-Buisson, and J. Duval, "Characterization of a hospital outbreak of imipenem-resistant Acinetobacter baumannii by phenotypic and genotypic typing methods," J Clin Microbiol, vol. 32, pp. 2677-81, 1994.
[234]K. A. Reem, Aljindan, Nasreldin Elhadi, "ERIC-PCR Genotyping of Acinetobacter baumannii Isolated from Different Clinical Specimens," Saudi Journal of Medicine & Medical Sciences, vol. 6, pp. 13-7, 2018.
[235]E. Trajkovska-Dokic, V. Kotevska, A. Kaftandzieva, G. Jankoska, G. Mircevska, M. Petrovska, et al., "Phenotypic and genetic relationship of Acinetobacter Baumannii isolates," Prilozi, vol. 32, pp. 157-68, 2011.
[236]J. D. Pitout, P. Nordmann, and L. Poirel, "Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance," Antimicrob Agents Chemother, vol. 59, pp. 5873-84, 2015.
[237]G. Bayramoglu, G. Ulucam, C. Gencoglu Ozgur, A. O. Kilic, and F. Aydin, "Comparison of the modified Hodge test and the Carba NP test for detection of carbapenemases in Enterobacteriaceae isolates," Mikrobiyol Bul, vol. 50, pp. 1-10, 2016.
[238]L. Dortet, L. Poirel, and P. Nordmann, "Rapid detection of carbapenemase-producing Pseudomonas spp," J Clin Microbiol, vol. 50, pp. 3773-6, 2012.
[239]D. Girlich, L. Poirel, and P. Nordmann, "Comparison of the SUPERCARBA, CHROMagar KPC, and Brilliance CRE screening media for detection of Enterobacteriaceae with reduced susceptibility to carbapenems," Diagn Microbiol Infect Dis, vol. 75, pp. 214-7, 2013.
[240]N. Tijet, D. Boyd, S. N. Patel, M. R. Mulvey, and R. G. Melano, "Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa," Antimicrob Agents Chemother, vol. 57, pp. 4578-80, 2013.
[241]P. Asadollahi, M.Akbari, S.Soroush, M.Taherikalani, et al.,"Antimicrobial resistace patterns and their encoding genes among Acinetobacter baumannii strains isolated from burned patients," Burns, vol. 38, pp. 1198-203, 2012.
[242]Y. Fu, J. Zhou, H. Zhou, Q. Yang, Z. Wei, Y. Yu, et al., "Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China," J Antimicrob Chemother, vol. 65, pp. 644-50, 2010.
[243]P. G. Higgins, C. Dammhayn, M. Hackel, and H. Seifert, "Global spread of carbapenem-resistant Acinetobacter baumannii," J Antimicrob Chemother, vol. 65, pp. 233-8, 2010.
[244]P. G. Higgins, E. Zander, and H. Seifert, "Identification of a novel insertion sequence element associated with carbapenem resistance and the development of fluoroquinolone resistance in Acinetobacter radioresistens," J Antimicrob Chemother, vol. 68, pp. 720-2, 2013.
[245]W. Kamolvit, P. G. Higgins, D. L. Paterson, and H. Seifert, "Multiplex PCR to detect the genes encoding naturally occurring oxacillinases in Acinetobacter spp," J Antimicrob Chemother, vol. 69, pp. 959-63, 2014.
[246]Y. C. Lin, W. H.Sheng, Y. C.Chen, S. C Chang, K. C.Hsia and S.Y. Li, "Differences in carbapenem resistance genes among Acinetobacter baumannii, Acinetobacter genospecies 3 and Acinetobacter genospecies 13TU in Taiwan," Int J Antimicrob Agents vol. 35, pp. 439-43, 2010.
[247]P. G. Higgins, L. Poirel, M. Lehmann, P. Nordmann, and H. Seifert, "OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in Acinetobacter baumannii," Antimicrob Agents Chemother, vol. 53, pp. 5035-8, 2009.
[248]A. K. Mostachio, A. S. Levin, C. Rizek, F. Rossi, J. Zerbini, and S. F. Costa, "High prevalence of OXA-143 and alteration of outer membrane proteins in carbapenem-resistant Acinetobacter spp. isolates in Brazil," Int J Antimicrob Agents, vol. 39, pp. 396-401, 2012.
[249]M. Hamidian and R. M. Hall, "Resistance to third-generation cephalosporins in Acinetobacter baumannii due to horizontal transfer of a chromosomal segment containing ISAba1-ampC," J Antimicrob Chemother, vol. 69, pp. 2865-6, 2014.
[250]J. M. Rodriguez-Martinez, P. Nordmann, E. Ronco, and L. Poirel, "Extended-spectrum cephalosporinase in Acinetobacter baumannii," Antimicrob Agents Chemother, vol. 54, pp. 3484-8, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