|
[1] F.W. Bach, A. Laarmann, T. Wenz, Modern Surface Technology, Wiley-VCH Verlag GmbH & Co. KGaA (2006). [2] R. Saha, J.A. Barnard, Effect of structure on the mechanical properties of Ta and Ta(N) thin films prepared by reactive DC magnetron sputtering, J. Cryst. Growth 174 (1997) 495. [3] M.H. Tsai, S.C. Sun, C.E. Sun, C.E. Tsai, S.H. Shuang, H.T. Chiu, Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Si, J. Appl. Phys. 79 (1996) 6932. [4] Y.M. Lu, R.J. Weng, W.S. Hwang, Y.S. Yang, Study of phase transition and electrical resistivity of tantalum nitride films prepared by DC magnetron sputtering with OES detection system, Thin Solid Films 398–399 (2001) 356. [5] S.M. Aouadi, M. Debessai, Optical properties of tantalum nitride films fabricated using reactive unbalanced magnetron sputtering, J. Vac. Sci. Technol., A 22 (2004) 1975. [6] M. Nordin, M. Larsson, S. Hogmark, Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide, Surf. Coat. Technol. 106 (1998) 234. [7] O. Zywitzki, G. Hoetzsch, F. Fietzke, K. Goedicke, Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering, Surf. Coat. Technol. 82 (1996) 173. [8] Y.Y. Li, F.B. Wu, Microstructure and corrosion characteristics of CrN/NiP sputtering thin films, Thin Solid Films 518 (2010) 7527. [9] F.X. Cheng, C.H. Jiang, J.S. Wu, Effect of sputtering input powers on CoSi2 thin films prepared by magnetron sputtering, Materials and Design 26 (2005) 371.
[10] K. Kusaka, D. Taniguchi, T. Hanabusa, K. Tominaga, Effect of input power on crystal orientation and residual stress in AlN film deposited by dc sputtering, Vacuum 59 (2000) 810. [11] Y.L. Kuo, J.J. Huang, S.T. Lin, C. Lee, W.H. Lee, Diffusion barrier properties of sputtered TaNx between Cu and Si using TaN as the target, Materials Chemistry and Physics 80 (2003) 693. [12] B. Bhushan, Overview of coating materials, surface treatments and screening techniques for tribological applications Part I: Coating materials and surface treatments, STP, 947 (1987) 289. [13] D. S. Rickerby, A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering, Blackie & Son Ltd., London (1991) 196. [14] D. K. Maurya, A. Sardarinejad, K. Alameh, Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications - An overview, Coatings, 4 (2014) 758. [15] D.M. Mattox, Particle bombardment effects on thin-film deposition: A review, J. Vac. Sci. Technol. A7 (3) (1989) 1105. [16] J. Heller, Reactive sputtering of metals in oxidizing atmospheres, Thin Solid Films, 17 (1973) 165. [17] R.D. Arnell, P.J. Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol. 112 (1999) 176. [18] M. Ohring, The Material Science of Thin Films, 2nd Edition, Academic Press, London, (1992), Chap. 4 156. [19] Paul H. Mayrhofer, Christian Mitterer, Lars Hultman, Helmut Clemens, Microstructural design of hard coatings, Progress in Materials Science 51 (2006) 1033. [20] A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, 518 (2010) 4089. [21] J. Wang, A. Misra, An overview of interface-dominated deformation mechanisms in metallic multilayers, C. Opin. Solid State Mat. Sci. 15 (2011) 20. [22] J.J. Jeong, S.K. Hwang, C. Lee, Hardness and adhesion properties of HfN/Si3N4 and NbN/Si3N4 multilayer coatings, Materials Chemistry and Physics 77 (2002) 27. [23] M. Setoyamav, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura, Formation of cubic-AIN in TiN/AIN superlattice, Surf. Coat. Technol. 86-87 (1996)225. [24] W. Schintlmeister, W. Wallgram, J. Kanz, K. Gigl, Cutting tool materials coated by chemical vapour deposition, Wear 100 (1984) 153. [25] A. Madan, I. Kim, S. C. Cheng, P. Yashar, V. P. Dravid, and S. A. Barnett, Stabilization of cubic AlN in epitaxial AlN/TiN superlattices, Phys. Rev. Lett. 78, 1743 (1997). [26] Y.Y. Wang, M.S. Wong, W.J. Chia, J. Rechner, W.D. Sproul, Synthesis and characterization of highly textured polycrystalline AlN/TiN superlattice coatings, J. Vac. Sci. Technol.16 (6) (1998) 3341. [27] Y. Cui, P. Huang, F. Wang, T.J. Lu, K.W. Xu, The hardness and related deformation mechanisms in nanoscale crystalline–amorphous multilayers, Thin Solid Films 584 (2015) 270. [28] C. Escobar, M. Villarreal, J.C. Caicedo, W. Aperador, P. Prieto, Novel performance in physical and corrosion resistance HfN/VN coating system, Surf. Coat. Technol. 