跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林柏翰
研究生(外文):Po-Han Lin
論文名稱:I. 探討乳癌發生的遺傳因子與尋找早期乳癌復發的危險因子和解決方法、II. 探討微環境與EZH2在急性骨髓性白血病的影響
論文名稱(外文):I. 探討乳癌發生的遺傳因子與尋找早期乳癌復發的危險因子和解決方法、II. 探討微環境與EZH2在急性骨髓性白血病的影響
指導教授:邱昌芳邱昌芳引用關係
指導教授(外文):Chang-Fang Chiu
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:臨床醫學研究所博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:152
中文關鍵詞:乳癌遺傳急性骨髓性白血病EZH2微環境
外文關鍵詞:breast cancergeneticacute myeloid leukemiaEZH2microenvironment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:652
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
癌症是國人死亡的第一位原因,已經成為公眾健康的最重要議題。在我的博士論文研究中,我著重在乳癌和急性骨髓性白血病的研究。

I. 探討乳癌發生的遺傳因子與尋找早期乳癌復發的危險因子和解決方法
雖然乳癌的發生率在台灣相對於西方國家比較低,乳癌的病例在過去幾十年的快速增長。為了降低乳癌相關的死亡率,首先,我們研究乳癌的遺傳基因來找出乳癌發生的高危險族群,經過預防性治療或是定期篩檢,以防止晚期乳癌的發生,使乳癌可以早期診斷。其次,我們分析了早期(淋巴結陰性)乳癌患者,復發的臨床與病理因子和尋找可能的治療方法。在第一部分中,我們前瞻性招收早期發病或具有顯著家族史的乳癌患者,然後,我們以次世代定序方法,在這些患者,分析68個癌症風險相關基因。一共有133位患者接受基因篩檢,其中30為病患(22.6%)被發現攜帶致病性的突變,分別是9個 BRCA1、11個BRCA2、2個 RAD50、2個TP53和ATM、BRIP1、FANCI、MSH2、MUTYH和RAD51C各1個。三陰性乳癌(TNBC)有最高基因突變率(45.5%,p值= 0.025)。致病性基因變異的攜帶者被認為是發展惡性腫瘤的高風險族群,建議接受定期癌症篩檢。由於對於非BRCA基因的定期癌症篩檢方法目前沒有定論,我們基於個別基因生物學功能來制定策略;例如,攜帶RAD51C突變的病人,接受類似於對BRCA的癌症篩檢方式,是因為BRCA和RAD51C都參與同源重組的功能。我們本研究的初步結論認為多基因的次世代定序檢查,對於癌症風險評估,找出乳癌的高危險族群,具有臨床實用的價值。在第二部分,我們回溯性分析了2005年1月到2009年12月間的2216早期乳癌患者;其中,有716位患者經過乳房全部切除或是乳房保留手術,被診斷為pT1-2N0M0(淋巴結陰性)的早期乳癌。在經過為期47.0個月(中位數)的追蹤,有47位患者有乳癌復發。復發的顯著危險因素分別是淋巴血管侵犯(HR = 4.60,95%CI 2.32-9.10)和組織學惡性度3級(HR = 4.99,95%CI 1.06-23.48);輔助放射線治療具有防止腫瘤復發的功效(HR = 0.35,95%CI,0.14-0.92)。此外,我們研究輔助化療和放療對患者的淋巴血管侵犯和組織學惡性度3級,是否具有治療效果。結果顯示,淋巴血管侵犯和組織學惡性度3級可以被輔助放射線治療減少其復發的影響(淋巴血管侵犯(+)/輔助放射線治療(+), 沒有復發; 組織學惡性度3級(+)/輔助放射線治(+), HR=0.82, 95% CI. 0.18-3.70)。然而,輔助化療沒有達到該效果。因此,我們認為,淋巴血管侵犯和組織學惡性度3級是預測淋巴結陰性早期乳癌患者的腫瘤復發危險因素。輔助放射線治療可對於具有這兩個危險因子的淋巴結陰性早期乳癌患者,提高無復發存活率。

II. 探討微環境與EZH2基因在急性骨髓性白血病的影響
儘管化學治療可以促成急性骨髓性白血病病人達到緩解狀態,但是因為較高的復發率和緩解狀態維持具有困難,急性骨髓性白血病的患者預後目前仍然不佳, 這個現象暗示著化學治療無法根除白血病幹細胞。過去的基因體研究證明,白血病幹細胞具有大量的DNA甲基化和組蛋白修飾的特徵,這些特徵亦可以在復發或是難治的急性骨髓性白血病上頭發現,意味著急性骨髓性白血病復發和白血病幹細胞有關。Polycomb repressive complex 2(PRC2)及其核心蛋白EZH2,在真核細胞中是重要的表觀遺傳調控機制,因此我們探討EZH2在AML的影響。研究發現,高表現的EZH2預測急性骨髓性白血病患者的高復發率與較差的預後。EZH2的高表現在與白血病幹細胞相關聯,並通過抑制DAB2IP的表現,來活化ERK途徑。有趣的是,我們找到由骨髓基質細胞分泌的新細胞因子(稱為細胞因子X),來增加白血病細胞EZH2的表現,進而支持白血病幹細胞的存活。我們進一步證明不論是在體外或體內的研究,抑制細胞因子X / EZH2的路徑,可以減低白血病幹細胞以增強化療的效果。這些方法證明急性骨髓性白血病細胞可以通過依賴細胞因子X / EZH2,而達到化學治療耐藥性,以及提供針對細胞因子X / EZH2途徑的標靶治療和化療的治療依據。


Cancer is the leading cause of death in Taiwan and becomes the most important issue in public health. In my PhD thesis, I focused on breast cancer and acute myeloid leukemia.

