跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莫西儒
研究生(外文):Thiruppathi Murugan
論文名稱:碳氧官能基與硼酸官能基化網版印刷碳電極在電化學感測器上之研究
論文名稱(外文):Oxygen and boronic acid functionalized screen printed carbon electrode for electrochemical sensors
指導教授:曾志明曾志明引用關係
指導教授(外文):Jyh-Myng Zen
口試委員:魏國佐鄭淑華蔡惠燕吳靖宙
口試委員(外文):Guor-Tzo WeiShu-Hua ChengHweiyan TsaiChing-Chou Wu
口試日期:2018-01-08
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:118
中文關鍵詞:網版印刷碳電極多環芳香烴硼酸二聚體聚合物次氯酸鹽氟化物磷酸鹽
外文關鍵詞:Screen printed carbon electrodePAHsboronic aciddimerpolymerhypochloritesugarfluoridephosphate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
This thesis describes the oxygen, boronic acid functionalization of screen printed carbon electrode (SPCE) and utilization of those functional moieties for versatile sensor applications. In-situ generated oxygen functionalities along with edge/defect sites of preanodized SPCE (SPCE*) is used for metal free oxidation of poly aromatic hydrocarbons (PAHs). In later sections, we report preparation of stimuli responsive boronic acid based probes on SPCE via both electrochemical as well as chemical routes. In the electrochemical method, 4-Aminophenylboronic acid (4-APBA) has been dimerized and polymerized on SPCE and SPCE* with or without fluoride. The dimer-modified electrode possesses dual functionalities (R-N=N-R' and -B(OH)2) which makes its suitable for selective detection of hypochlorite (i.e., free chlorine), fluoride and sugar molecules, respectively. In chemical method, a new approach for rapid oxidative polymerization of aminophenylboronic acid is described via reduction of surface oxygen functional groups of SPCE* and boron-phosphate complexation. The resulting polymer possesses nanofiber morphology with multiple functional moieties such as imine, azo and boronic acid (-NH+-, -N=N- and -B(OH)2. This has been utilized for direct electro-catalytic detection of Free-Cl, NADH and indirect detection of fluoride ion and fructose by using Fe(CN)63-/4- as redox probe. In continuation of above studies, a voltammetric sensor for determination of phosphate anion (Pi) was developed on the screen printed carbon electrode/anthracene boronic acid (SPCE/ANBA) modified electrode. The complexation of ANBA with Pi through specific BA-Pi binding could cause the quinone formation, which was utilized for Pi detection.
CHAPTER 1 1
1.1. Research goals and thesis organization 1
1.2. General introduction of electrochemistry 5
1.3. Electrochemical cell 5
1.4. Thermodynamics of cell potentials 6
1.5. The faradaic and non-faradaic reaction 7
1.6. Voltammetry 8
1.7. Chemically modified electrodes (CMEs) 9
1.7.1. Electrode activation 10
1.7.2. Preanodization (Oxygen functionalization) 11
1.7.3. Effect of preanodization medium 11
1.7.4 Boronic acid functionalization 12
1.8. Experimental Section 15
1.8.1 Electrodes and instrumentation 15
CHAPTER 2 17
Role of defect sites and oxygen functionalities on preanodized screen printed carbon electrode for adsorption and oxidation of polyaromatic hydrocarbons 17
2.1. Introduction 17
2.2. Materials and methods 18
2.3. Results and discussion 18
2.4. Conclusion 28
CHAPTER 3 29
A dually functional 4-aminophenylboronic acid dimer for voltammetric detection of hypochlorite, glucose and fructose 29
3.1. Introduction 29
3.2. Experimental 30
3.2.1. Materials and methods 30
3.2.2. Electrode preparation 31
3.3 Results and discussion 31
3.3.1 Electropolymerization and dimerization of 4-aminophenylboronic acid 31
3.3.2 Scan rate and pH study 36
3.3.3 Detection of sugar molecules 37
3.3.4 Detection of hypochlorite 40
3.3.5 Real sample analysis 46
3.4 Conclusion 48
CHAPTER 4 49
Electrochemical detection of fluoride ions using 4-aminophenyl boronic acid dimer modified electrode. 49
