|
References 1.Sudhakara Prasad, K.; Muthuraman, G.; Zen, J.-M., The Role of Oxygen Functionalities and Edge Plane Sites on Screen-Printed Carbon Electrodes for Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid. Electrochem. Commun. 2008, 10, 559-563. 2.Thiyagarajan, N.; Chang, J.-L.; Senthilkumar, K.; Zen, J.-M., Disposable Electrochemical Sensors: A Mini Review. Electrochem. Commun. 2014, 38, 86-90. 3.Thiruppathi, M.; Thiyagarajan, N.; Gopinathan, M.; Zen, J.-M., Role of Defect Sites and Oxygen Functionalities on Preanodized Screen Printed Carbon Electrode for Adsorption and Oxidation of Polyaromatic Hydrocarbons. Electrochem. Commun. 2016, 69, 15-18. 4.Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications; John Wiely & Sons: Canada, 1980. 5.Harris, D. C., Quantitative Chemical Analysis, 8 ed.; W. H. Freeman and Company, 2010. 6.Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R., Fundamentals of Analytical Chemistry, 8 ed.; David Harris: Canada, 2004. 7.Lane, R. F.; Hubbard, A. T., Electrochemistry of Chemisorbed Molecules. I. Reactants Connected to Electrodes through Olefinic Substituents. The Journal of Physical Chemistry 1973, 77, 1401-1410. 8.Murray, R. W., Chemically Modified Electrodes. Acc. Chem. Res. 1980, 13, 135-141. 9.Zen, J.-M.; Senthil Kumar, A.; Tsai, D.-M., Recent Updates of Chemically Modified Electrodes in Analytical Chemistry. Electroanalysis 2003, 15, 1073-1087. 10.Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M., Adsorption of Phenolic Compounds by Activated Carbon—a Critical Review. Chemosphere 2005, 58, 1049-1070. 11.Guo, Y.; Kaplan, S.; Karanfil, T., The Significance of Physical Factors on the Adsorption of Polyaromatic Compounds by Activated Carbons. Carbon 2008, 46, 1885-1891. 12.Jia, Y.; Demopoulos, G. P., Adsorption of Silver onto Activated Carbon from Acidic Media: Nitrate and Sulfate Media. Industrial & Engineering Chemistry Research 2003, 42, 72-79. 13.Chen, P.; Fryling, M. A.; McCreery, R. L., Electron Transfer Kinetics at Modified Carbon Electrode Surfaces: The Role of Specific Surface Sites. Anal. Chem. 1995, 67, 3115-3122. 14.Chen, P.; McCreery, R. L., Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification. Anal. Chem. 1996, 68, 3958-3965. 15.McDermott, M. T.; McCreery, R. L., Scanning Tunneling Microscopy of Ordered Graphite and Glassy Carbon Surfaces: Electronic Control of Quinone Adsorption. Langmuir 1994, 10, 4307-4314. 16.Han, X.; Lin, H.; Zheng, Y., The Role of Oxygen Functional Groups in the Adsorption of Heteroaromatic Nitrogen Compounds. J. Hazard. Mater. 2015, 297, 217-223. 17.Zhang, G.; Kirkman, P. M.; Patel, A. N.; Cuharuc, A. S.; McKelvey, K.; Unwin, P. R., Molecular Functionalization of Graphite Surfaces: Basal Plane Versus Step Edge Electrochemical Activity. J. Am. Chem. Soc. 2014, 136, 11444-11451. 18.Haghseresht, F.; Finnerty, J. J.; Nouri, S.; Lu, G. Q., Adsorption of Aromatic Compounds onto Activated Carbons: Effects of the Orientation of the Adsorbates. Langmuir 2002, 18, 6193-6200. 19.McDermott, M. T.; Kneten, K.; McCreery, R. L., Anthraquinonedisulfonate Adsorption, Electron-Transfer Kinetics, and Capacitance on Ordered Graphite Electrodes: The Important Role of Surface Defects. The Journal of Physical Chemistry 1992, 96, 3124-3130. 20.Cho, H.-H.; Smith, B. A.; Wnuk, J. D.; Fairbrother, D. H.; Ball, W. P., Influence of Surface Oxides on the Adsorption of Naphthalene onto Multiwalled Carbon Nanotubes. Environ. Sci. Technol 2008, 42, 2899-2905. 21.McCreery, R. L., Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev 2008, 108, 2646-2687. 22.Engstrom, R. C., Electrochemical Pretreatment of Glassy Carbon Electrodes. Anal. Chem. 1982, 54, 2310-2314. 23.Alsmeyer, D. C.; McCreery, R. L., In Situ Raman Monitoring of Electrochemical Graphite Intercalation and Lattice Damage in Mild Aqueous Acids. Anal. Chem. 1992, 64, 1528-1533. 24.Moreno-Castilla, C.; Ferro-Garcia, M.; Joly, J.; Bautista-Toledo, I.; Carrasco-Marin, F.; Rivera-Utrilla, J., Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir 1995, 11, 4386-4392. 25.Chiu, M.-H.; Wei, W.-C.; Zen, J.