跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊雅惠
研究生(外文):YANG,YA-HUEI
論文名稱:射頻功率對濺鍍氮化鉭薄膜之特性與保護行為的影響
論文名稱(外文):RF Input Power Effect on Characteristics and Protective Behavior of Sputtering TaN Thin Film
指導教授:吳芳賓
指導教授(外文):WU,FAN-BEAN
口試委員:杜正恭李志偉呂福興
口試委員(外文):DUH,JENQ-GONGLEE,JYH-WEILU,FU-HSING
口試日期:2016-05-17
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:材料科學工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:168
中文關鍵詞:氮化鉭多層膜濺鍍功率硬度磨耗行為抗腐蝕
外文關鍵詞:TaN multilayerinput powerhardnesstribological behaviorcorrosion resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出單一元素氮化物在不同濺鍍參數下形成多層膜堆疊之簡化製程。利用射頻磁控濺鍍法並控制75至150W之濺鍍功率來製備氮化鉭單層與多層膜。對於氮化鉭單層膜可利用撞擊能量變化而產生不同結構,低瓦數下易生成非晶而高瓦數濺鍍易生成結晶結構。非晶層是因為初期的原子隨意堆疊而形成,而後緻密的柱狀晶因連續沉積所提升的能量而接續形成。其晶粒大小與表面粗糙度隨濺鍍功率增加而降低。為了提升保護行為,氮化鉭多層膜系統分別由75/150及100/150W的濺鍍功率之氮化鉭薄膜交互堆疊組成。在控制膜厚為1 μm條件下,本研究也分析總堆疊層數20與50層之差異。總數20層的氮化鉭多層膜在75/150W呈現非晶/結晶結構,然而,其他多層膜則因非晶層被抑制生長而展現連續的柱狀結構。單層膜中,氮化鉭薄膜在 150W的功率下之緻密結構有益於硬度及抗磨耗行為的提升。然而,氮化鉭薄膜在100W有較大的初期非晶層而呈現出優越的抗腐蝕性。對於氮化鉭多層膜,硬度表現介於單層膜之間。在磨耗性能評估中,氮化鉭多層膜相較於其單層膜有較窄的磨耗軌跡以及較少的薄膜破裂,顯示其較佳的耐磨性質。在Rockwell-C 附著性以及刮痕測試中,50層的氮化鉭多層膜因為較多的界面而有較高的附著品質。總層數20層的75/150W氮化鉭多層膜因具有明顯的分層結構及非晶層而呈現較佳的抗腐蝕性。
A simplified fabricating process for the multilayer coating using an innovative stacking type of single element nitride layers under various deposition input powers were proposed in this study. Tantalum nitride (TaN) single layer and multilayer coatings were manufactured through RF magnetron sputtering. Various deposition input powers from 75 to 150 W were used in fabricating TaN layers with various impingement energies for different structures. For TaN single layers, an amorphous layer formed due to random stacking of atoms at early deposition stage, following which a compact columnar structure evolved. The grain size and surface roughness decreased with the input power, leading to an increase in protective capability. To promote the protective behavior, the TaN multilayer systems consisted of alternately stacked TaN layers were fabricated at input powers of 75/150 and 100/150 W. The layer numbers of 20 and 50 under a fixed 1 μm in total thickness were also considered. The TaN multilayer at 75/150 W with 20 layers presented an amorphous/crystalline structure, while other multilayer coatings showed continuous columnar structures due to the limited growth for amorphous structure. For single layer TaN coatings, a compact columnar structure of the 150 W deposited TaN film was beneficial to the hardness and tribological behavior. On the other hand, the TaN film under 100 W with thick amorphous layer at the early deposition stage showed a superior corrosion resistance. For the TaN multilayers, an average hardness between those staked single layers was expected. For tribological analysis, narrower wear scars and limited film failure for multilayer systems indicated a greater durability than the single-layer TaN films. In Rockwell-C adhesion and scratch tests, the TaN multilayer with 50 layers showed higher adhesion strength due to more interfaces. Owing to the obvious stratified amorphous/crystalline structure, the TaN multilayer deposited at 75/150 W with 20 layers presented a better corrosion resistance.