4.1 Introduction 49
4.2 Chemicals and Instrumentation 51
4.3 Results and discussions 52
4.3.1 Electrode preparation and characterization by CV 52
4.3.2 Surface characterization of dimer and polymer on AuSPE by SEM and UV. 54
4.3.3 Functional group characterization by XPS 56
4.3.4 Detection of fluoride ions at SPCE*-APBAD modified electrode 56
4.3.5 Density Functional Theory (DFT) calculations 58
4.3.6 Mechanism of fluoride detection 60
4.3.7 FIA detection of Fluoride 61
4.3.8 Real sample analysis 64
4.4. Conclusions 66
CHAPTER 5 67
Fluoride-free synthesis of poly(aminophenylboronic acid) nanofiber on carbon electrode for sensor applications 67
5.1 Introduction 67
5.2 Materials and methods 69
5.2.1 Chemicals 69
5.2.2 Instrumentation 69
5.2.3 Electrode preparation 70
5.3. Results and discussion 70
5.3.1 Electrochemical behavior of APBA modified electrodes 70
5.3.2 Investigating role of oxygen functionalities 72
5.3.3 DFT calculations 75
5.3.4 Effect of preanodization time and phosphate concentration 77
5.3.5 Characterization of PAPBA modified electrode by SEM 78
5.3.6 Characterization by UV-visible and X-ray photoelectron spectroscopy 80
5.3.7 Method validation by using 3-APBA polymerization on SPCE* 81
5.3.8 Sensor applications 82
5.4 Conclusion 84
CHAPTER 6 85
Anthracene Boronic Acid Functionalization of Activated Carbon Electrode: A Strategy for Direct Phosphate Voltammetric Detection using Quinone Formation. 85
6.1 Introduction 85
6.2. Materials and methods 87
6.2.1 Chemicals 87
6.2.2 Instrumentation 88
6.2.3 Electrode preparation 88
6.2.4 Real sample preparation 89
6.3 Results and discussions 89
6.3.1 Electrochemical behavior of AN, ANBA and ANBA-Pi modified SPCE 89
6.3.2 The role of oxygen functionalities of electrode 90
6.3.3 Characterization of SPCE/AQBA-Pi complex by X-ray photoelectron spectroscopy 91
6.3.4 Density Functional Theory (DFT) calculations of ANBA and ANBA-Pi 92
6.3.5 Determination of Pi by SWV 94
6.3.6 Real sample analysis 96
6.4 Conclusions 97
Chapter 7 98
Over all conclusions 98
List of publications 100
References 101


List of Figures
Figure 1. 1 Schematic representation of AN oxidation on SPCE 2
Figure 1. 2 Schematic representation of APBA dimerization on SPCE* 2
Figure 1. 3 Schematic representation of fluoride detection by using APBAD modified SPCE 3
Figure 1. 4 Schematic representation of APBA polymerization on SPCE* 3
Figure 1. 5 Schematic representation of quinone formation in presence and absence of phosphate. 4
Figure 1. 6 The number of boronic acid based papers published from 2000 (data obtained from Reaxys) 13
Figure 1. 7 Screen printed carbon electrode 15
Figure 1. 8 Construction of SF100 flow cell with three electrode system Reference electrode (A), Working electrode (SPCE) (B), Counter electrode (C), Main body of SF100 (D), Inlet (E), Outlet (F) and pictorial representation of flow injection analysis system. 16

Figure 2. 1 Cyclic voltammograms of AN oxidation at SPCE (A), and PBS-SPCE* (B), Corresponding cyclic voltammograms after medium exchange in 0.1 M, pH 7 PBS (C&D). 19
Figure 2. 2 Cyclic voltammograms scan rate study in pH 7 PBS and pH study AQ modified SPCE* (A &C), corresponding graphs (B&D). 20
Figure 2. 3 Raman spectra of SPCE and SPCE* (A), Raman image of defect band intensity (B). 21
Figure 2. 4 Raman spectra of various SPCE* (A), Plots of amount of defect (ID/IG) generated from preanodization in various electrolytes versus their corresponding surface coverage (B). 21
Figure 2. 5 C1s-XPS for various preanodized SPCE electrodes in 0.1 M, HCl (A), pH 7 PBS (B), H2SO4 (C), HNO3 (D). 22
Figure 2. 6 Carbonyl group generated from preanodization in various electrolytes versus their corresponding surface coverage, comparison table and AQ surface coverage bar diagram of various SPCE*. 23