-M., The Role of Oxygen Functionalities at Carbon Electrode to the Electrogenerated Chemiluminescence of Ru (Bpy) 3 2+. Electrochem. Commun. 2011, 13, 605-607. 26.Yan, J.; Springsteen, G.; Deeter, S.; Wang, B., The Relationship among Pka, Ph, and Binding Constants in the Interactions between Boronic Acids and Diols—It Is Not as Simple as It Appears. Tetrahedron 2004, 60, 11205-11209. 27.Springsteen, G.; Wang, B., A Detailed Examination of Boronic Acid–Diol Complexation. Tetrahedron 2002, 58, 5291-5300. 28.Tan, L.; Wang, B.; Feng, H., Comparative Studies of Graphene Oxide and Reduced Graphene Oxide as Carbocatalysts for Polymerization of 3-Aminophenylboronic Acid. RSC. Adv. 2013, 3, 2561-2565. 29.Wang, Z.; Shang, K.; Dong, J.; Cheng, Z.; Ai, S., Electrochemical Immunoassay for Subgroup J of Avian Leukosis Viruses Using a Glassy Carbon Electrode Modified with a Film of Poly (3-Thiophene Boronic Acid), Gold Nanoparticles, Graphene and Immobilized Antibody. Microchim. Acta 2012, 179, 227-234. 30.Shoji, E.; Freund, M. S., Potentiometric Saccharide Detection Based on the Pka Changes of Poly(Aniline Boronic Acid). J. Am. Chem. Soc. 2002, 124, 12486-12493. 31.Wu, S.; Han, T.; Guo, J.; Cheng, Y., Poly(3-Aminophenylboronic Acid)-Reduced Graphene Oxide Nanocomposite Modified Electrode for Ultrasensitive Electrochemical Detection of Fluoride with a Wide Response Range. Sens. Actuators. B Chem 2015, 220, 1305-1310. 32.Çiftçi, H.; Oztekin, Y.; Tamer, U.; Ramanavicine, A.; Ramanavicius, A., Development of Poly(3-Aminophenylboronic Acid) Modified Graphite Rod Electrode Suitable for Fluoride Determination. Talanta 2014, 126, 202-207. 33.Nicolas, M.; Fabre, B.; Marchand, G.; Simonet, J., New Boronic-Acid- and Boronate-Substituted Aromatic Compounds as Precursors of Fluoride-Responsive Conjugated Polymer Films. Eur. J. Org. Chem. 2000, 2000, 1703-1710. 34.Morita, K.; Hirayama, N.; Imura, H.; Yamaguchi, A.; Teramae, N., Grafting of Phenylboronic Acid on a Glassy Carbon Electrode and Its Application as a Reagentless Glucose Sensor. J. Electroanal. Chem. 2011, 656, 192-197. 35.Lapinsonnière, L.; Picot, M.; Poriel, C.; Barrière, F., Phenylboronic Acid Modified Anodes Promote Faster Biofilm Adhesion and Increase Microbial Fuel Cell Performances. Electroanalysis 2013, 25, 601-605. 36.Lawrence, K.; Nishimura, T.; Haffenden, P.; Mitchels, J. M.; Sakurai, K.; Fossey, J. S.; Bull, S. D.; James, T. D.; Marken, F., Pyrene-Anchored Boronic Acid Receptors on Carbon Nanoparticle Supports: Fluxionality and Pore Effects. New J. Chem. 2013, 37, 1883-1888. 37.Takahashi, S.; Anzai, J.-i., Phenylboronic Acid Monolayer-Modified Electrodes Sensitive to Sugars. Langmuir 2005, 21, 5102-5107. 38.Li, M.; Zhu, W.; Marken, F.; James, T. D., Electrochemical Sensing Using Boronic Acids. Chem. Commun. 2015, 51, 14562-14573. 39.Armstrong, B.; Hutchinson, E.; Unwin, J.; Fletcher, T., Lung Cancer Risk after Exposure to Polycyclic Aromatic Hydrocarbons: A Review and Meta-Analysis. Environ. Health Perspect. 2004, 112, 970-978. 40.Barathi, P.; Kumar, A. S., Facile Electrochemical Oxidation of Polyaromatic Hydrocarbons to Surface-Confined Redox-Active Quinone Species on a Multiwalled Carbon Nanotube Surface. Chemistry – A European Journal 2013, 19, 2236-2241. 41.Chu, S. N.; Sands, S.; Tomasik, M. R.; Lee, P. S.; McNeill, V. F., Ozone Oxidation of Surface-Adsorbed Polycyclic Aromatic Hydrocarbons: Role of Pah−Surface Interaction. J. Am. Chem. Soc. 2010, 132, 15968-15975. 42.Clough, R. L., .Gamma.-Radiation-Oxidation of Polycyclic Aromatic Hydrocarbons: Involvement of Singlet Oxygen. J. Am. Chem. Soc. 1980, 102, 5242-5245. 43.Hammel, K. E., Mechanisms for Polycyclic Aromatic Hydrocarbon Degradation by Ligninolytic Fungi. Environ. Health Perspect. 1995, 103, 41-43. 44.Jonsson, S.; Persson, Y.; Frankki, S.; van Bavel, B.; Lundstedt, S.; Haglund, P.; Tysklind, M., Degradation of Polycyclic Aromatic Hydrocarbons (Pahs) in Contaminated Soils by Fenton's Reagent: A Multivariate Evaluation of the Importance of Soil Characteristics and Pah Properties. J. Hazard. Mater. 2007, 149, 86-96. 