I. Explore the genetic factor in breast cancer development and identification of risk factors on tumor recurrence of early breast cancer
Although the incidence of breast cancer is relative lower in Taiwan than that in western countries, the cases of breast cancer grows rapidly in the past decades. In order to reduce breast cancer-related mortality, first, we investigate the genetic factors to identify people with high-risk of breast cancer development so as to prevent advanced breast cancer by prophylactic intervention or help them to make an early diagnosis of breast cancer by regularly screening. Second, we analyzed poor clinic-pathologic factors related to recurrence in early stage (node-negative) breast cancer and search for resolution. In the first part, we prospectively enroll patients with early-onset or a significant familial history of breast cancer for genetic study. We then performed next-generation sequencing to analyze a sequencing panel containing 68 genes that had cancer risk association for these patients. A total of 133 patients were enrolled and 30 (22.6%) were found to carry germline deleterious mutations, 9 in BRCA1, 11 in BRCA2, 2 in RAD50, 2 in TP53 and one each in ATM, BRIP1, FANCI, MSH2, MUTYH, and RAD51C. Triple-negative breast cancer (TNBC) was associated with the highest mutation rate (45.5%, p=0.025). Mutation carriers were considered as high-risk to develop malignancy and advised to receive cancer screening. Screening protocols of non-BRCA genes were based on their biologic functions; for example, patients carrying RAD51C mutation received a screening protocol similar to that for BRCA, since BRCA and RAD51C are both involved in homologous recombination. We conclude that multiple gene sequencing in cancer risk assessment is clinically valuable to identify people with high risk of breast cancer. In the second part, we retrospective reviewed 2216 early breast cancer patients between January 2005 and December 2009; among them, 716 patients who received mastectomy or breast?駥onserving surgery and were proven to have pT1-2N0M0 breast cancer were enrolled in the study. Forty-seven of the 716 patients developed tumor recurrence during the 47.0 months of median follow-up. The significant risk factors of recurrence were LVI (HR = 4.60, 95% CI. 2.32-9.10) and Nottingham grade 3 (HR = 4.99, 95% CI. 1.06-23.48); adjuvant radiotherapy (HR = 0.35, 95% CI. 0.14-0.92) prevented tumor recurrence. Furthermore, we investigate the therapeutic impact of adjuvant chemotherapy and radiotherapy on patients with LVI and Nottingham grade 3. The adverse effect of LVI and grade 3 can be abrogated by adjuvant radiotherapy in RFS (LVI(+)/radiotherapy(+), no recurrence; grade 3(+)/radiotherapy(+), HR=0.82, 95% CI. 0.18-3.70). However, adjuvant chemotherapy did not. Therefore, we considered that LVI and Nottingham grade 3 were the independent risk factors predicting tumor recurrence for patients with NNBC. Adjuvant radiotherapy might be considered in NNBC patients with these unfavorable factors to improve the RFS.

II. Explore the role of microenvironment and EZH2 in acute myeloid leukemia
The prognosis of patients with acute myeloid leukemia (AML) remains poor because high relapse rate and failure to maintain durable remission despite poly-chemotherapy, indicating current treatments do not target leukemia stem cell (LSC). Previous genomic study showed that LSC population was characterized with extensive DNA methylation and an aberrant pattern of histone modifications and these significant epigenetic profiling was also identified in relapsed and refractory AML, indicating LSC associated with AML relapse. Polycomb repressive complex 2 (PRC2) and its core protein, EZH2, are important epigenetic machinery in eukaryotic cells, we investigate the impact of EZH2 in the AML. We found that high expression of EZH2 predicted high relapse rate and poor prognosis in AML patients. Up-regulated expression of EZH2 is associated with LSC and contributes to chemoresistance through silencing of DAB2IP to activate ERK pathway. Interestingly, we identify a novel cytokine (termed Cytokine X) secreted by bone marrow stromal cells, to upregulate EZH2 and support LSC survival. We further demonstrate that inhibition of Cytokine X/EZH2 pathway abrogate LSC properties to enhance chemotherapeutic effect in in vitro and in vivo studies. These approaches demonstrate how AML cells resistant to chemotherapy through Cytokine X /EZH2-dependent LSC properties and provide the basis for combinatorial targeting Cytokine X /EZH2 pathway and chemotherapy for AML.


