|
1. Grecco, H. E.; Schmick, M.; Bastiaens, P. I. H., Signaling from the living plasma membrane. Cell 2011, 144, 897-909. 2. Mansy, S. S., Membrane transport in primitive cells. Cold Spring Harb Perspect Biol. 2010, 2, a002188. 3. Singer, S. J.; Nicolson, G. L., The fluid mosaic model of the structure of cell membranes. Science 1972, 175, 720-731. 4. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. 5. Tamba, Y.; Ariyama, H.; Levadny, V.; Yamazaki, M., Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. J. Phys. Chem. B 2010, 114, 12018–12026. 6. Lee, M.-T.; Sun, T.-L.; Hung, W.-C.; Huang, H. W., Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 14243-14248. 7. Huang, H. W.; Charron, N. E., Understanding membrane-active antimicrobial peptides. Q. Rev. Biophys. 2017, 50, e10. 8. Stewart, M. P.; Langer, R.; Jensen, K. F., Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 2018, 118, 7409-7531. 9. Sengupta, D.; Leontiadou, H.; Mark, A. E.; Marrink, S.-J., Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim. Biophys. Acta 2008, 1778, 2308–2317. 10. Yang, L.; Harroun, T. A.; Weiss, T. M.; Ding, L.; Huang, H. W., Barrel-stave model or toroidal model? A case study on melittin Pores. Biophys. J. 2001, 81, 1475–1485. 11. Wheaten, S. A.; Ablan, F. D. O.; Spaller, B. L.; Trieu, J. M.; Almeida, P. F., Translocation of cationic amphipathic peptides across the membranes of pure phospholipid giant vesicles. J. Am. Chem. Soc. 2013, 135, 16517-16525. 12. Heimburg, T., Thermal biophysics of membranes. 2007. 13. Parisio, G.; Stocchero, M.; Ferrarini, A., Passive membrane permeability: beyond the standard solubility-diffusion model. J. Chem. Theory Comput. 2013, 9, 5236−5246. 14. Deamer, D. W.; Bramhall, J., Permeability of lipid bilayers to water and ionic solutes. J. Chem. Phys. Lipids 1986, 40, 167-188. 15. Paula, S.; Volkov, A. G.; Hoek, A. N. V.; Haines, T. H.; Deamer, D. W., Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys. J. 1996, 70, 339-348. 16. Paula, S.; Deamer, D. W., Membrane permeability barriers to ionic and polar solutes. In In Current Topics in Membranes, Deamer, D. W.; Kleinzeller, A.; Fambrough, D. M., Eds. Academic Press: 1999; pp 77-95. 17. Gutknecht, J., Proton/hydroxide conductance and permeability through phospholipid bilayer membranes. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 6443-6446. 18. Li, S.; Hu, P.; Malmstadt, N., Confocal imaging to quantify passive transport across biomimetic lipid membranes. Anal. Chem. 2010, 82, 7766–7771. 19. Nishimura, K.; Matsuura, T.; Sunami, T.; Fujii, S.; Nishimura, K.; Suzuki, H.; Yomo, T., Identification of giant unilamellar vesicles with permeability to small charged molecules. RSC Adv. 2014, 4, 35224–35232. 20. Antonov, V. F.; Petrov, V. V.; Molnar, A. A.; Predvoditelev, D. A.; Ivanov, A. S., The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature. Nature 1980, 283, 585–586. 21. Antonov, V. F.; Anosov, A. A.; Norik, V. P.; Smirnova, E. Y., Soft perforation of planar bilayer lipid membranes of dipalmitoylphosphatidylcholine at the temperature of the phase transition from the liquid crystalline to the gel state. Eur. Biophys. J. 2005, 34, 155-162. 22. Harbich, W.; Helfrich, W., Alignment and opening of giant lecithin vesicles by electric fields. Z. Naturforsch. 1979, 34, 1063–1065. 23. Portet, T.; Dimova, R., A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. Biophys. J. 2010, 99, 3264–3273. 24. Evans, E.; Heinrich, V.; Ludwig, F.; Rawicz, W., Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 2003, 85, 2342-2350. 25. Evans, E.; Smith, B. A., Kinetics of hole nucleation in biomembrane rupture. New J. Phys. 2011, 13, 095010. 26. Levadny, V.; Tsuboi, T.-a.; Belaya, M.; Yamazaki, M., Rate constant of tension-induced pore formation in lipid membranes. Langmuir 2013, 29, 3848−3852. 27. Kirsch, S. A.; Böckmann, R. A., Membrane pore formation in atomistic and coarse-grained simulations. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 2266-2277. 