45.Paddon, C. A.; Banks, C. E.; Davies, I. G.; Compton, R. G., Oxidation of Anthracene on Platinum Macro- and Micro-Electrodes: Sonoelectrochemical, Cryoelectrochemical and Sonocryoelectrochemical Studies. Ultrason. Sonochem. 2006, 13, 126-132. 46.Rubio-Clemente, A.; Torres-Palma, R. A.; Peñuela, G. A., Removal of Polycyclic Aromatic Hydrocarbons in Aqueous Environment by Chemical Treatments: A Review. Sci. Total Environ. 2014, 478, 201-225. 47.Subramanian, P.; Murthy, M. S., Mechanism of Vapor-Phase Oxidation of Anthracene over Vanadium Pentoxide Catalyst. Industrial & Engineering Chemistry Process Design and Development 1974, 13, 112-115. 48.Theodoridou, E., Catalytic Reactivity of Carbon-Fibre Supported Cerium Ions in Electro-Oxidations. Synth. Met. 1986, 16, 87-92. 49.Xiong, L.; Batchelor-McAuley, C.; Gonçalves, L. M.; Rodrigues, J. A.; Compton, R. G., The Indirect Electrochemical Detection and Quantification of DNA through Its Co-Adsorption with Anthraquinone Monosulphonate on Graphitic and Multi-Walled Carbon Nanotube Screen Printed Electrodes. Biosens. Bioelectron. 2011, 26, 4198-4203. 50.Convey, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications.; Kluwer Academic Plenum Publishers: New York, 1999, p p.698. 51.Cui, G.; Yoo, J. H.; Lee, J. S.; Yoo, J.; Uhm, J. H.; Cha, G. S.; Nam, H., Effect of Pre-Treatment on the Surface and Electrochemical Properties of Screen-Printed Carbon Paste Electrodes. Analyst 2001, 126, 1399-1403. 52.Wang, J.; Pedrero, M.; Sakslund, H.; Hammerich, O.; Pingarron, J., Electrochemical Activation of Screen-Printed Carbon Strips. Analyst 1996, 121, 345-350. 53.Neumann, C. C. M.; Batchelor-McAuley, C.; Downing, C.; Compton, R. G., Anthraquinone Monosulfonate Adsorbed on Graphite Shows Two Very Different Rates of Electron Transfer: Surface Heterogeneity Due to Basal and Edge Plane Sites. Chemistry – A European Journal 2011, 17, 7320-7326. 54.Chang, J.-L.; Chang, K.-H.; Hu, C.-C.; Cheng, W.-L.; Zen, J.-M., Improved Voltammetric Peak Separation and Sensitivity of Uric Acid and Ascorbic Acid at Nanoplatelets of Graphitic Oxide. Electrochem. Commun. 2010, 12, 596-599. 55.Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A., General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. 56.Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R., Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. PCCP 2007, 9, 1276-1290. 57.Li, H.; Zhu, S.; Cheng, T.; Wang, S.; Zhu, B.; Liu, X.; Zhang, H., Binary Boronic Acid-Functionalized Attapulgite with High Adsorption Capacity for Selective Capture of Nucleosides at Acidic Ph Values. Microchim. Acta 2016, 183, 1779-1786. 58.Zhong, M.; Teng, Y.; Pang, S.; Yan, L.; Kan, X., Pyrrole–Phenylboronic Acid: A Novel Monomer for Dopamine Recognition and Detection Based on Imprinted Electrochemical Sensor. Biosens. Bioelectron. 2015, 64, 212-218. 59.Badhulika, S.; Tlili, C.; Mulchandani, A., Poly(3-Aminophenylboronic Acid)-Functionalized Carbon Nanotubes-Based Chemiresistive Sensors for Detection of Sugars. Analyst 2014, 139, 3077-3082. 60.Hong, S.; Lee, L. Y. S.; So, M.-H.; Wong, K.-Y., A Dopamine Electrochemical Sensor Based on Molecularly Imprinted Poly(Acrylamidophenylboronic Acid) Film. Electroanalysis 2013, 25, 1085-1094. 61.Senthilkumar, K.; Zen, J.-M., Free Chlorine Detection Based on Ec’ Mechanism at an Electroactive Polymelamine-Modified Electrode. Electrochem. Commun. 2014, 46, 87-90. 62.Wang, Q.; Kaminska, I.; Niedziolka-Jonsson, J.; Opallo, M.; Li, M.; Boukherroub, R.; Szunerits, S., Sensitive Sugar Detection Using 4-Aminophenylboronic Acid Modified Graphene. Biosens. Bioelectron. 2013, 50, 331-337. 63.Qiang, Z.; Adams, C. D., Determination of Monochloramine Formation Rate Constants with Stopped-Flow Spectrophotometry. Environ. Sci. Technol 2004, 38, 1435-1444. 64.Liu, G.; Luais, E.; Gooding, J. J., The Fabrication of Stable Gold Nanoparticle-Modified Interfaces for Electrochemistry. Langmuir 2011, 27, 4176-4183. 65.Wong, C.-S.; Chen, Y.-D.; Chang, J.-L.; Zen, J.-M., Biomolecule-Free, Selective Detection of Clenbuterol Based on Disposable Screen-Printed Carbon Electrode. Electrochem. Commun. 2015, 60, 163-167. 