目錄

中文摘要…………………………………………………………………..…..………i
英文摘要…………………………………………………………………..…………iv
誌謝辭………………………………………………………………………………viii
I. 探討乳癌發生的遺傳因子與尋找早期乳癌復發的危險因子和解決方法。
第一章 前言……………………………………………………………………..……1
(a) 探討乳癌發生的遺傳因子
第一節 研究背景………………………………………………………………..…3
第二節 研究目的…………………………………………………………………..7
第二章 研究方法
第一節 研究材料…………………………………………………………………..8
第二節 研究設計…………………………………………………………………..8
第三節 統計方法…………………………………………………………………14
第三章 研究結果
第一節 描述性統計分析…………………………………………………………14
第二節 推論性統計分析…………………………………………………………16
第四章 討論
第一節 結果討論…………………………………………………………………21
第二節 其他相關性討論…………………………………………………………22
第三節 研究限制…………………………………………………………………24
第五章 結論與建議
第一節 結論………………………………………………………………………25
(b) 尋找早期乳癌復發的危險因子和解決方法
第一節 研究背景………………………………………………………...………26
第二節 研究目的…………………………………………………………………27
第二章 研究方法
第一節 研究材料與設計…………………………………………………………28
第二節 統計方法…………………………………………………………………29
第三章 研究結果
第一節 描述性統計分析…………………………………………………………29
第二節 推論性統計分析…………………………………………………………31
第四章 討論
第一節 結果討論…………………………………………………………………34
第二節 其他相關性討論…………………………………………………………37
第三節 研究限制…………………………………………………………………38
第五章 結論與建議
第一節 結論………………………………………………………………………39
Reference…………………………………………………………………………..…40
表(table 1~ table 10) …………………………………………………………………48
圖(figure 1~ figure 11) ………………………………………………………………60

II. 探討微環境與EZH2基因在急性骨髓性白血病的影響
第一章 前言……………………………………………………………………..…71
第一節 研究背景………………………………………………………...………71
第二節 研究目的…………………………………………………………………75
第二章 研究方法
第一節 研究材料與設計…………………………………………………………75
第二節 統計方法…………………………………………………………………85
第三章 研究結果
第一節 實驗結果分析……………………………………………………………85
第四章 討論
第一節 結果討論………………………………………..………………………101
第五章 結論與建議
第一節 結論…………………………………………..…………………………107
Reference……………………………………………………………………………108
表(table 1~ table 5) …………………………………………………………………114
圖(figure 1~ figure 34) …………………………………..…………………………117
相關論文發表………………………………………………………………………152

Part I
1.Euhus D. Genetic testing today. Ann Surg Oncol 2014; 21: 3209-3215.
2.Shen YC, Chang CJ, Hsu C et al. Significant difference in the trends of female breast cancer incidence between Taiwanese and Caucasian Americans: implications from age-period-cohort analysis. Cancer Epidemiol Biomarkers Prev 2005; 14: 1986-1990.
3.Griebsch I, Brown J, Boggis C et al. Cost-effectiveness of screening with contrast enhanced magnetic resonance imaging vs X-ray mammography of women at a high familial risk of breast cancer. Br J Cancer 2006; 95: 801-810.
4.Warner E, Messersmith H, Causer P et al. Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med 2008; 148: 671-679.
5.Iturbe J, Zwenger A, Leone JP et al. Treatment of early breast cancer, a long-term follow-up study: the GOCS experience. Breast J 2011; 17: 630-637.
6.Herold CI, Djulbegovic B, Hozo I, Lyman GH. Reliable data on 5- and 10-year survival provide accurate estimates of 15-year survival in estrogen receptor-positive early-stage breast cancer. Breast Cancer Res Treat 2010; 121: 771-776.
7.Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M. Genetic susceptibility to breast cancer. Mol Oncol 2010; 4: 174-191.
8.Apostolou P, Fostira F. Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int 2013; 2013: 747318.
9.Milne RL, Goode EL, Garcia-Closas M et al. Confirmation of 5p12 as a susceptibility locus for progesterone-receptor-positive, lower grade breast cancer. Cancer Epidemiol Biomarkers Prev 2011; 20: 2222-2231.
10.Kurian AW, Sigal BM, Plevritis SK. Survival analysis of cancer risk reduction strategies for BRCA1/2 mutation carriers. J Clin Oncol 2010; 28: 222-231.
11.Villani A, Tabori U, Schiffman J et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 2011; 12: 559-567.
12.DeSantis C, Naishadham D, Jemal A. Cancer statistics for African Americans, 2013. CA Cancer J Clin 2013; 63: 151-166.
13.Chen W, Pan K, Ouyang T et al. BRCA1 germline mutations and tumor characteristics in Chinese women with familial or early-onset breast cancer. Breast Cancer Res Treat 2009; 117: 55-60.
14.Sim X, Ali RA, Wedren S et al. Ethnic differences in the time trend of female breast cancer incidence: Singapore, 1968-2002. BMC Cancer 2006; 6: 261.
15.Matsuno RK, Anderson WF, Yamamoto S et al. Early- and late-onset breast cancer types among women in the United States and Japan. Cancer Epidemiol Biomarkers Prev 2007; 16: 1437-1442.
