跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/19 21:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃冠寧
研究生(外文):Kuan-Ning Huang
論文名稱:無電鍍銅於石墨烯之研究
論文名稱(外文):Study of Electroless Cu Plating on Graphene
指導教授:謝淑惠謝淑惠引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:108
中文關鍵詞:無電鍍銅氧化亞銅奈米顆粒氧化亞銅/石墨烯奈米複合材料
外文關鍵詞:electroless Cu platingCu2O nanopartcilesCu2O/Graphene nanomaterials
相關次數:
  • 被引用被引用:1
  • 點閱點閱:985
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用修飾Hummers法將天然石墨製備氧化石墨(Graphite Oxide,GO),再以硼氫化鈉還原成石墨烯(reduce grapheme oxide,rGO),並於石墨烯基材上以無電鍍銅形成銅/石墨烯複合材料探討無電鍍參數對無電鍍銅析出物的影響,得到製備奈米Cu2O/Graphene的條件。
從X光繞射光譜儀(XRD)分析可知天然石墨氧化後C軸平面間距由0.336nm增加至0.781nm,硼氫化鈉還原後C軸平面峰消失,為非晶的無序排列。另外以X-射線光電子能譜儀(XPS)分析碳氧原子比,發現具有極高的碳氧原子比,與傅立葉轉換紅外光分析(FT-IR)分析含氧官能基相比,證實含有含氧官能基,可能氧化不完全,造成碳氧比例很高;還原後XPS及FT-IR含氧官能基減少,證明GO部分含氧官能基已被移除。
無電鍍銅參數有:鍍液溫度、鍍液時間、還原劑量、鍍液pH及反應後加入冰水降低反應速率。實驗中發現在pH13時會產生Cu及Cu2O結晶相,隨溫度增加Cu2O(111)強度增加、Cu(111)強度下降。在低pH值為非晶相,且不隨溫度影響依然產生非晶相。隨無電鍍時間增加,pH13析出顆粒尺寸增加且產生團聚。在無電鍍反應時間到達後加入冰水及還原劑量減少,會降低析出顆粒尺寸粒徑,得到奈米尺寸顆粒。Cu2O顆粒形貌會隨優選生長方向速率的快慢而改變,Cu顆粒形貌則以球狀和長條狀為主。
利用無電鍍銅沉積Cu2O/Graphene的最佳參數為pH值=13、還原劑甲醛量0.5mL、析鍍溫度30℃,析鍍時間30秒,反應完成後加入冰水冷卻降低反應速率,可得到形貌為立方體且為20nm尺寸的Cu2O。從FT-IR在波長513.3cm-1具有Cu-O官能基,XPS Cu2p能譜分析得知在931.96eV及951.8eV為Cu+峰,由此可證明Cu2O吸附在石墨烯上。此最佳參數也可用於矽晶片上,從SEM看出析出物分布均勻。
利用Cu2O催化特性產氫,發現以最佳參數無電鍍Cu2O在商用石墨烯上,在短時間產氫產量最高,在五分鐘時可產出33mL氫,而在自製石墨烯上以最佳參數無電鍍Cu2O可產出98mL氫氣。


Graphene owns high specific surface area, large surface to volume ratio and high stability and is a suitable catalyst support. Electroless plating is a low cost and easy method to deposit nano-metals on substrate. In this study, Graphene(reduced graphene oxide, rGO)was fabricated by using Sodium borohydride to reduce Graphene oxide(GO)which was prepared from natural graphite by using modified Hummers method, and then went through electroless Copper plating to form nano-composite material. The effect of electroless Copper parameters on graphene were investigated. The optimum conditions of electroless Copper plating to form semiconductor Cu2O nanoparticles on graphene and its hydrogen generation effect were studied.
Electroless Copper parameters contain plating temperature, plating time, concentration of reductant, pH value and using ice water to inhibit reaction. The XRD results show clusters of Cu and Cu2O crystals deposited on rGO after electroless Copper plating at pH 13, and the intensity of Cu2O(111)increases with increasing temperature, but Cu(111)decreases. Half concentration of reductant and ice water were used to inhibit electroless Copper reaction, to deposit fine and uniform Cu and Cu2O particles on rGO. The SEM and TEM morphology of Cu2O particles are different and depend on the growth rate of preferred orientation, but SEM and TEM morphology of Cu particles are lot of ball shape or long shape.