66.Xu, L. Q.; Liu, Y. L.; Neoh, K.-G.; Kang, E.-T.; Fu, G. D., Reduction of Graphene Oxide by Aniline with Its Concomitant Oxidative Polymerization. Macromol. Rapid Commun. 2011, 32, 684-688. 67.Laviron, E., General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. J. electroanal. chem. interfacial electrochem. 1979, 101, 19-28. 68.White, G. C., Handbook of Chlorination, 2 ed.; Van Nostrand Reinhold Company Inc: New York, 1986. 69.Wilcox, M. H.; Fawley, W. N.; Wigglesworth, N.; Parnell, P.; Verity, P.; Freeman, J., Comparison of the Effect of Detergent Versus Hypochlorite Cleaning on Environmental Contamination and Incidence of Clostridium Difficile Infection. J. Hosp. Infect. 2003, 54, 109-114. 70.Organization, W. H., Guidelines for Safe Recreational Water Environments. Volume 2: Swimming Pools and Similar Environments; World Health Organization, 2006. 71.Compton, R. G.; Banks, C. E., Understanding Voltammetry; Imperial college press: London, 2010. 72.Salazar, P.; Martín, M.; García-García, F. J.; González-Mora, J. L.; González-Elipe, A. R., A Novel and Improved Surfactant-Modified Prussian Blue Electrode for Amperometric Detection of Free Chlorine in Water. Sens. Actuators. B Chem 2015, 213, 116-123. 73.Pathiratne, K.; Skandaraja, S.; Jayasena, E., Linear Sweep Voltammetric Determination of Free Chlorine in Waters Using Graphite Working Electrodes. J. Natl. Sci. Found. Sri 2009, 36, 25-31. 74.Tsai, T.-H.; Lin, K.-C.; Chen, S.-M., Electrochemical Synthesis of Poly (3, 4-Ethylenedioxythiophene) and Gold Nanocomposite and Its Application for Hypochlorite Sensor. Int. J. Electrochem. Sci 2011, 6, 2672-2687. 75.Hallaj, T.; Amjadi, M.; Manzoori, J. L.; Shokri, R., Chemiluminescence Reaction of Glucose-Derived Graphene Quantum Dots with Hypochlorite, and Its Application to the Determination of Free Chlorine. Microchim. Acta 2015, 182, 789-796. 76.Lin, Y.; Yao, B.; Huang, T.; Zhang, S.; Cao, X.; Weng, W., Selective Determination of Free Dissolved Chlorine Using Nitrogen-Doped Carbon Dots as a Fluorescent Probe. Microchim. Acta 2016, 183, 2221-2227. 77.Yu, H.; Zheng, L., Manganese Dioxide Nanosheets as an Optical Probe for Photometric Determination of Free Chlorine. Microchim. Acta 2016, 183, 2229-2234. 78.Moberg, L.; Karlberg, B., An Improved N,N′-Diethyl-P-Phenylenediamine (Dpd) Method for the Determination of Free Chlorine Based on Multiple Wavelength Detection. Anal. Chim. Acta 2000, 407, 127-133. 79.Cametti, M.; Rissanen, K., Highlights on Contemporary Recognition and Sensing of Fluoride Anion in Solution and in the Solid State. Chem. Soc. Rev. 2013, 42, 2016-2038. 80.Everett, E., Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics. Journal of dental research 2011, 90, 552-560. 81.Ayoob, S.; Gupta, A. K., Fluoride in Drinking Water: A Review on the Status and Stress Effects. Critical Reviews in Environmental Science and Technology 2006, 36, 433-487. 82.Jagtap, S.; Yenkie, M. K.; Labhsetwar, N.; Rayalu, S., Fluoride in Drinking Water and Defluoridation of Water. Chem. Rev. 2012, 112, 2454-2466. 83.Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P. A., Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038-8155. 84.Fawell, J. K.; Bailey, K., Fluoride in Drinking-Water; World Health Organization, 2006. 85.Badugu, R.; Lakowicz, J. R.; Geddes, C. D., A Wavelength–Ratiometric Fluoride-Sensitive Probe Based on the Quinolinium Nucleus and Boronic Acid Moiety. Sens. Actuators. B Chem 2005, 104, 103-110. 86.Ashokkumar, P.; Weißhoff, H.; Kraus, W.; Rurack, K., Test‐Strip‐Based Fluorometric Detection of Fluoride in Aqueous Media with a Bodipy‐Linked Hydrogen‐Bonding Receptor. Angew. Chem. Int. Ed. 2014, 53, 2225-2229. 87.Cooper, C.; James, T., Selective Fluorescence Detection of Fluoride Using Boronic Acids. Chem. Commun. 1998, 1365-1366. 88.Cheng, X.; Li, S.; Xu, G.; Li, C.; Qin, J.; Li, Z., A Reaction‐Based Colorimetric Fluoride Probe: Rapid “Naked‐Eye” Detection and Large Absorption Shift. ChemPlusChem 2012, 77, 908-913. 89.Hu, R.; Feng, J.; Hu, D.; Wang, S.; Li, S.; Li, Y.; Yang, G., A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angew. Chem. Int. Ed. 2010, 49, 4915-4918. 