Figure 2. 7 Raman spectra (A), AN oxidation CVs (B), and plot of amount of defect (ID/IG) generated versus their corresponding surface coverage against different preanodization time (C). 24
Figure 2. 8 Raman spectra of SPCE* before and after ACN coating 24
Figure 2. 9 Cyclic voltammogram of electrochemical reduction of SPCE* (A), Raman and XPS spectra of (a) SPCE*, (b) ERSPCE* (B&C), CVs of AN electrochemical oxidation behavior on ER-SPCE* under the restricted and extended potential window in 0.1 M, pH 7 PBS (D). 25
Figure 2. 10 LC–MS spectrum of AN obtained before/after electro-oxidation from different electrodes. 26
Figure 2. 11 Cyclic voltammograms of naphthalene (Nph) and tetracene (TC) oxidation on SPCE (A&B), (dotted line) and SPCE* (solid line) after medium exchange in 0.1 M, pH 7 PBS , dashed line obtained on SPCE* without Nph and TC. 27

Figure 3. 1 Cyclic voltammograms of 4-aminophenylboronic acid in the absence/presence of 20 mM F ─ ions at SPCE and SPCE* in 0.1 M HCl (A), Resolved N1s XPS spectra of as-formed electrode in the absence of F ─ ions at SPCE* (B). 32
Figure 3. 2 Schematic representation of the dimer/polymer preparation of the proposed system. 33
Figure 3. 3 Electrochemical dimerization of 1 mM 4-aminophenylboronic acid in the 0.1 M, pH 7 PBS at SPCE* 34
Figure 3. 4 Stability of dimer modified SPCE* electrode in 0.1 M, pH 7 PBS. 35
Figure 3. 5 Scan rate study of dimer modified electrode in 0.1 M, pH 7 PBS, Scan rate varied between 0.01 and 0.25 V/s (A), Corresponding Laviron's plot (B), pH study of dimer modified electrode in range between pH 2 and pH 10 (C), Corresponding pH verses E1/2 plot (D). 37
Figure 3. 6 Cyclic voltammograms of the dimer-modified electrode in the absence/presence of 1 mM fructose in 5 mM Fe(CN)64–/3- containing 0.1 M phosphate buffer solution at pH 5 (A), pH 7.4 (B), pH 9 (C). 38
Figure 3. 7 Differential pulse voltammograms and the corresponding calibration plot obtained with the dimer-modified electrode upon addition of increasing concentrations fructose (A) and glucose (B) in 0.1 M, pH 7 PBS containing 5 mM Fe(CN)64–/3–, Observed current changes in presence of 100 µM fructose or Glucose with/without 200 µM common AA and UA interferents (C) [error bar diagram represents the standard deviations (n=3) of current change]. 39
Figure 3. 8 Differential pulse voltammograms of dimer-modified electrode in the presence of 100 µM fructose/glucose with/without 200 μM AA and UA. 40
Figure 3. 9 Cyclic voltammograms of the dimer-modified electrode in the absence/presence of 2 mM hypochlorite in 0.1 M pH 4.8 (A), pH 6 (B), pH 7 (C) and pH 8 (D) phosphate buffer solution. 42
Figure 3. 10 Chronoamperometric results with different concentration of hypochlorite in 0.1 M, pH 7 phosphate buffer. 43
Figure 3. 11 FIA system coupled with Zensor ECD 100 electrochemical detector and SF 100 flow cell for FIA responses of hypochlorite and the calibration curve at the dimer-modified electrode (A). FIA responses of (a) hypochlorite (b) H2O2, (c) EtOH, (d) urea, (e) Cl–, (f) NO2–, (g) S2O42–, (h) CO32–, (i) NO3–, (j) hypochlorite, (k) ClO4–, (l) SO42–, (m) Cu2+, (n) Zn2+, (o) Co2+, (p) Fe2+, (q) saturated-O2, (r) Na+, (s) K+, (t) hypochlorite and (u) F– (B). FIA responses of 40 continuous injections of 1 mM hypochlorite (C). 44
Figure 3. 12 Flow rate and applied potential optimization for FIA detection of hypochlorite 45
Figure 3. 13 Detection of hypochlorite in swimming pool water. 46
Figure 3. 14 Detection hypochlorite in swimming pool water by standard DPD colorimetric method (A), Corresponding calibration plot (B). 47

Figure 4. 1 Schematic representation of fluorophenylboronate complex formation in pH 3 phosphate electrolyte for FIA detection of fluoride ion. 51