28. Zhernenkov, M.; Bolmatov, D.; Soloviov, D.; Zhernenkov, K.; Toperverg, B. P.; Cunsolo, A.; Bosak, A.; Cai, Y. Q., Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations. Nat. Commun. 2016, 7, 11575. 29. Allen, T. M.; Cullis, P. R., Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Delivery Rev. 2013, 65, 36-48. 30. Menichetti, R.; Kanekal, K. H.; Bereau, T., Drug-membrane permeability across chemical space. ACS Cent. Sci. 2019, 5, 290-298. 31. Verma, I. M.; Somia, N., Gene therapy - promises, problems and prospects. Nature 1997, 389, 239–242. 32. Runas, K. A.; Malmstadt, N., Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter 2015, 11, 499-505. 33. Oglęcka, K.; Rangamani, P.; Liedberg, B.; Kraut, R. S.; Parikh, A. N., Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials. eLife 2014, 3, e03695. 34. Abidor, I. G.; Arakelyan, V. B.; Chernomordik, L. V.; Chizmadzhev, Y. A.; Pastushenko, V. F.; Tarasevich, M. P., Electric breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion. Bioelectrochem. Bioenerg. 1979, 6, 37-52. 35. Litster, J. D., Stability of lipid bilayers and red blood cell membranes. Phys. Lett. 1975, 53A, 193-194. 36. Moroz, J. D.; Nelson, P., Dynamically stabilized pores in bilayer membranes. Biophys. J. 1997, 72, 2211-2216. 37. Chang, D. C.; Reese, T. S., Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 1990, 58, 1-12. 38. Zhelev, D. V.; Needham, D., Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim. Biophys. Acta 1993, 1147 89-104. 39. Riske, K. A.; Dimova, R., Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys. J. 2005, 88, 1143–1155. 40. Sandre, O.; Moreaux, L.; Brochard-Wyart, F., Dynamics of transient pores in stretched vesicles. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10591-10596. 41. Brochard-Wyart, F.; Gennes, P. G. d.; Sandre, O., Transient pores in stretched vesicles: role of leak-out. Physica A 2000, 278, 32–51. 42. Karatekin, E.; Sandre, O.; Guitouni, H.; Borghi, N.; Puech, P.-H.; Brochard-Wyart, F., Cascades of transient pores in giant vesicles: line tension and transport. Biophys. J. 2003, 84, 1734-1749. 43. Westh, P., Unilamellar DMPC vesicles in aqueous glycerol: preferential interactions and thermochemistry. Biophys. J. 2003, 84, 341–349. 44. Akimov, S. A.; Volynsky, P. E.; Galimzyanov, T. R.; Kuzmin, P. I.; Pavlov, K. V.; Batishchev, O. V., Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 2017, 7, 12152. 45. Akimov, S. A.; Volynsky, P. E.; Galimzyanov, T. R.; Kuzmin, P. I.; Pavlov, K. V.; Batishchev, O. V., Pore formation in lipid membrane II: Energy landscape under external stress. Sci. Rep. 2017, 7, 12509. 46. Gurtovenko, A. A.; Anwar, J.; Vattulainen, I., Defect-mediated trafficking across cell membranes: insights from in silico modeling. Chem. Rev. 2010, 110, 6077–6103. 47. Helfrich, W., Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 1973, 28, 693–703. 48. Helfrich, W., The size of bilayer vesicles generated by sonication. Phys. Lett. 1974, 50A, 115-116. 49. Cunill‑Semanat, E.; Salgado, J., Spontaneous and stress-induced pore formation in membranes: theory, experiments and simulations. J. Membr. Biol. 2019, 1–20. 50. Glaser, R. W.; Leikin, S. L.; Chernomordik, L. V.; Pastushenko, V. F.; Sokirko, A. I., Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochimica et Biophysica Acta 1988, 940, 275-287. 51. Berg, H. C.; Purcell, E. M., Physics of chemoreception. Biophys. J. 1977, 20, 193–219. 52. Angelova, M. I.; Dimitrov, D. S., Liposome electroformation. Faraday Discuss. Chem. Soc. 1986, 81, 303-311. 53. Walde, P.; Cosentino, K.; Engel, H.; Stano, P., Giant vesicles: preparations and applications. ChemBioChem 2010, 11, 848-865. 54. Swindells, J. F.; Standards, U. S. N. B. o., Viscosities of sucrose solutions at various temperatures: tables of recalculated values. For sale by the Supt. of Docs., U.S. G.P.O.: 1958. 55. Kramer, E. M.; Frazer, N. L.; Baskin, T. I., Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana. J. Exp. Bot. 2007, 58, 3005–3015.
|