摘要 I
Abstract II
Contents IV
Table List VII
Figure Captions VIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Material Systems 1
1.3 Critical Issues 2
1.4 Objective 2
Chapter 2 Literature review 4
2.1 Surface engineering 4
2.1.1 Surface coating 4
2.1.2 Surface engineering functions and applications 5
2.2 Sputter technology 5
2.2.1 Plasma theory 5
2.2.2 Sputtering theory 6
2.2.3 RF sputtering 6
2.2.4 Magnetron sputtering 7
2.2.5 Reactive sputtering 7
2.2.6 Thin film growth 8
2.3 Multilayer coatings 9
2.4 TaN coatings 9
2.4.1 Introduction to hard coatings 9
2.4.2 Introduction to TaN coatings 10
2.4.3 Microstructure and phase characteristics 10
2.4.4 Mechanical properties 11
2.4.5 Corrosion behavior 13
2.4.6 TaN multilayer coatings 13
Chapter 3 Experimental Procedures 44
3.1 Design Philosophy 44
3.2 RF sputtering deposition of TaN coatings 44
3.2.1 Substrate and pretreatment 44
3.2.2 Coating fabrication process 45
3.3 Measurements and analysis 46
3.3.1 Microstructure features 46
3.3.1.1 Composition analysis 46
3.3.1.2 Phase identification 46
3.3.1.3 Microstructure investigation 46
3.3.1.4 Surface characterization 47
3.3.2 Characterization 47
3.3.2.1 Hardness evaluation 47
3.3.2.2 Wear resistance 48
3.3.2.3 Coating adhesion 49
3.3.2.3.1 Rockwell C adhesion test 49
3.3.2.3.2 Scratch test 50
3.3.2.4 Anti-corrosion behavior 50
Chapter 4 Results and Discussion 67
4.1 TaN single layer coatings 67
4.1.1 Composition analysis 67
4.1.2 Phase identification 67
4.1.3 Microstructure investigation 68
4.1.4 Surface roughness 71
4.2 TaN multilayer coatings 72
4.2.1 Composition analysis 72
4.2.2 Phase identification 72
4.2.3 Microstructure investigation 72
4.2.4 Surface roughness 77
4.3 Protective properties 77
4.3.1 Hardness evaluation 77
4.3.2 Wear resistance 78
4.3.3 Coating adhesion 82
4.3.4 Anti-corrosion behavior 86
4.4 Overview on TaN film growth and protective performance 88
Chapter 5 Conclusions 155
References 158
Appendix 166

[1] F.W. Bach, A. Laarmann, T. Wenz, Modern Surface Technology, Wiley-VCH Verlag GmbH & Co. KGaA (2006).
[2] R. Saha, J.A. Barnard, Effect of structure on the mechanical properties of Ta and Ta(N) thin films prepared by reactive DC magnetron sputtering, J. Cryst. Growth 174 (1997) 495.
[3] M.H. Tsai, S.C. Sun, C.E. Sun, C.E. Tsai, S.H. Shuang, H.T. Chiu, Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Si, J. Appl. Phys. 79 (1996) 6932.
[4] Y.M. Lu, R.J. Weng, W.S. Hwang, Y.S. Yang, Study of phase transition and electrical resistivity of tantalum nitride films prepared by DC magnetron sputtering with OES detection system, Thin Solid Films 398–399 (2001) 356.
[5] S.M. Aouadi, M. Debessai, Optical properties of tantalum nitride films fabricated using reactive unbalanced magnetron sputtering, J. Vac. Sci. Technol., A 22 (2004) 1975.
[6] M. Nordin, M. Larsson, S. Hogmark, Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide, Surf. Coat. Technol. 106 (1998) 234.
[7] O. Zywitzki, G. Hoetzsch, F. Fietzke, K. Goedicke, Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering, Surf. Coat. Technol. 82 (1996) 173.
[8] Y.Y. Li, F.B. Wu, Microstructure and corrosion characteristics of CrN/NiP sputtering thin films, Thin Solid Films 518 (2010) 7527.
[9] F.X. Cheng, C.H. Jiang, J.S. Wu, Effect of sputtering input powers on CoSi2 thin films prepared by magnetron sputtering, Materials and Design 26 (2005) 371.

[10] K. Kusaka, D. Taniguchi, T. Hanabusa, K. Tominaga, Effect of input power on crystal orientation and residual stress in AlN film deposited by dc sputtering, Vacuum 59 (2000) 810.