The optimum conditions to deposit Cu2O semiconductor on substrate including commercial graphene, rGO and Si sheet by using electroless Copper plating are pH 13, 0.5mL/L methanol reductant, 30℃, plating for 30seconds, and using ice water to stop reaction. Among them, square Cu2O semiconductor of 20 nm size could be uniformly deposited on rGO, and which perform the best Hydrogen generation, there is 98 ml hydrogen product at 5 minutes, if using commercial graphene as substrate, there is 33 ml hydrogen product at 5 minutes .

摘要 ...........i
Abstract ..............ii
誌謝 ................iii
表目錄 .....................vi
圖目錄 ......................vii
第一章 緒論 ...................1
1.1 緣起與研究動機 .......................1
1.2 研究目的 .......................1
1.3 研究架構 ......................2
第二章 文獻回顧 ........................3
2.1 石墨烯簡介 ........................3
2.1.1 石墨烯特性 .........................4
2.1.2 石墨烯製備方法 ...........................5
2.1.3 氧化石墨特性 ...........................8
2.1.4 氧化石墨製備方法 ..........................9
2.1.5 氧化石墨烯還原方法 ...........................9
2.1.6 石墨烯的應用 ..........................10
2.2 半導體及奈米材料特性與應用[40,41] .............12
2.2.1 半導體特性 ..............................12
2.2.2 奈米材料基本物理特性 .........................12
2.2.3 奈米半導體材料特性 ..............................13
2.2.4 金屬氧化物的缺陷和半導體性質 ........................14
2.2.5 奈米半導體的應用 ...............................15
2.3 氧化亞銅簡介 ...............................16
2.3.1 氧化亞銅基本性質 .............................16
2.3.2 氧化亞銅半導體性質 .....................18
2.3.3 結晶結構理論 ......................19
2.3.4 氧化亞銅晶面效應 .......................20
2.3.5 近年氧化亞銅製程文獻回顧 ...................21
2.3.6 奈米尺寸氧化亞銅應用 .....................22
第三章 實驗材料及步驟 .......................23
3.1 實驗材料及設備 .........................23
3.1.1 實驗藥品 .........................23
3.1.2 分析設備 ........................23
3.2 實驗流程 ...........................24
3.2.1 石墨氧化處理 .......................25
3.2.2 還原氧化石墨 ............................26
3.2.3 商用石墨烯(Commercial Graphene) ..............26
3.2.4 純氧化亞銅粉末 ......................26
3.2.5 無電鍍製備流程 .......................26
3.3 Cu-HCOH的pH值-電位關係 ......................27
3.4 產氫實驗 ..........................28
3.5 分析設備 ....................29
3.5.1 X 光線繞射儀(XRD) ....................29
3.5.2 穿透式電子顯微鏡(TEM) ....................29
3.5.3 X-射線光電子能譜儀(XPS) ......................30
3.5.4 紫外光/可見光光譜儀(UV-VIS) .........................30
3.5.5 傅立葉轉換紅外光譜儀(FTIR) .................31
3.5.6 熱重分析儀(TGA) ....................31
3.5.7 場發射掃描式電子顯微鏡(FE-SEM) ................32
第四章 結果與討論 ............................33
4.1 石墨烯之分析 .......................33
4.1.1 X光繞射分析(XRD) ......................33
4.1.2 熱重分析(TGA) .......................34
4.1.3 X射線光電子能譜分析(XPS) .................35
4.1.4 傅立葉轉換紅外光分析(FT-IR) .................38
4.1.5 穿透式電子顯微分析(TEM) ..................39
4.2 Cu2O/Graphene之製備 ..................41
4.2.1 石墨烯上無電鍍銅 .....................41
4.2.2 無電鍍參數的影響 ......................44
4.2.3 高pH值對無電鍍Cu-Cu2O的影響.................... 57
4.2.4 冰水冷卻對顆粒影響 ..........................68
4.2.5 改變甲醛量對晶粒影響 .........................78
4.2.6 Cu2O、Cu-Cu2O/rGO及Cu2O/CG產氫結果 ..................81
4.2.7 最佳參數產氫前後比較 .....................90
4.2.8 不同基材上無電鍍Cu2O .......................96
第五章 結論 ........................98
參考文獻 .....................................99
Extended Abstract ............................103
簡歷 ...............................108



[1]蔡承翰,「添加界面劑對電鍍Cu2O模表面結構與特性之影響」,私立大同大學材料工程研究所碩士論文(2009),p9,15。
[2] C H. Kuo, M H. Huang, “Morphologically controlled synthesis of Cu2O nanocrystals and their properties”, Science Direct,5(2010),106-116.