16.Kuo WH, Yen AM, Lee PH et al. Incidence and risk factors associated with bilateral breast cancer in area with early age diagnosis but low incidence of primary breast cancer: analysis of 10-year longitudinal cohort in Taiwan. Breast Cancer Res Treat 2006; 99: 221-228.
17.Kuo WH, Yen AM, Lee PH et al. Cumulative survival in early-onset unilateral and bilateral breast cancer: an analysis of 1907 Taiwanese women. Br J Cancer 2009; 100: 563-570.
18.de Bruin MA, Ford JM, Kurian AW. A young woman with bilateral breast cancer: identifying a genetic cause and implications for management. J Natl Compr Canc Netw 2013; 11: 512-517.
19.Ang P, Lim IH, Lee TC et al. BRCA1 and BRCA2 mutations in an Asian clinic-based population detected using a comprehensive strategy. Cancer Epidemiol Biomarkers Prev 2007; 16: 2276-2284.
20.Seong MW, Cho S, Noh DY et al. Comprehensive mutational analysis of BRCA1/BRCA2 for Korean breast cancer patients: evidence of a founder mutation. Clin Genet 2009; 76: 152-160.
21.Toh GT, Kang P, Lee SS et al. BRCA1 and BRCA2 germline mutations in Malaysian women with early-onset breast cancer without a family history. PLoS One 2008; 3: e2024.
22.Li SS, Tseng HM, Yang TP et al. Molecular characterization of germline mutations in the BRCA1 and BRCA2 genes from breast cancer families in Taiwan. Hum Genet 1999; 104: 201-204.
23.Chen ST, Chen RA, Kuo SJ, Chien YC. Mutational screening of breast cancer susceptibility gene 1 from early onset, bi-lateral, and familial breast cancer patients in Taiwan. Breast Cancer Res Treat 2003; 77: 133-143.
24.Kuo WH, Lin PH, Huang AC et al. Multimodel assessment of BRCA1 mutations in Taiwanese (ethnic Chinese) women with early-onset, bilateral or familial breast cancer. J Hum Genet 2012; 57: 130-138.
25.Hall MJ, Reid JE, Burbidge LA et al. BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer. Cancer 2009; 115: 2222-2233.
26.Prokopcova J, Kleibl Z, Banwell CM, Pohlreich P. The role of ATM in breast cancer development. Breast Cancer Res Treat 2007; 104: 121-128.
27.Zheng Y, Zhang J, Niu Q et al. Novel germline PALB2 truncating mutations in African American breast cancer patients. Cancer 2012; 118: 1362-1370.
28.Han FF, Guo CL, Liu LH. The effect of CHEK2 variant I157T on cancer susceptibility: evidence from a meta-analysis. DNA Cell Biol 2013; 32: 329-335.
29.De Nicolo A, Tancredi M, Lombardi G et al. A novel breast cancer-associated BRIP1 (FANCJ/BACH1) germ-line mutation impairs protein stability and function. Clin Cancer Res 2008; 14: 4672-4680.
30.Wong MW, Nordfors C, Mossman D et al. BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer. Breast Cancer Res Treat 2011; 127: 853-859.
31.Antoniou AC, Casadei S, Heikkinen T et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 2014; 371: 497-506.
32.Lin CY, Ho CM, Bau DT et al. Evaluation of breast cancer susceptibility loci on 2q35, 3p24, 17q23 and FGFR2 genes in Taiwanese women with breast cancer. Anticancer Res 2012; 32: 475-482.
33.Kohlmann A, Klein HU, Weissmann S et al. The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia 2011; 25: 1840-1848.
34.Dunne WM, Jr., Westblade LF, Ford B. Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis 2012; 31: 1719-1726.
35.Venkitaraman AR. Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu Rev Pathol 2009; 4: 461-487.
36.Sanz DJ, Acedo A, Infante M et al. A high proportion of DNA variants of BRCA1 and BRCA2 is associated with aberrant splicing in breast/ovarian cancer patients. Clin Cancer Res 2010; 16: 1957-1967.
37.Tutt A, Robson M, Garber JE et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010; 376: 235-244.
38.Oza AM, Cibula D, Benzaquen AO et al. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol 2015; 16: 87-97.
39.van der Noll R, Marchetti S, Steeghs N et al. Long-term safety and anti-tumour activity of olaparib monotherapy after combination with carboplatin and paclitaxel in patients with advanced breast, ovarian or fallopian tube cancer. Br J Cancer 2015; 113: 396-402.
40.Knudson AG. Cancer genetics. Am J Med Genet 2002; 111: 96-102.
41.Walsh CS. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol Oncol 2015; 137: 343-350.
42.Martin-Lopez JV, Fishel R. The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome. Fam Cancer 2013; 12: 159-168.
43.Pennington KP, Swisher EM. Hereditary ovarian cancer: beyond the usual suspects. Gynecol Oncol 2012; 124: 347-353.
44.Matakidou A, Eisen T, Fleischmann C et al. Evaluation of xeroderma pigmentosum XPA, XPC, XPD, XPF, XPB, XPG and DDB2 genes in familial early-onset lung cancer predisposition. Int J Cancer 2006; 119: 964-967.