90.Jeyanthi, D.; Iniya, M.; Krishnaveni, K.; Chellappa, D., Novel Indole Based Dual Responsive “Turn-on” Chemosensor for Fluoride Ion Detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 136, 1269-1274. 91.Cho, E. J.; Moon, J. W.; Ko, S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C., A New Fluoride Selective Fluorescent as Well as Chromogenic Chemosensor Containing a Naphthalene Urea Derivative. J. Am. Chem. Soc. 2003, 125, 12376-12377. 92.Mahapatra, A. K.; Maiti, K.; Sahoo, P.; Nandi, P. K., A New Colorimetric and Fluorescent Bis (Coumarin) Methylene Probe for Fluoride Ion Detection Based on the Proton Transfer Signaling Mode. J. Lumin. 2013, 143, 349-354. 93.Liu, Z.-Q.; Shi, M.; Li, F.-Y.; Fang, Q.; Chen, Z.-H.; Yi, T.; Huang, C.-H., Highly Selective Two-Photon Chemosensors for Fluoride Derived from Organic Boranes. Org. Lett. 2005, 7, 5481-5484. 94.Lin, Z.-h.; Zhao, Y.-g.; Duan, C.-y.; Zhang, B.-g.; Bai, Z.-p., A Highly Selective Chromo-and Fluorogenic Dual Responding Fluoride Sensor: Naked-Eye Detection of F− Ion in Natural Water Via a Test Paper. Dalton Transactions 2006, 3678-3684. 95.Guha, S.; Saha, S., Fluoride Ion Sensing by an Anion− Π Interaction. J. Am. Chem. Soc. 2010, 132, 17674-17677. 96.Shamsipur, M.; Safavi, A.; Mohammadpour, Z.; Zolghadr, A. R., Fluorescent Carbon Nanodots for Optical Detection of Fluoride Ion in Aqueous Media. Sens. Actuators. B Chem 2015, 221, 1554-1560. 97.Cheng, F.; Bonder, E. M.; Jäkle, F., Electron-Deficient Triarylborane Block Copolymers: Synthesis by Controlled Free Radical Polymerization and Application in the Detection of Fluoride Ions. J. Am. Chem. Soc. 2013, 135, 17286-17289. 98.Wu, X.; Chen, X.-X.; Song, B.-N.; Huang, Y.-J.; Ouyang, W.-J.; Li, Z.; James, T. D.; Jiang, Y.-B., Direct Sensing of Fluoride in Aqueous Solutions Using a Boronic Acid Based Sensor. Chem. Commun. 2014, 50, 13987-13989. 99.Yamaguchi, S.; Akiyama, S.; Tamao, K., Colorimetric Fluoride Ion Sensing by Boron-Containing Π-Electron Systems. J. Am. Chem. Soc. 2001, 123, 11372-11375. 100.Kubo, Y.; Yamamoto, M.; Ikeda, M.; Takeuchi, M.; Shinkai, S.; Yamaguchi, S.; Tamao, K., A Colorimetric and Ratiometric Fluorescent Chemosensor with Three Emission Changes: Fluoride Ion Sensing by a Triarylborane–Porphyrin Conjugate. Angew. Chem. Int. Ed. 2003, 42, 2036-2040. 101.Gupta, M.; Balamurugan, A.; Lee, H.-i., Azoaniline-Based Rapid and Selective Dual Sensor for Copper and Fluoride Ions with Two Distinct Output Modes of Detection. Sens. Actuators. B Chem 2015, 211, 531-536. 102.Kwon, S.-M.; Shin, H.-S., Sensitive Determination of Fluoride in Biological Samples by Gas Chromatography–Mass Spectrometry after Derivatization with 2-(Bromomethyl) Naphthalene. Anal. Chim. Acta 2014, 852, 162-167. 103.Pagliano, E.; Meija, J.; Ding, J.; Sturgeon, R. E.; D’Ulivo, A.; Mester, Z. n., Novel Ethyl-Derivatization Approach for the Determination of Fluoride by Headspace Gas Chromatography/Mass Spectrometry. Anal. Chem. 2012, 85, 877-881. 104.Tao, J.; Zhao, P.; Li, Y.; Zhao, W.; Xiao, Y.; Yang, R., Fabrication of an Electrochemical Sensor Based on Spiropyran for Sensitive and Selective Detection of Fluoride Ion. Anal. Chim. Acta 2016, 918, 97-102. 105.Andreyev, E. A.; Komkova, M. A.; Nikitina, V. N.; Zaryanov, N. V.; Voronin, O. G.; Karyakina, E. E.; Yatsimirsky, A. K.; Karyakin, A. A., Reagentless Polyol Detection by Conductivity Increase in the Course of Self-Doping of Boronate-Substituted Polyaniline. Anal. Chem. 2014, 86, 11690-11695. 106.Gupta, V. K.; Jain, A. K.; Pal, M. K.; Bharti, A. K., Comparative Study of Fluoride Selective Pvc Based Electrochemical Sensors. Electrochim. Acta 2012, 80, 316-325. 107.Bala, A.; Pietrzak, M.; Zajda, J.; Malinowska, E., Further Studies on Application of Al (Iii)-Tetraazaporphine in Membrane-Based Electrochemical Sensors for Determination of Fluoride. Sens. Actuators. B Chem 2015, 207, 1004-1009. 108.Manibalan, K.; Mani, V.; Huang, S.-T., A Switchable Electrochemical Redox Ratiometric Substrate Based on Ferrocene for Highly Selective and Sensitive Fluoride Detection. RSC. Adv. 2016, 6, 71727-71732. 