221 (2013) 182. [29] Y.X. Wang, S. Zhang, Toward hard yet tough ceramic coatings, Surf. Coat. Technol., 258 (2014) 4. [30] G. Abadias, A. Michel, C. Tromas, C. Jaouen, S.N. Dub, Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings, Surf. Coat. Technol. 202 (2007) 846. [31] A. Aryasomayajula, K. Valleti, S. Aryasomayajul, D. G. Bhat, Pulsed DC magnetron sputtered tantalum nitride hard coatings for tribological applications, Surf. Coat. Technol. 201 (2006) 4402. [32] M. Lane, R.H. Dauskardt, N. Krishna, I. Hashim, Adhesion and reliability of copper interconnects with Ta and TaN barrier layers, J. Mater. Res. 15 (2000) 203. [33] E. Kolawa, J.S. Chen, J.S. Reid, P.J. Pokela, M.-A. Nicolet, Tantalum-based diffusion barriers in Si/Cu VLSI metallizations, J. Appl. Phys. 70 (1991) 1369. [34] R. Westergård, M. Bromark, M. Larsson, P. Hedenqvist, S. Hogmark, Mechanical and tribological characterization of DC magnetron sputtered tantalum nitride thin films, Surf. Coat. Technol. 97 (1997) 779. [35] J.H. Hsieh, C. Li, Y.C. Lin, C.H. Chiu, C.C. Hu, Y.H. Chang, Antibacteria and anti-wear TaN–(Ag,Cu) nanocomposite thin films deposited on polyether ether ketone, Thin Solid Films 584 (2015) 277. [36] J.H. Hsieh, T.H. Yeh, C. Li, S.Y. Chang, C.H. Chiu, C.T. Huang, Mechanical properties and antibacterial behaviors of TaN–(Ag,Cu) nanocomposite thin films after annealing, Surf. Coat. Technol. 228 (2013) S118. [37] J.H. Hsieh, C.C. Tseng, Y.K. Chang, S.Y. Chang, W. Wu, Antibacterial behavior of TaN–Ag nanocomposite thin films with and without annealing, Surf. Coat. Technol. 202 (2008) 5588. [38] N. Terao, Structure of Tantalum Nitrides, Jpn. J. Appl. Phys. 10 (1971) 248. [39] D. Gerstenberg, C.J. Calbick, Effects of Nitrogen, Methane, and Oxygen on Structure and Electrical Properties of Thin Tantalum Films, J. Appl. Phys. 35 (1964) 402. [40] T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, J.K. Kivilahti, Reactive sputter deposition and properties of TaxN thin films, Mcroelectronic Engineering 64 (2002) 290. [41] M. Stavrev, D. Fischer, C. Wenzel, K. Drescher, N. Mattern, Crystallographic and morphological characterization of reactively sputtered Ta, Ta-N and Ta-N-O thin films, Thin Solid Films 307 (1997) 83. [42] C.C. Chang, J.S. Jeng, J.S. Chen, Microstructural and electrical characteristics of reactively sputtered Ta-N thin films, Thin Solid Films 413 (2002) 48. [43] W.H. Lee, J.C. Lin, C. Lee, Characterization of tantalum nitride films deposited by reactive sputtering of Ta in N2/Ar gas mixtures, Materials Chemistry and Physics 68 (2001) 268. [44] T. B. Massalski, “Binary Alloy Phase Diagrams 2nd Edition”, ASM International (1990). [45] M. Stavrev, D. Fischer, F. Praessler, C. Wenzel and K. Drescher, Behavior of thin Ta-based films in the Cu/barrier/Si system, J.Vac. Sci. Technol. A 17 (3) (1999) 993. [46] C.S. Shin, Y.W. Kim, D. Gall, J.E. Greene, I. Petrov, Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si (001) and MgO (001) by reactive magnetron sputter deposition, Thin Solid Films 402 (2002) 178. [47] Y.I. Chen, B.L. Lin, Y.C. Kuo, J.C. Huang, L.C. Chang, Y.T. Lin, Preparation and annealing study of TaNx coatings on WC-Co substrates, Applied Surface Science 257 (2011) 6741. [48] T.C. Li, B.J. Lwo, N.W. Pu, S.P. Yu, C.H. Kao, The effects of nitrogen partial pressure on the properties of the TaNx films deposited by reactive magnetron sputtering, Surf. Coat. Technol. 201 (2006) 1033. [49] J. Nazon, J. Sarradin, V. Flaud, J.C. Tedenac, N. Fr´ety, Effects of processing parameters on the properties of tantalum nitride thin films deposited by reactive sputtering, Journal of Alloys and Compounds 464 (2008) 530. [50] X. Liu, G.J. Ma, G. Sun, Y.P. Duan, S.H. Liu, The influence of Ti doping on the mechanical properties of TaN film, Surf. Coat. Technol. 