45.Mester JL, Moore RA, Eng C. PTEN germline mutations in patients initially tested for other hereditary cancer syndromes: would use of risk assessment tools reduce genetic testing? Oncologist 2013; 18: 1083-1090.
46.Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754-1760.
47.Li H, Handsaker B, Wysoker A et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078-2079.
48.McKenna A, Hanna M, Banks E et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297-1303.
49.Mimori T, Nariai N, Kojima K et al. iSVP: an integrated structural variant calling pipeline from high-throughput sequencing data. BMC Syst Biol 2013; 7 Suppl 6: S8.
50.Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164.
51.Wei SC, Yu CY, Tsai-Wu JJ et al. Low mutation rate of hMSH2 and hMLH1 in Taiwanese hereditary non-polyposis colorectal cancer. Clin Genet 2003; 64: 243-251.
52.Plon SE, Eccles DM, Easton D et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 2008; 29: 1282-1291.
53.Richards S, Aziz N, Bale S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405-424.
54.Genomes Project C, Auton A, Brooks LD et al. A global reference for human genetic variation. Nature 2015; 526: 68-74.
55.Adzhubei IA, Schmidt S, Peshkin L et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248-249.
56.Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073-1081.
57.Mathe E, Olivier M, Kato S et al. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 2006; 34: 1317-1325.
58.Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006; 22: 195-201.
59.Biasini M, Bienert S, Waterhouse A et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014; 42: W252-258.
60.Pettersen EF, Goddard TD, Huang CC et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25: 1605-1612.
61.Spugnesi L, Balia C, Collavoli A et al. Effect of the expression of BRCA2 on spontaneous homologous recombination and DNA damage-induced nuclear foci in Saccharomyces cerevisiae. Mutagenesis 2013; 28: 187-195.
62.Farrugia DJ, Agarwal MK, Pankratz VS et al. Functional assays for classification of BRCA2 variants of uncertain significance. Cancer Res 2008; 68: 3523-3531.
63.Petitjean A, Achatz MI, Borresen-Dale AL et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007; 26: 2157-2165.
64.Joo W, Xu G, Persky NS et al. Structure of the FANCI-FANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 2011; 333: 312-316.
65.Edelbrock MA, Kaliyaperumal S, Williams KJ. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat Res 2013; 743-744: 53-66.
66.Guarne A, Junop MS, Yang W. Structure and function of the N-terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase. EMBO J 2001; 20: 5521-5531.
67.Daly MB, Pilarski R, Axilbund JE et al. Genetic/familial high-risk assessment: breast and ovarian, version 1.2014. J Natl Compr Canc Netw 2014; 12: 1326-1338.
68.Jalal S, Earley JN, Turchi JJ. DNA repair: from genome maintenance to biomarker and therapeutic target. Clin Cancer Res 2011; 17: 6973-6984.
69.Couch FJ, Hart SN, Sharma P et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol 2015; 33: 304-311.
70.Engel C, Loeffler M, Steinke V et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol 2012; 30: 4409-4415.
71.Smith TR, Liu-Mares W, Van Emburgh BO et al. Genetic polymorphisms of multiple DNA repair pathways impact age at diagnosis and TP53 mutations in breast cancer. Carcinogenesis 2011; 32: 1354-1360.
72.Kurian AW, Hare EE, Mills MA et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol 2014; 32: 2001-2009.
73.Nakanishi K, Cavallo F, Brunet E, Jasin M. Homologous recombination assay for interstrand cross-link repair. Methods Mol Biol 2011; 745: 283-291.
74.Ferlay J, Shin HR, Bray F et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893-2917.
75.Trudeau M, Charbonneau F, Gelmon K et al. Selection of adjuvant chemotherapy for treatment of node-positive breast cancer. Lancet Oncol 2005; 6: 886-898.
76.Ragaz J, Jackson SM, Le N et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med 1997; 337: 956-962.
77.Janicke F, Prechtl A, Thomssen C et al. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J Natl Cancer Inst 2001; 93: 913-920.
78.Viale G, Regan MM, Maiorano E et al. Chemoendocrine compared with endocrine adjuvant therapies for node-negative breast cancer: predictive value of centrally reviewed expression of estrogen and progesterone receptors--International Breast Cancer Study Group. J Clin Oncol 2008; 26: 1404-1410.
79.Joensuu H, Pylkkanen L, Toikkanen S. Late mortality from pT1N0M0 breast carcinoma. Cancer 1999; 85: 2183-2189.
80.Livi L, Meattini I, Saieva C et al. Prognostic value of positive human epidermal growth factor receptor 2 status and negative hormone status in patients with T1a/T1b, lymph node-negative breast cancer. Cancer 2012; 118: 3236-3243.
81.Colleoni M, Rotmensz N, Maisonneuve P et al. Prognostic role of the extent of peritumoral vascular invasion in operable breast cancer. Ann Oncol 2007; 18: 1632-1640.