[3] Chao Xu ,Xin Wang, Lichun Yang , Yuping Wu, “Fabrication of a graphene–cuprous oxide composite”, Journal of Solid State Chemistry ,182(2009), 2486–2490.
[4] 莊鎮宇,「石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展」,物理專文(2011)。
[5]黃嘉興,「舊材料的新見解-氧化石墨烯之界面活性」,工業材料雜誌,291(2011),123-134。
[6]陳建毅、張洪亮、黃麗平、武斌、魏大程及劉云圻,「溶液法製備Graphene」,物理,38卷(6)(2009),387-394。
[7]蘇清源,「石墨烯氧化物之特性與應用前景」,物理專文,33卷(2)(2011),163-167。
[8]黃承鈞及黃淑娟,「石墨烯材料發展與應用趨勢」,工業材料雜誌,304(2012),62-74。
[9]傅強及包信和,「石墨烯的化學研究進展」,科學通報,54卷(18)(2009),2657-2666。
[10]Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. “Superior thermal conductivity of single-layer graphene.” ,Nano Lett, 8(2008),902-907.
[11] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X.Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, G. Martinez, “Epitaxial grapheme.” ,Solid State Communications,143(2007),92.
[12]楊蓉、高敏、潘毅、郭海明、時東霞及高鴻鈞,「Graphene的製備與結構特性」,物理,38卷(6)(2009),371-376。
[13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films.”,Science,306(2004),666-669.
[14]匡達及胡文彬,「石墨烯複合材料的研究進展」,無機材料學報,28卷(3)(2013),235-246。
[15] P. R. Somani, S. P. Somani, M. Umeno, "Planer nano-graphenes from camphor by CVD",Chem. Phys. Lett.,19(2006), 56.
[16] P. R. Somani, S. P. Somani and M. Umeno, “Planer nano-graphenes from camphor by CVD” ,Chem. Phys. Lett. 430(2006), 56.
[17] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness.” ,Carbon, 45(2007), 2017.
[18] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes.”Nature, 457(2009),706.
[19]袁小亞,「石墨烯的製備研究進展」,無機材料學報,26(6)(2011),561-570。
[20] Z Y Li , W H Zhang, Y Luo,J L Yang and J G Hou, “How graphene is cut upon oxidation?” J Am Chem Soc, 131 (2009), 6320-6321.
[21]Li D, Muller M B, GiljE S, Kaner R B, Wallace G G, “Processable aqueous dispersions of graphene nanosheets.” Nat Nanotechnol, 3(2008), 101-105.
[22]黃毅及陳永勝,「石墨烯的功能化及其相關應用」,中國科學B輯:化學,39(9)(2009),887-896。
[23] L. Staudenmaier, Ber. Dtsch. “Verfahren zur Darstellung der Graphitsaure” Chem. Ges., 31(1898) ,1481.
[24] W. S. Hummers, R. E. Offeman, “Preparation of Graphitic Oxide” J. Am. Chem. Soc., 80(1958), 1339
[25] H L Wang, J T Robinson, X L Li, and H J Dai, “Solvothermal Reduction of Chemically Exfoliated Graphene Sheets”, J. Am. Chem. Soc., 131(29) (2009) , 9910-9911.
[26]H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, Margarita Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, “Functionalized Single Graphene Sheets Derivedfrom Splitting Graphite Oxide”, J. Phys. Chem. B,110(2006), 8535.
[27] W. Lv, D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen,P. X. Hou, C. Liu, Q.H. Yang, “Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage” ,ACS Nano, 3(2009), 3730.
[28] L J. Cote, R Cruz-Silva, and J X Huang, “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite.”, J. Am. Chem. Soc., 131(2009), 11027 -11032.