212 (2012) 131. [51] C.C. Tseng, J.H. Hsieh, S.C. Jang, Y.Y. Chang, W. Wu, Microstructural analysis and mechanical properties of TaN–Ag nanocomposite thin films, Thin Solid Films 517 (2009) 4972. [52] J. Musil, J. Vlcek, Magnetron sputtering of hard nanocomposite coatings and their properties, Surf. Coat. Technol. 142-144 (2001) 558. [53] J.H. Hsieh, C.M. Wang, C. Li, Deposition and characterization of TaN–Cu nanocomposite thin films, Surf. Coat. Technol. 200 (2006) 3182. [54] S. Neralla, D. Kumar, S. Yarmolenko, J. Sankar, Mechanical properties of nanocomposite metal–ceramic thin films, Composites: Part B 35 (2004) 159. [55] S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films, Thin Solid Films 447-448 (2004) 462. [56] J.H. Hsieh, C.H. Chiu, C. Li, W. Wu, S.Y. Chang, Development of anti-wear and anti-bacteria TaN-(Ag,Cu) thin films — a review, Surf. Coat. Technol. 233 (2013) 166. [57] K.Y. Liu, J.W. Lee, F.B. Wu, Fabrication and tribological behavior of sputtering TaN coatings, Surf. Coat. Technol. 259 (2014) 124. [58] S.K. Kim, B.C. Cha, Deposition of tantalum nitride thin films by D.C. magnetron sputtering, Thin Solid Films 475 (2005) 203. [59] X. Liu, G.J. Ma, G. Sun, Y.P. Duan, S.H. Liu, Effect of deposition and annealing temperature on mechanical properties of TaN film, Applied Surface Science 258 (2011) 1036. [60] G. Ma, G. Lin, S. Gong, X. Liu, G. Sun, H. Wu, Mechanical and corrosive characteristics of Ta/TaN multilayer coatings, Vacuum 89 (2013) 246. [61] Y.H. Yang, K.Y. Liu, Y.X. Qiu, C.H. Wu, F.B. Wu, Fabrication and characterization of nanolayered single element nitride coating, Surf. Coat. Technol. 284 (2015) 112. [62] R. Chen, J.P. Tu, D.G. Liu, Y.L. Yu, S.X. Qu, C.D. Gu, Structural and mechanical properties of TaN/a-CNx multilayer films, Surf. Coat. Technol. 206 (2012) 2243. [63] J.M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering, 2nd Edition, Optical Society of America, Washington, D.C., (1989), Chap. 4 39. [64] T.R. Thomas, 2nd Edition, Imperial College Press, London, (1999), Chap. 2 21. [65] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Matter. Res. 19 (1) (2004) 3. [66] N. Vidakis, A. Antoniadis, N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, Journal of Materials Processing Technology 143–144 (2003) 482. [67] M. Ode´n, C. Ericsson, G. Ha°kansson, H. Ljungcrantz, Microstructure and mechanical behavior of arc-evaporated Cr–N coatings, Surf. Coat. Technol. 114 (1999) 41. [68] V.S. Sastri, “Corrosion Inhibitors-Principles and Applications”, John Wiley and Sons, Chichester, 1998. [69] J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology Sci., 11 (1974) 668. [70] B.D. Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison Esley, Reading, MA, (1978) 102. [71] J. Musil, Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness, Surf. Coat. Technol. 207 (2012) 50. [72] J. Musil, S. Zhang, N. Ali, Nanocomposite Films and Coatings, London, Imperial College Press, London, (2007), 281. [73] P.C. Yashar, W.D. Sproul, Nanometer scale multilayered hard coatings, Vacuum 55 (1999) 184. [74] P.B. Mirkarimi, L. Hultman, S.A. Barnett, Enhanced hardness in lattice‐matched single‐crystal TiN/V0.6Nb0.4N superlattices, Appl Phys Lett, 57 (1990) 2654. [75] H. Holleck, V. Schier, Multilayer PVD coatings for wear protection, Surf. Coat. Technol. 76–77 (1995) 328. [76] J.L. Mo, M.H. Zhu, Tribological oxidation behaviour of PVD hard coatings, Tribology International, 42 (2009) 1759. [77] N.P. Suh, H.C. Sin, The genesis of friction, Wear, 69 (1981) 110. [78] A. Gilewicz, B. Warcholinski, Deposition and characterisation of Mo2N/CrN multilayer coatings prepared by cathodic arc evaporation, Surf. Coat. Technol. 279 (2015) 127. [79] S. Zhang and X. Zhang, Toughness evaluation of hard coatings and thin films, Thin Solid Films 520 (2012) 2375. [80] D. Bernoulli, U. Müller, M. Schwarzenberger, R. Hauert, R. Spolenak, Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition, Thin Solid Films 548 (2013) 159.
|