82.Schmidt M, Victor A, Bratzel D et al. Long-term outcome prediction by clinicopathological risk classification algorithms in node-negative breast cancer--comparison between Adjuvant!, St Gallen, and a novel risk algorithm used in the prospective randomized Node-Negative-Breast Cancer-3 (NNBC-3) trial. Ann Oncol 2009; 20: 258-264.
83.Karlsson P, Cole BF, Chua BH et al. Patterns and risk factors for locoregional failures after mastectomy for breast cancer: an International Breast Cancer Study Group report. Ann Oncol 2012; 23: 2852-2858.
84.Cardoso F, Van''t Veer L, Rutgers E et al. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008; 26: 729-735.
85.Rutgers E, Piccart-Gebhart MJ, Bogaerts J et al. The EORTC 10041/BIG 03-04 MINDACT trial is feasible: results of the pilot phase. Eur J Cancer 2011; 47: 2742-2749.
86.Dubsky P, Filipits M, Jakesz R et al. EndoPredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol 2013; 24: 640-647.
87.Sparano JA, Gray RJ, Makower DF et al. Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N Engl J Med 2015; 373: 2005-2014.
88.Lee AH, Pinder SE, Macmillan RD et al. Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma. Eur J Cancer 2006; 42: 357-362.
89.Matsunuma R, Oguchi M, Fujikane T et al. Influence of lymphatic invasion on locoregional recurrence following mastectomy: indication for postmastectomy radiotherapy for breast cancer patients with one to three positive nodes. Int J Radiat Oncol Biol Phys 2012; 83: 845-852.
90.Rakha EA, Reis-Filho JS, Baehner F et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 2010; 12: 207.
91.Sotiriou C, Wirapati P, Loi S et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 2006; 98: 262-272.
92.Ignatiadis M, Sotiriou C. Understanding the molecular basis of histologic grade. Pathobiology 2008; 75: 104-111.
93.Lanigan F, McKiernan E, Brennan DJ et al. Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer. Int J Cancer 2009; 124: 2088-2097.
94.Clarke M, Collins R, Darby S et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 366: 2087-2106.
95.Aebi S, Davidson T, Gruber G, Cardoso F. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2011; 22 Suppl 6: vi12-24.
96.Duraker N, Demir D, Bati B et al. Survival benefit of post-mastectomy radiotherapy in breast carcinoma patients with T1-2 tumor and 1-3 axillary lymph node(s) metastasis. Jpn J Clin Oncol 2012; 42: 601-608.
97.Westenend PJ, Meurs CJ, Damhuis RA. Tumour size and vascular invasion predict distant metastasis in stage I breast cancer. Grade distinguishes early and late metastasis. J Clin Pathol 2005; 58: 196-201.
98.Viale G, Giobbie-Hurder A, Gusterson BA et al. Adverse prognostic value of peritumoral vascular invasion: is it abrogated by adequate endocrine adjuvant therapy? Results from two International Breast Cancer Study Group randomized trials of chemoendocrine adjuvant therapy for early breast cancer. Ann Oncol 2010; 21: 245-254.
99.Rahal S, Boher JM, Extra JM et al. Immunohistochemical subtypes predict the clinical outcome in high-risk node-negative breast cancer patients treated with adjuvant FEC regimen: results of a single-center retrospective study. BMC Cancer 2015; 15: 697.
100.Early Breast Cancer Trialists'' Collaborative G, Peto R, Davies C et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 2012; 379: 432-444.

Part II
1.Dohner H, Estey EH, Amadori S et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453-474.
2.Estey EH. Acute myeloid leukemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 2012; 87: 89-99.
3.Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood 2016; 127: 53-61.
4.Dohner H, Gaidzik VI. Impact of genetic features on treatment decisions in AML. Hematology Am Soc Hematol Educ Program 2011; 2011: 36-42.
5.Patel JP, Gonen M, Figueroa ME et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079-1089.
6.Marcucci G, Mrozek K, Ruppert AS et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol 2005; 23: 5705-5717.
7.Gerber JM, Smith BD, Ngwang B et al. A clinically relevant population of leukemic CD34(+)CD38(-) cells in acute myeloid leukemia. Blood 2012; 119: 3571-3577.
8.Bachas C, Schuurhuis GJ, Assaraf YG et al. The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse. Leukemia 2012; 26: 1313-1320.
9.Vergez F, Green AS, Tamburini J et al. High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica 2011; 96: 1792-1798.
10.Frohling S, Scholl C, Gilliland DG, Levine RL. Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005; 23: 6285-6295.
11.Wongtrakoongate P. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J Stem Cells 2015; 7: 137-148.
12.Stein EM, Tallman MS. Emerging therapeutic drugs for AML. Blood 2016; 127: 71-78.
13.Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood 2016; 127: 42-52.
14.Grimwade D, Ivey A, Huntly BJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 2016; 127: 29-41.
15.Sawan C, Vaissiere T, Murr R, Herceg Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res 2008; 642: 1-13.
16.Gutierrez SE, Romero-Oliva FA. Epigenetic changes: a common theme in acute myelogenous leukemogenesis. J Hematol Oncol 2013; 6: 57.