[11] Y.L. Kuo, J.J. Huang, S.T. Lin, C. Lee, W.H. Lee, Diffusion barrier properties of sputtered TaNx between Cu and Si using TaN as the target, Materials Chemistry and Physics 80 (2003) 693.
[12] B. Bhushan, Overview of coating materials, surface treatments and screening techniques for tribological applications Part I: Coating materials and surface treatments, STP, 947 (1987) 289.
[13] D. S. Rickerby, A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering, Blackie & Son Ltd., London (1991) 196.
[14] D. K. Maurya, A. Sardarinejad, K. Alameh, Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications - An overview, Coatings, 4 (2014) 758.
[15] D.M. Mattox, Particle bombardment effects on thin-film deposition: A review, J. Vac. Sci. Technol. A7 (3) (1989) 1105.
[16] J. Heller, Reactive sputtering of metals in oxidizing atmospheres, Thin Solid Films, 17 (1973) 165.
[17] R.D. Arnell, P.J. Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol. 112 (1999) 176.
[18] M. Ohring, The Material Science of Thin Films, 2nd Edition, Academic Press, London, (1992), Chap. 4 156.
[19] Paul H. Mayrhofer, Christian Mitterer, Lars Hultman, Helmut Clemens, Microstructural design of hard coatings, Progress in Materials Science 51 (2006) 1033.
[20] A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, 518 (2010) 4089.
[21] J. Wang, A. Misra, An overview of interface-dominated deformation mechanisms in metallic multilayers, C. Opin. Solid State Mat. Sci. 15 (2011) 20.
[22] J.J. Jeong, S.K. Hwang, C. Lee, Hardness and adhesion properties of HfN/Si3N4 and NbN/Si3N4 multilayer coatings, Materials Chemistry and Physics 77 (2002) 27.
[23] M. Setoyamav, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura, Formation of cubic-AIN in TiN/AIN superlattice, Surf. Coat. Technol. 86-87 (1996)225.
[24] W. Schintlmeister, W. Wallgram, J. Kanz, K. Gigl, Cutting tool materials coated by chemical vapour deposition, Wear 100 (1984) 153.
[25] A. Madan, I. Kim, S. C. Cheng, P. Yashar, V. P. Dravid, and S. A. Barnett, Stabilization of cubic AlN in epitaxial AlN/TiN superlattices, Phys. Rev. Lett. 78, 1743 (1997).
[26] Y.Y. Wang, M.S. Wong, W.J. Chia, J. Rechner, W.D. Sproul, Synthesis and characterization of highly textured polycrystalline AlN/TiN superlattice coatings, J. Vac. Sci. Technol.16 (6) (1998) 3341.
[27] Y. Cui, P. Huang, F. Wang, T.J. Lu, K.W. Xu, The hardness and related deformation mechanisms in nanoscale crystalline–amorphous multilayers, Thin Solid Films 584 (2015) 270.
[28] C. Escobar, M. Villarreal, J.C. Caicedo, W. Aperador, P. Prieto, Novel performance in physical and corrosion resistance HfN/VN coating system, Surf. Coat. Technol. 221 (2013) 182.
[29] Y.X. Wang, S. Zhang, Toward hard yet tough ceramic coatings, Surf. Coat. Technol., 258 (2014) 4.
[30] G. Abadias, A. Michel, C. Tromas, C. Jaouen, S.N. Dub, Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings, Surf. Coat. Technol. 202 (2007) 846.
[31] A. Aryasomayajula, K. Valleti, S. Aryasomayajul, D. G. Bhat, Pulsed DC magnetron sputtered tantalum nitride hard coatings for tribological applications, Surf. Coat. Technol. 201 (2006) 4402.
[32] M. Lane, R.H. Dauskardt, N. Krishna, I. Hashim, Adhesion and reliability of copper interconnects with Ta and TaN barrier layers, J. Mater. Res. 15 (2000) 203.
[33] E. Kolawa, J.S. Chen, J.S. Reid, P.J. Pokela, M.-A. Nicolet, Tantalum-based diffusion barriers in Si/Cu VLSI metallizations, J. Appl. Phys. 70 (1991) 1369.
[34] R. Westergård, M. Bromark, M. Larsson, P. Hedenqvist, S. Hogmark, Mechanical and tribological characterization of DC magnetron sputtered tantalum nitride thin films, Surf. Coat. Technol. 97 (1997) 779.