109.Čerňanská, M.; Tomčík, P.; Jánošíková, Z.; Rievaj, M.; Bustin, D., Indirect Voltammetric Detection of Fluoride Ions in Toothpaste on a Comb-Shaped Interdigitated Microelectrode Array. Talanta 2011, 83, 1472-1475. 110.Aboubakr, H.; Brisset, H.; Siri, O.; Raimundo, J.-M., Highly Specific and Reversible Fluoride Sensor Based on an Organic Semiconductor. Anal. Chem. 2013, 85, 9968-9974. 111.Ćwik, P.; Wawrzyniak, U. E.; Jańczyk, M.; Wróblewski, W., Electrochemical Studies of Self-Assembled Monolayers Composed of Various Phenylboronic Acid Derivatives. Talanta 2014, 119, 5-10. 112.Mani, V.; Li, W.-Y.; Gu, J.-A.; Lin, C.-M.; Huang, S.-T., Electrochemical Off–on Ratiometric Chemodosimeters for the Selective and Rapid Detection of Fluoride. Talanta 2015, 131, 121-126. 113.Aydogan, A.; Koca, A.; Şener, M. K.; Sessler, J. L., Edot-Functionalized Calix [4] Pyrrole for the Electrochemical Sensing of Fluoride in Water. Org. Lett. 2014, 16, 3764-3767. 114.Thiruppathi, M.; Thiyagarajan, N.; Gopinathan, M.; Chang, J.-L.; Zen, J.-M., A Dually Functional 4-Aminophenylboronic Acid Dimer for Voltammetric Detection of Hypochlorite, Glucose and Fructose. Microchim. Acta 2017, 184, 4073-4080. 115.Wang, J.-Y.; Chou, T.-C.; Chen, L.-C.; Ho, K.-C., Using Poly (3-Aminophenylboronic Acid) Thin Film with Binding-Induced Ion Flux Blocking for Amperometric Detection of Hemoglobin A1c. Biosens. Bioelectron. 2015, 63, 317-324. 116.Fortin, N.; Klok, H.-A., Glucose Monitoring Using a Polymer Brush Modified Polypropylene Hollow Fiber-Based Hydraulic Flow Sensor. ACS Applied Materials & Interfaces 2015, 7, 4631-4640. 117.Komkova, M. A.; Andreyev, E. A.; Nikitina, V. N.; Krupenin, V. A.; Presnov, D. E.; Karyakina, E. E.; Yatsimirsky, A. K.; Karyakin, A. A., Novel Reagentless Label-Free Detection Principle for Affinity Interactions Resulted in Conductivity Increase of Conducting Polymer. Electroanalysis 2015, 27, 2055-2062. 118.Li, G.; Li, Y.; Peng, H.; Chen, K., Synthesis of Poly(Anilineboronic Acid) Nanofibers for Electrochemical Detection of Glucose. Macromol. Rapid Commun. 2011, 32, 1195-1199. 119.Ma, Y.; Yang, X., One Saccharide Sensor Based on the Complex of the Boronic Acid and the Monosaccharide Using Electrochemical Impedance Spectroscopy. J. Electroanal. Chem. 2005, 580, 348-352. 120.Manesh, K. M.; Santhosh, P.; Gopalan, A.; Lee, K.-P., Electrospun Poly(Vinylidene Fluoride)/Poly(Aminophenylboronic Acid) Composite Nanofibrous Membrane as a Novel Glucose Sensor. Anal. Biochem. 2007, 360, 189-195. 121.Nikitina, V. N.; Kochetkov, I. R.; Karyakina, E. E.; Yatsimirsky, A. K.; Karyakin, A. A., Tuning Electropolymerization of Boronate-Substituted Anilines: Fluoride-Free Synthesis of the Advanced Affinity Transducer. Electrochem. Commun. 2015, 51, 121-124. 122.Şenel, M.; Nergiz, C.; Dervisevic, M.; Çevik, E., Development of Amperometric Glucose Biosensor Based on Reconstitution of Glucose Oxidase on Polymeric 3-Aminophenyl Boronic Acid Monolayer. Electroanalysis 2013, 25, 1194-1200. 123.Shoji, E.; Freund, M. S., Potentiometric Sensors Based on the Inductive Effect on the Pka of Poly(Aniline): A Nonenzymatic Glucose Sensor. J. Am. Chem. Soc. 2001, 123, 3383-3384. 124.Vasu, K. S.; Sridevi, S.; Sampath, S.; Sood, A. K., Non-Enzymatic Electronic Detection of Glucose Using Aminophenylboronic Acid Functionalized Reduced Graphene Oxide. Sens. Actuators. B Chem 2015, 221, 1209-1214. 125.Wu, Z.; Zhang, S.; Zhang, X.; Shu, S.; Chu, T.; Yu, D., Phenylboronic Acid Grafted Chitosan as a Glucose-Sensitive Vehicle for Controlled Insulin Release. J. Pharm. Sci. 2011, 100, 2278-2286. 126.Zhou, M.; Lu, F.; Jiang, X.; Wu, Q.; Chang, A.; Wu, W., Switchable Glucose-Responsive Volume Phase Transition Behavior of Poly(Phenylboronic Acid) Microgels. Polymer Chemistry 2015, 6, 8306-8318. 127.Rick, J.; Chou, T.-C., Amperometric Protein Sensor – Fabricated as a Polypyrrole, Poly-Aminophenylboronic Acid Bilayer. Biosens. Bioelectron. 2006, 22, 329-335. 128.Wang, J.-Y.; Chou, T.-C.; Chen, L.-C.; Ho, K.