[29] W. Gao, L. B. Alemany, L. Ci, P. M. Ajayan, “New insights into the structure and reduction of graphite oxide” Nat. Chem. , 1(2009), 403.
[30] S. F. Pei, J. P. Zhao, J. H. Du , W. C. Ren, H. M. Cheng, “Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids”, Carbon., 48(2010),4466.
[31] X B Fan, W C Peng, Y Li, X Y Li, S L Wang, G L Zhang, and F B Zhang, “Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation” Advansed Materials,20(2008),4490-4493.
[32] S. Stankovich , D. A. Dikin , R. D. Piner , K. A. Kohlhaas , A. Kleinhammes , Y. Jia , Y. Wu , S. T. Nguyen, R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide” ,Carbon., 45(2007),1558.
[33] H J Shin, K K Kim, Anass Benayad, S M Yoon, H K Park, I S Jung, M H Jin, H KJeong, J M Kim, J Y Choi, and Y H Lee, “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance.” Advanced Functional Materials ,19(2009),1987-1992.
[34] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, “Detection of individual gas molecules adsorbed on grapheme” ,Nat. Mater., 6(2007), 652.
[35] J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors" Nano Lett., 8(2008), 3137.
[36] A. Ghosh, K. S. Subrahmanyam, K. S. Krishna, S. Datta, A. Govindaraj, S. K. Pati, C. N. R. Rao, “Uptake of H2 and CO2 by Graphene” J. Phys. Chem. C, 112(2008),15704
[37] G. Eda, G. Fanchini, M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material” Nat. nanotechnol. , 3(2008), 270.
[38] http://earthkart2011.blogspot.tw/2013/08/semiconductors.html
[39]廖秋榮,「可視光光觸媒在環境保護之應用技術」,台灣土壤與地下水環境保護協會簡訊,27期(2008),13-21。
[40] 高濂著,「奈米光觸媒」,台北市,五南出版社(2004),2-27。
[41] 呂宗昕,「圖解奈米科技與光觸媒」,台北市,城邦文化(2005),102-103。
[42]P A Korzhavyi, B Johansson, ,“Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation” Svensk Karnbranslehantering AB(2011).
[43]柯怡君,「電鍍Cu2O薄膜之表面微觀結構變化之研究」,私立大同大學材料工程研究所碩士論文(2010),p8-11。
[44]孫少東等,「Cu-Cu2O異質結的製備及光催化性能研究」,中國科技論文(2012)。
[45] Yang, H., Ouyang ,J., Tang, A., Xiao, Y., Li, X., Dong, X., Yu ,Y. “Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles”, Materials Research Bulletin,41(2006),1310-1318.
[46] Wei ,M., Lun ,N., Ma, X., Wen ,S., “A simple solvothermal reduction route to copper and cuprous oxide”, Materials Letters,61(2007),2147-2150.
[47] M.J.Siegfried, K.S.Choi, “Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution“, Adv. Mater., 16(2004), 1743-1746.
[48]孫少東、孔春才、唐林麗及楊志懋,「多面體Cu2O光催化性能的研究進展」,中國科技論文(2012)。
[49]黃暄益,「奈米粒子之精準形狀控制合成及其不同晶面所展現之性質」,化學,71卷(2)(2013),103-110。
[50] Xu H L, Wang W Z, Zhu W. “Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties” [J]. J Phys. Chem. B, 110 (28)(2006),13829-13834.
[51] Huang W C, Lyu L M, Yang Y C,Huang M H. “Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity.” [J]. J. Am. Chem. Soc, 134(2)(2012), 1261-1267.
[52] Zhang Y, Deng B, Zhang T R, Gao D M, Xu A W, "Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity.” J. Phys. Chem. C,114(11)(2010),5073-5079.
[53]余穎,杜飛鵬,「奈米氧化亞銅的製備方法研究」,化學通報,67卷(2004)。
[54]胡貞伊,「應用低功率微波系統備再生之氧化亞銅降解水中偶氮染料之研究」,國立雲林科技大學環境與安全衛生工程系碩士論文(2009),p16-17。
[55] Y Dong, Y Li, C Wang. J., “Preparation of Cuprous Oxide Particles of Different Crystallinity.”, Col. & Interf. Sci., 243(2001),85-89.