[35] J.H. Hsieh, C. Li, Y.C. Lin, C.H. Chiu, C.C. Hu, Y.H. Chang, Antibacteria and anti-wear TaN–(Ag,Cu) nanocomposite thin films deposited on polyether ether ketone, Thin Solid Films 584 (2015) 277.
[36] J.H. Hsieh, T.H. Yeh, C. Li, S.Y. Chang, C.H. Chiu, C.T. Huang, Mechanical properties and antibacterial behaviors of TaN–(Ag,Cu) nanocomposite thin films after annealing, Surf. Coat. Technol. 228 (2013) S118.
[37] J.H. Hsieh, C.C. Tseng, Y.K. Chang, S.Y. Chang, W. Wu, Antibacterial behavior of TaN–Ag nanocomposite thin films with and without annealing, Surf. Coat. Technol. 202 (2008) 5588.
[38] N. Terao, Structure of Tantalum Nitrides, Jpn. J. Appl. Phys. 10 (1971) 248.
[39] D. Gerstenberg, C.J. Calbick, Effects of Nitrogen, Methane, and Oxygen on Structure and Electrical Properties of Thin Tantalum Films, J. Appl. Phys. 35 (1964) 402.
[40] T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, J.K. Kivilahti, Reactive sputter deposition and properties of TaxN thin films, Mcroelectronic Engineering 64 (2002) 290.
[41] M. Stavrev, D. Fischer, C. Wenzel, K. Drescher, N. Mattern, Crystallographic and morphological characterization of reactively sputtered Ta, Ta-N and Ta-N-O thin films, Thin Solid Films 307 (1997) 83.
[42] C.C. Chang, J.S. Jeng, J.S. Chen, Microstructural and electrical characteristics of reactively sputtered Ta-N thin films, Thin Solid Films 413 (2002) 48.
[43] W.H. Lee, J.C. Lin, C. Lee, Characterization of tantalum nitride films deposited by reactive sputtering of Ta in N2/Ar gas mixtures, Materials Chemistry and Physics 68 (2001) 268.
[44] T. B. Massalski, “Binary Alloy Phase Diagrams 2nd Edition”, ASM International (1990).
[45] M. Stavrev, D. Fischer, F. Praessler, C. Wenzel and K. Drescher, Behavior of thin Ta-based films in the Cu/barrier/Si system, J.Vac. Sci. Technol. A 17 (3) (1999) 993.
[46] C.S. Shin, Y.W. Kim, D. Gall, J.E. Greene, I. Petrov, Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si (001) and MgO (001) by reactive magnetron sputter deposition, Thin Solid Films 402 (2002) 178.
[47] Y.I. Chen, B.L. Lin, Y.C. Kuo, J.C. Huang, L.C. Chang, Y.T. Lin, Preparation and annealing study of TaNx coatings on WC-Co substrates, Applied Surface Science 257 (2011) 6741.
[48] T.C. Li, B.J. Lwo, N.W. Pu, S.P. Yu, C.H. Kao, The effects of nitrogen partial pressure on the properties of the TaNx films deposited by reactive magnetron sputtering, Surf. Coat. Technol. 201 (2006) 1033.
[49] J. Nazon, J. Sarradin, V. Flaud, J.C. Tedenac, N. Fr´ety, Effects of processing parameters on the properties of tantalum nitride thin films deposited by reactive sputtering, Journal of Alloys and Compounds 464 (2008) 530.
[50] X. Liu, G.J. Ma, G. Sun, Y.P. Duan, S.H. Liu, The influence of Ti doping on the mechanical properties of TaN film, Surf. Coat. Technol. 212 (2012) 131.
[51] C.C. Tseng, J.H. Hsieh, S.C. Jang, Y.Y. Chang, W. Wu, Microstructural analysis and mechanical properties of TaN–Ag nanocomposite thin films, Thin Solid Films 517 (2009) 4972.
[52] J. Musil, J. Vlcek, Magnetron sputtering of hard nanocomposite coatings and their properties, Surf. Coat. Technol. 142-144 (2001) 558.
[53] J.H. Hsieh, C.M. Wang, C. Li, Deposition and characterization of TaN–Cu nanocomposite thin films, Surf. Coat. Technol. 200 (2006) 3182.