-C., Using Poly(3-Aminophenylboronic Acid) Thin Film with Binding-Induced Ion Flux Blocking for Amperometric Detection of Hemoglobin A1c. Biosens. Bioelectron. 2015, 63, 317-324. 129.Plesu, N.; Kellenberger, A.; Taranu, I.; Taranu, B. O.; Popa, I., Impedimetric Detection of Dopamine on Poly(3-Aminophenylboronic Acid) Modified Skeleton Nickel Electrodes. React. Funct. Polym. 2013, 73, 772-778. 130.Ali, S. R.; Ma, Y.; Parajuli, R. R.; Balogun, Y.; Lai, W. Y. C.; He, H., A Nonoxidative Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine. Anal. Chem. 2007, 79, 2583-2587. 131.Hu, L.; Han, S.; Liu, Z.; Parveen, S.; Yuan, Y.; Xu, G., A Versatile Strategy for Electrochemical Detection of Hydrogen Peroxide as Well as Related Enzymes and Substrates Based on Selective Hydrogen Peroxide-Mediated Boronate Deprotection. Electrochem. Commun. 2011, 13, 1536-1538. 132.Wang, C.; Zholudov, Y. T.; Nsabimana, A.; Xu, G.; Li, J., Sensitive and Selective Electrochemical Detection of Artemisinin Based on Its Reaction with P-Aminophenylboronic Acid. Anal. Chim. Acta 2016, 937, 39-42. 133.Liu, Q.; Xiao, K.; Wen, L.; Dong, Y.; Xie, G.; Zhang, Z.; Bo, Z.; Jiang, L., A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nanochannel. ACS Nano 2014, 8, 12292-12299. 134.Çiftçi, H.; Tamer, U., Electrochemical Determination of Iodide by Poly(3-Aminophenylboronic Acid) Film Electrode at Moderately Low Ph Ranges. Anal. Chim. Acta 2011, 687, 137-140. 135.Jamkratoke, M.; Ruangpornvisuti, V.; Tumcharern, G.; Tuntulani, T.; Tomapatanaget, B., A-D-a Sensors Based on Naphthoimidazoledione and Boronic Acid as Turn-on Cyanide Probes in Water. The Journal of Organic Chemistry 2009, 74, 3919-3922. 136.Deore, B.; Freund, M. S., Saccharide Imprinting of Poly(Aniline Boronic Acid) in the Presence of Fluoride. Analyst 2003, 128, 803-806. 137.Deore, B. A.; Freund, M. S., Self-Doped Polyaniline Nanoparticle Dispersions Based on Boronic Acid−Phosphate Complexation. Macromolecules 2009, 42, 164-168. 138.Deore, B. A.; Hachey, S.; Freund, M. S., Electroactivity of Electrochemically Synthesized Poly(Aniline Boronic Acid) as a Function of Ph: Role of Self-Doping. Chem. Mater. 2004, 16, 1427-1432. 139.Deore, B. A.; Yu, I.; Freund, M. S., A Switchable Self-Doped Polyaniline: Interconversion between Self-Doped and Non-Self-Doped Forms. J. Am. Chem. Soc. 2004, 126, 52-53. 140.Wang, F.; Zou, F.; Yu, X.; Feng, Z.; Du, N.; Zhong, Y.; Huang, X., Electrochemical Synthesis of Poly(3-Aminophenylboronic Acid) in Ethylene Glycol without Exogenous Protons. PCCP 2016, 18, 9999-10004. 141.McCreery, R. L., Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646-2687. 142.Yan, X.; Jia, Y.; Odedairo, T.; Zhao, X.; Jin, Z.; Zhu, Z.; Yao, X., Activated Carbon Becomes Active for Oxygen Reduction and Hydrogen Evolution Reactions. Chem. Commun. 2016, 52, 8156-8159. 143.Niu, X.; Shi, L.; Li, X.; Pan, J.; Gu, R.; Zhao, H.; Qiu, F.; Yan, Y.; Lan, M., Simple Anodization of Home-Made Screen-Printed Carbon Electrodes Makes Significant Activity Enhancement for Hydrogen Evolution: The Synergistic Effect of Surface Functional Groups, Defect Sites, and Hydrophilicity. Electrochim. Acta 2017, 235, 64-71. 144.Naohiro, K.; Kazuhisa, H., Fluorescence-Responsive H2po4− Receptor Based on Macrocyclic Boron Complex. Chem. Lett. 2006, 35, 536-537. 145.Cabell, L. A.; Monahan, M.-K.; Anslyn, E. V., A Competition Assay for Determining Glucose-6-Phosphate Concentration with a Tris-Boronic Acid Receptor. Tetrahedron Lett. 1999, 40, 7753-7756. 146.Cumba, L. R.; Foster, C. W.; Brownson, D. A. C.; Smith, J. P.; Iniesta, J.; Thakur, B.; do Carmo, D. R.; Banks, C. E., Can the Mechanical Activation (Polishing) of Screen-Printed Electrodes Enhance Their Electroanalytical Response? Analyst 2016, 141, 2791-2799. 147.Vishnu, N.; Kumar, A. S.; Pillai, K. C., Unusual Neutral Ph Assisted Electrochemical Polymerization of Aniline on a Mwcnt Modified Electrode and Its Enhanced Electro-Analytical Features. Analyst 2013, 138, 6296-6300. 148.Baskar, S.; Liao, C.-W.; Chang, J.-L.; Zen, J.-M., Electrochemical Synthesis of Electroactive Poly(Melamine) with Mechanistic Explanation and Its Applicability to Functionalize Carbon Surface to Prepare Nanotube–Nanoparticles Hybrid. Electrochim. Acta 2013, 88, 1-5. 