[56] K Borgohain, N Murase, S Mahamuni., “Synthesis and properties of Cu2O quantum particles.” J. App. Phys., 92 (3)(2002),1292-1297.
[57] Sharma,P.,and Bhatti,H.S.,“Synthesis of fluorescent hollow and porous Cu2O nanopolyhedras in the presence of poly(vinyl pyrrolidone)” Materials Chemistry and Physcis,114(2009),889-896.
[58]李啟聖,「利用無電鍍法製備鈷-鎳-磷薄膜應用於產氫催化劑」,國立虎尾科技大學材料科學與綠色能源工程研究所碩士論文(2013),p30。
[59] Y G Zhu, Y I Qian, Zhang M W,Z Y Chen, D F Xu, Y Li, G Zhou, “Preparation and characterization of nanocrystalline powders of cuprous oxide
by using γ-radiation” ,Mater Re Bull, 29(1994), 377-383.
[60] C Feldmann, H O Jungk. Angew. “Polyol-Mediated Preparation of Nanoscale Oxide Particles”, Chem. Int. Ed., 40(2)(2001), 359-362.
[61] Zhang,H.,Ren,X.,Cui,Z.,“Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers” Journal of Crystal Growth,304(2007),206-210.
[62] Michikazu Hara, Takeshi Kondo, Mutsuko Komoda, Sigeru Ikeda, Kiyoaki Shinohara, Akira Tanaka, Junko N. Kondo, and Kazunari Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation”, Chem. Commun.,1998,357-358.
[63]宋繼梅、張小霞、焦劍、梅雪峰及田玉鵬,「立方狀和球狀氧化亞銅的製備及其光催化性質」,應用化學,27(2010),1328-1333。
[64]C Xu,X Wang,L C Yang,Y P Wu, “Fabrication of a grapheme-cuprous oxide composite.”, Journal of Solid State Chemistry,182(2009),2486-2490.
[65] L J Zhou,Y CZou,J Zhao,P P Wang, L L Feng,L W Sun, D J Wang,G D Li, “Facile synthesis of highly stable and porous Cu2O/CuO cubes withenhanced gas sensing properties.”, Sensors and Actuators B: Chemical, 188(2013), 533- 539.
[66] Y Zhao, J Z Zhao, Z H Su, D H Ma, X L Hao, Y Lu, J N Guo, “Room temperature synthesis of Cu nanocages through Ni-induced electroless process.”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431(2013), 60-65.
[67] B X Li, T X Liu, L Y Hu, Y F Wang, “A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant.” Journal of Physics and Chemistry of Solids,74(2013),635-640.
[68] Abulikemu Abulizi ,G H Yang,J J Zhu, “One-step simple sonochemical fabrication and photocatalytic properties of Cu2O–rGO composites.” Ultrasonics Sonochemistry,21(2014),129-135.
[69] William Andrew, “Electroless Plating: Fundamentals and Applications”, American Electroplaters and Surface Finishers Society,289-329,1990.
[70] G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao. “Facile Synthesis and Characterization of Graphene Nanosheets” J. Phys. Chem. C, 112(2008), 8192.
[71] I. K. Moon, J. Lee, R. S. Ruoff , H. Lee. “Reduced graphene oxide by chemical graphitization”, Nat. commun., 73(2010), 1.
[72]陳得勝,「奈米鐵鎳磷/石墨烯複合材料之製備」,國立虎尾科技大學材料科學與綠色能源工程研究所碩士論文(2013),p38。
[73] J. Kleiman,Z Iskanderova, “Protection of Materials and Structures from Space Environment: Icpmse-6”, Kluwer Academic Publishers(2003),p.388.
[74]粘駿楠,「銅氧化物結構對其催化和光電化學反應性之影響」,國立成功大學化學工程系博士論文(2006),p21。
[75] X D Liang ,L Gao,S W Yang,J Sun, “Facile Synthesis and Shape Evolution of Single-Crystal Cuprous Oxide”,Advanced Materials,21(2009),2068-2071.
[76]張銳,「現代材料分析方法」,化學工業出版社(2007),p157。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top