17.Wagner M, Schmelz K, Dorken B, Tamm I. Epigenetic and genetic analysis of the survivin promoter in acute myeloid leukemia. Leuk Res 2008; 32: 1054-1060.
18.Whitman SP, Hackanson B, Liyanarachchi S et al. DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood 2008; 112: 2013-2016.
19.Ng KP, Ebrahem Q, Negrotto S et al. p53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia. Leukemia 2011; 25: 1739-1750.
20.McCabe MT, Brandes JC, Vertino PM. Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res 2009; 15: 3927-3937.
21.Wong SH, Goode DL, Iwasaki M et al. The H3K4-Methyl Epigenome Regulates Leukemia Stem Cell Oncogenic Potential. Cancer Cell 2015; 28: 198-209.
22.Figueroa ME, Lugthart S, Li Y et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13-27.
23.Yamazaki J, Estecio MR, Lu Y et al. The epigenome of AML stem and progenitor cells. Epigenetics 2013; 8: 92-104.
24.Abdel-Wahab O, Pardanani A, Patel J et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia 2011; 25: 1200-1202.
25.Guglielmelli P, Biamonte F, Score J et al. EZH2 mutational status predicts poor survival in myelofibrosis. Blood 2011; 118: 5227-5234.
26.Nikoloski G, Langemeijer SM, Kuiper RP et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 2010; 42: 665-667.
27.Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009; 10: 697-708.
28.Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 2008; 647: 21-29.
29.Zhang B, Li M, McDonald T et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling. Blood 2013; 121: 1824-1838.
30.Schinke C, Giricz O, Li W et al. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells. Blood 2015; 125: 3144-3152.
31.Arnold KM, Opdenaker LM, Flynn D, Sims-Mourtada J. Wound healing and cancer stem cells: inflammation as a driver of treatment resistance in breast cancer. Cancer Growth Metastasis 2015; 8: 1-13.
32.Lin PH, Lin CC, Yang HI et al. Prognostic impact of allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia patients with internal tandem duplication of FLT3. Leuk Res 2013; 37: 287-292.
33.Metzeler KH, Hummel M, Bloomfield CD et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 2008; 112: 4193-4201.
34.Yagi T, Morimoto A, Eguchi M et al. Identification of a gene expression signature associated with pediatric AML prognosis. Blood 2003; 102: 1849-1856.
35.McCabe MT, Ott HM, Ganji G et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108-112.
36.She M, Niu X, Chen X et al. Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell-mediated cytotoxicity. Cancer Lett 2012; 318: 173-179.
37.Jordan CT. Targeting myeloid leukemia stem cells. Sci Transl Med 2010; 2: 31ps21.
38.Buss EC, Ho AD. Leukemia stem cells. Int J Cancer 2011; 129: 2328-2336.
39.Zhang Y, Chen HX, Zhou SY et al. Sp1 and c-Myc modulate drug resistance of leukemia stem cells by regulating survivin expression through the ERK-MSK MAPK signaling pathway. Mol Cancer 2015; 14: 56.
40.Velichutina I, Shaknovich R, Geng H et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010; 116: 5247-5255.
41.Young MD, Willson TA, Wakefield MJ et al. ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic Acids Res 2011; 39: 7415-7427.
42.Min J, Zaslavsky A, Fedele G et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16: 286-294.
43.Manshouri T, Estrov Z, Quintas-Cardama A et al. Bone marrow stroma-secreted cytokines protect JAK2(V617F)-mutated cells from the effects of a JAK2 inhibitor. Cancer Res 2011; 71: 3831-3840.
44.Nefedova Y, Landowski TH, Dalton WS. Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 2003; 17: 1175-1182.
45.Yang X, Sexauer A, Levis M. Bone marrow stroma-mediated resistance to FLT3 inhibitors in FLT3-ITD AML is mediated by persistent activation of extracellular regulated kinase. Br J Haematol 2014; 164: 61-72.
46.Kim E, Kim M, Woo DH et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 2013; 23: 839-852.
47.Nishioka C, Ikezoe T, Yang J, Yokoyama A. Tetraspanin Family Member, CD82, Regulates Expression of EZH2 via Inactivation of p38 MAPK Signaling in Leukemia Cells. PLoS One 2015; 10: e0125017.
48.Herrera-Merchan A, Arranz L, Ligos JM et al. Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease. Nat Commun 2012; 3: 623.
49.Tanaka S, Miyagi S, Sashida G et al. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 2012; 120: 1107-1117.
50.Trost M, Sauvageau M, Herault O et al. Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 2012; 120: e17-27.
51.Min J, Liu L, Li X et al. Absence of DAB2IP promotes cancer stem cell like signatures and indicates poor survival outcome in colorectal cancer. Sci Rep 2015; 5: 16578.
52.Yun EJ, Baek ST, Xie D et al. DAB2IP regulates cancer stem cell phenotypes through modulating stem cell factor receptor and ZEB1. Oncogene 2015; 34: 2741-2752.
53.Shen YJ, Kong ZL, Wan FN et al. Downregulation of DAB2IP results in cell proliferation and invasion and contributes to unfavorable outcomes in bladder cancer. Cancer Sci 2014; 105: 704-712.