[54] S. Neralla, D. Kumar, S. Yarmolenko, J. Sankar, Mechanical properties of nanocomposite metal–ceramic thin films, Composites: Part B 35 (2004) 159.
[55] S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films, Thin Solid Films 447-448 (2004) 462.
[56] J.H. Hsieh, C.H. Chiu, C. Li, W. Wu, S.Y. Chang, Development of anti-wear and anti-bacteria TaN-(Ag,Cu) thin films — a review, Surf. Coat. Technol. 233 (2013) 166.
[57] K.Y. Liu, J.W. Lee, F.B. Wu, Fabrication and tribological behavior of sputtering TaN coatings, Surf. Coat. Technol. 259 (2014) 124.
[58] S.K. Kim, B.C. Cha, Deposition of tantalum nitride thin films by D.C. magnetron sputtering, Thin Solid Films 475 (2005) 203.
[59] X. Liu, G.J. Ma, G. Sun, Y.P. Duan, S.H. Liu, Effect of deposition and annealing temperature on mechanical properties of TaN film, Applied Surface Science 258 (2011) 1036.
[60] G. Ma, G. Lin, S. Gong, X. Liu, G. Sun, H. Wu, Mechanical and corrosive characteristics of Ta/TaN multilayer coatings, Vacuum 89 (2013) 246.
[61] Y.H. Yang, K.Y. Liu, Y.X. Qiu, C.H. Wu, F.B. Wu, Fabrication and characterization of nanolayered single element nitride coating, Surf. Coat. Technol. 284 (2015) 112.
[62] R. Chen, J.P. Tu, D.G. Liu, Y.L. Yu, S.X. Qu, C.D. Gu, Structural and mechanical properties of TaN/a-CNx multilayer films, Surf. Coat. Technol. 206 (2012) 2243.
[63] J.M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering, 2nd Edition, Optical Society of America, Washington, D.C., (1989), Chap. 4 39.
[64] T.R. Thomas, 2nd Edition, Imperial College Press, London, (1999), Chap. 2 21.
[65] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Matter. Res. 19 (1) (2004) 3.
[66] N. Vidakis, A. Antoniadis, N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, Journal of Materials Processing Technology 143–144 (2003) 482.
[67] M. Ode´n, C. Ericsson, G. Ha°kansson, H. Ljungcrantz, Microstructure and mechanical behavior of arc-evaporated Cr–N coatings, Surf. Coat. Technol. 114 (1999) 41.
[68] V.S. Sastri, “Corrosion Inhibitors-Principles and Applications”, John Wiley and Sons, Chichester, 1998.
[69] J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology Sci., 11 (1974) 668.
[70] B.D. Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison Esley, Reading, MA, (1978) 102.
[71] J. Musil, Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness, Surf. Coat. Technol. 207 (2012) 50.
[72] J. Musil, S. Zhang, N. Ali, Nanocomposite Films and Coatings, London, Imperial College Press, London, (2007), 281.
[73] P.C. Yashar, W.D. Sproul, Nanometer scale multilayered hard coatings, Vacuum 55 (1999) 184.
[74] P.B. Mirkarimi, L. Hultman, S.A. Barnett, Enhanced hardness in lattice‐matched single‐crystal TiN/V0.6Nb0.4N superlattices, Appl Phys Lett, 57 (1990) 2654.
[75] H. Holleck, V. Schier, Multilayer PVD coatings for wear protection, Surf. Coat. Technol. 76–77 (1995) 328.
[76] J.L. Mo, M.H. Zhu, Tribological oxidation behaviour of PVD hard coatings, Tribology International, 42 (2009) 1759.
[77] N.P. Suh, H.C. Sin, The genesis of friction, Wear, 69 (1981) 110.
[78] A. Gilewicz, B. Warcholinski, Deposition and characterisation of Mo2N/CrN multilayer coatings prepared by cathodic arc evaporation, Surf. Coat. Technol. 279 (2015) 127.
[79] S. Zhang and X. Zhang, Toughness evaluation of hard coatings and thin films, Thin Solid Films 520 (2012) 2375.
[80] D. Bernoulli, U. Müller, M. Schwarzenberger, R. Hauert, R. Spolenak, Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition, Thin Solid Films 548 (2013) 159.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