149.Eftekhari, A.; Afshani, R., Electrochemical Polymerization of Aniline in Phosphoric Acid. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3304-3311. 150.Engblom, S. O., The Phosphate Sensor. Biosens. Bioelectron. 1998, 13, 981-994. 151.Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P., Rational Design of a Fluorescence-Turn-on Sensor Array for Phosphates in Blood Serum. Angew. Chem. Int. Ed. 2007, 46, 7849-7852. 152.Mak, W. C.; Chan, C.; Barford, J.; Renneberg, R., Biosensor for Rapid Phosphate Monitoring in a Sequencing Batch Reactor (Sbr) System. Biosens. Bioelectron. 2003, 19, 233-237. 153.Cheng, W.-L.; Sue, J.-W.; Chen, W.-C.; Chang, J.-L.; Zen, J.-M., Activated Nickel Platform for Electrochemical Sensing of Phosphate. Anal. Chem. 2010, 82, 1157-1161. 154.Lee, W. H.; Lee, J.-H.; Bishop, P. L.; Papautsky, I., Biological Application of Micro-Electro Mechanical Systems Microelectrode Array Sensors for Direct Measurement of Phosphate in the Enhanced Biological Phosphorous Removal Process. Water Environ. Res 2009, 81, 748-754. 155.Murphy, J.; Riley, J. P., A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31-36. 156.Quintana, J. B.; Rodil, R.; Reemtsma, T., Determination of Phosphoric Acid Mono- and Diesters in Municipal Wastewater by Solid-Phase Extraction and Ion-Pair Liquid Chromatography−Tandem Mass Spectrometry. Anal. Chem. 2006, 78, 1644-1650. 157.Colina, M.; Gardiner, P. H. E., Simultaneous Determination of Total Nitrogen, Phosphorus and Sulphur by Means of Microwave Digestion and Ion Chromatography. J. Chromatogr. A 1999, 847, 285-290. 158.Cheng, W.-L.; Chang, J.-L.; Su, Y.-L.; Zen, J.-M., Facile Fabrication of Zirconia Modified Screen-Printed Carbon Electrodes for Electrochemical Sensing of Phosphate. Electroanalysis 2013, 25, 2605-2612. 159.Mishra, R. K.; Hubble, L. J.; Martín, A.; Kumar, R.; Barfidokht, A.; Kim, J.; Musameh, M. M.; Kyratzis, I. L.; Wang, J., Wearable Flexible and Stretchable Glove Biosensor for on-Site Detection of Organophosphorus Chemical Threats. ACS Sensors 2017, 2, 553-561. 160.Warwick, C.; Guerreiro, A.; Gomez-Caballero, A.; Wood, E.; Kitson, J.; Robinson, J.; Soares, A., Conductance Based Sensing and Analysis of Soluble Phosphates in Wastewater. Biosens. Bioelectron. 2014, 52, 173-179. 161.Rahman, M. A.; Park, D.-S.; Chang, S.-C.; McNeil, C. J.; Shim, Y.-B., The Biosensor Based on the Pyruvate Oxidase Modified Conducting Polymer for Phosphate Ions Determinations. Biosens. Bioelectron. 2006, 21, 1116-1124. 162.Berchmans, S.; Issa, T. B.; Singh, P., Determination of Inorganic Phosphate by Electroanalytical Methods: A Review. Anal. Chim. Acta 2012, 729, 7-20. 163.Law al, A. T.; Adeloju, S. B., Progress and Recent Advances in Phosphate Sensors: A Review. Talanta 2013, 114, 191-203. 164.Warwick, C.; Guerreiro, A.; Soares, A., Sensing and Analysis of Soluble Phosphates in Environmental Samples: A Review. Biosens. Bioelectron. 2013, 41, 1-11. 165.Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaï, F. P., Fluoride Ion Complexation and Sensing Using Organoboron Compounds. Chem. Rev. 2010, 110, 3958-3984. 166.Tharmaraj, V.; Pitchumani, K., D-Glucose Sensing by (E)-(4-((Pyren-1-Ylmethylene)Amino)Phenyl) Boronic Acid Via a Photoinduced Electron Transfer (Pet) Mechanism. RSC. Adv. 2013, 3, 11566-11570. 167.Wu, X.; Li, Z.; Chen, X.-X.; Fossey, J. S.; James, T. D.; Jiang, Y.-B., Selective Sensing of Saccharides Using Simple Boronic Acids and Their Aggregates. Chem. Soc. Rev. 2013, 42, 8032-8048. 168.Raj, M. A.; John, S. A., Fabrication of Electrochemically Reduced Graphene Oxide Films on Glassy Carbon Electrode by Self-Assembly Method and Their Electrocatalytic Application. The Journal of Physical Chemistry C 2013, 117, 4326-4335. 169.Fabre, B.; Hauquier, F., Boronic Acid-Functionalized Oxide-Free Silicon Surfaces for the Electrochemical Sensing of Dopamine. Langmuir 2017, 33, 8693-8699. 170.Qu, K.; Zheng, Y.; Zhang, X.; Davey, K.; Dai, S.; Qiao, S. Z., Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano 2017, 11, 7293-7300.
|