54.Wang YH, Israelsen WJ, Lee D et al. Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell 2014; 158: 1309-1323.
55.Huang Y, Thoms JA, Tursky ML et al. MAPK/ERK2 phosphorylates ERG at serine 283 in leukemic cells and promotes stem cell signatures and cell proliferation. Leukemia 2016.
56.Garg S, Shanmukhaiah C, Marathe S et al. Differential antigen expression and aberrant signaling via PI3/AKT, MAP/ERK, JAK/STAT, and Wnt/beta catenin pathways in Lin-/CD38-/CD34+ cells in acute myeloid leukemia. Eur J Haematol 2016; 96: 309-317.
57.Xu B, On DM, Ma A et al. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood 2015; 125: 346-357.
58.Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol 2012; 13: e83-89.
59.Li Y, Laterra J. Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 2012; 72: 576-580.
60.Van Etten RA. Aberrant cytokine signaling in leukemia. Oncogene 2007; 26: 6738-6749.
61.Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 2013; 14: e218-228.
62.Izraeli S, Shochat C, Tal N, Geron I. Towards precision medicine in childhood leukemia--insights from mutationally activated cytokine receptor pathways in acute lymphoblastic leukemia. Cancer Lett 2014; 352: 15-20.
63.Wu HH, Hwang-Verslues WW, Lee WH et al. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J Exp Med 2015; 212: 333-349.
64.Bartholdy B, Christopeit M, Will B et al. HSC commitment-associated epigenetic signature is prognostic in acute myeloid leukemia. J Clin Invest 2014; 124: 1158-1167.
65.Wertheim GB, Smith C, Figueroa ME et al. Microsphere-based multiplex analysis of DNA methylation in acute myeloid leukemia. J Mol Diagn 2014; 16: 207-215.
66.Shi J, Wang E, Zuber J et al. The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia. Oncogene 2013; 32: 930-938.
67.Sinha S, Thomas D, Yu L et al. Mutant WT1 is associated with DNA hypermethylation of PRC2 targets in AML and responds to EZH2 inhibition. Blood 2015; 125: 316-326.
68.Burgess MR, Hwang E, Firestone AJ et al. Preclinical efficacy of MEK inhibition in Nras-mutant AML. Blood 2014; 124: 3947-3955.
69.Jain N, Curran E, Iyengar NM et al. Phase II study of the oral MEK inhibitor selumetinib in advanced acute myelogenous leukemia: a University of Chicago phase II consortium trial. Clin Cancer Res 2014; 20: 490-498.
70.Deschenes-Simard X, Kottakis F, Meloche S, Ferbeyre G. ERKs in cancer: friends or foes? Cancer Res 2014; 74: 412-419.
71.Chen JF, Luo X, Xiang LS et al. EZH2 promotes colorectal cancer stem-like cell expansion by activating p21cip1-Wnt/beta-catenin signaling. Oncotarget 2016.
72.Fillmore CM, Xu C, Desai PT et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 2015; 520: 239-242.
73.Tiffen JC, Gunatilake D, Gallagher SJ et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget 2015.
74.Zingg D, Debbache J, Schaefer SM et al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat Commun 2015; 6: 6051.
75.Knutson SK, Kawano S, Minoshima Y et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther 2014; 13: 842-854.
76.McCabe MT, Creasy CL. EZH2 as a potential target in cancer therapy. Epigenomics 2014; 6: 341-351.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 乳癌篩檢對女性乳癌患者存活的影響
2. 探尋臺灣乳癌及三陰性乳癌的基因標記
3. 影響乳癌預後的相關研究-探討缺氧誘導因子1α在乳癌病患的表現與放射線治療在乳癌患者接受乳房全切除術後所扮演的角色
4. 利用乳癌篩檢前的問卷建構機器學習模型預測乳癌風險
5. 分析白血球去鹼基核酸位點背景值生物指標探討乳癌高風險族群之研究-以五年存活且未復發之乳癌病人為例
6. 犧牲動機與共存型人格及完美主義於乳癌與非乳癌患者之差異分析
7. 新發乳癌病患接受多專科團隊照護對其存活之影響:以2000-2008乳癌世代為例
8. 乳癌篩檢行為意向之研究--以參與中華民國乳癌病友協會所舉辦之乳癌防治講座民眾為例
9. 具乳癌家族病史婦女之乳癌危險因子探討
10. 探討利用臺灣全民健康保險研究資料庫篩選乳癌病患及進行乳癌分期正確性之相關影響因子
11. I. 槲皮素調控Skp2蛋白抑制乳癌細胞生長;II. 中草藥成份分析及其對乳癌抗癌活性分析
12. 乳癌病患的社會支持及生活品質之研究-以臺北市某跨院性乳癌病友支持團體為例
13. 台灣地區影響乳癌發生之相關因素的研究
14. 探討高夫曼戲劇觀 對乳癌術後患者的影響 -以「臺北市立聯合醫院和平婦幼 院區乳癌太鼓復健計畫」為例
15. 天然化合物5-TDMF及Squamocin C於癌症預防和治療之機轉研究