Figure 4. 2 Cyclic voltammetry response of bare SPCE (a), SPCE-APBAD (b) in 5 mM ferric cyanide solution and inset electrodimerization of 4-APBA in 0.1 M, HCl at SPCE (a’), SPCE* (b’). 53
Figure 4. 3 Electrodimerization (A) and Electropolymerization (B) of 4-APBA on AuSPE. 54
Figure 4. 4 SEM images of AuSPE (A), AuSPE-APBAD (B), AuSPE-PAPBA (C). 55
Figure 4. 5 UV absorption spectrum of bare AuSPE and AuSPE-APBAD (A), APBA monomer and polymer in water (B). 55
Figure 4. 6 XPS spectrum of SPCE*-APBAD (inset deconvoluted B-1S spectrum). 56
Figure 4. 7 Potentiometric detection of fluoride ion in 0.1 M, pH 3 phosphate electrolyte, Each spike contains 1 mM (a-b), 2mM (b-c) and 5mM (c-d) (inset- calibration graph). 57
Figure 4. 8 Cyclic voltammogram responses of SPCE*-APBAD under different concentrations of fluoride ion in 0.1 M, pH 3 phosphate electrolyte. 57
Figure 4. 9 DFT optimized geometries for APBAD and APBAD+Fluoride (blue colour:N, dark grey:C, grey:H, red:O, pink:B, sky blue:F). 59
Figure 4. 10 HOMO and LUMO molecular orbital diagram of APBAD and APBAD+Fluoride complex. 59
Figure 4. 11 The total electronic density diagram of APBAD and APBAD+Fluoride complex 60
Figure 4. 12 Proposed mechanism for FIA detection of fluoride ion. 60
Figure 4. 13 Detection of fluoride ion by FIA method at SPCE-APBAD (A), SPCE*-APBAD (B). 62
Figure 4. 14 Flow rate and potential optimization of FIA fluoride ion detection. 62
Figure 4. 15 Interference (A) and repeatability study (B) at SPCE*-APBAD by FIA. 63
Figure 4. 16 Fluoride ion detection in real samples by FIA drinking water (A), tap water (B), tooth paste (C). 65

Figure 5. 1 Cyclic voltammograms of SPCE*/APBAHCl and SPCE*/APBAPBS in 0.1 M, pH 7 PBS (A&B) and dashed line represents CV of SPCE*, Corresponding reblank CVs in 0.1 M, HCl (C&D). 71
Figure 5. 2 Cyclic voltammograms of SPCE*/APBAH3PO4 (A), SPCE*/APBAPBS pH6 (B), SPCE*/APBAPBS pH8 (C) in 0.1 M, HCl at a scan rate 100 mVs-1. 72
Figure 5. 3 Electrochemical reduction CV of SPCE* in N2 saturated 0.1 M, pH 7 PBS (A), Raman spectra for SPCE* and ERSPCE* (B). 73
Figure 5. 4 Cyclic voltammograms of SPCE*/APBAPBS, ERSPCE*/APBAPBS and OPSPCE/APBAPBS in 0.1 M, pH 7 PBS (A&B). 74
Figure 5. 5 Cyclic voltammogram of SPCE/APBAPBS in 0.1 M, pH 7 PBS at a scan rate 100 mVs-1. 75
Figure 5. 6 The optimized structure and HOMO-LUMO molecular orbital diagram of 4-APBA and 4-APBA+phosphate complex. 76
Figure 5. 7 Total electron density image of APBA and APBA+phosphate complex. 76
Figure 5. 8 CVs of PAPBA formation at various preanodization time (A) and phosphate concentration (C) in 0.1 M, pH 7 PBS, between -0.5 V and + 0.5 V at a scan rate 50 mV/s, Their corresponding current verses preanodization time plot (B) and current verses phosphate concentration plot (D). 78
Figure 5. 9 SEM images of polished SPCE (A&B) and SPCE*/PAPBAPBS modified electrode at different resolutions (C&D). 79
Figure 5. 10 SEM image of SPCE*/APBAHCl modified electrode. 80
Figure 5. 11 UV-visible spectra of APBA monomer and ethanol extract of PAPBA (A), XPS spectra of SPCE*/APBAPBS modified electrode, corresponding N1s resolved spectra (inset) (B). 81
Figure 5. 12 Cyclic voltammograms of SPCE*/3-APBAHCl and SPCE*/3-APBAPBS in 0.1 M, pH 7 PBS (A) and after medium exchange to 0.1 M, HCl (B). 82
Figure 5. 13 Cyclic voltammograms of the SPCE*/ APBAPBS in the absence/presence of 2 mM Fructose in 0.1 M, pH 7 PBS containing 5 mM Fe(CN)64–/3–(A), in the absence/presence of 1 mM Fluoride in 0.1 M, pH 3 PBS containing 5 mM Fe(CN)64–/3– (B), Electrocatalytic detection CVs of 2 mM hypochlorite and 1 mM NADH Cyclic voltammograms in 0.1 M, pH 7 PBS respectively (C&D), scan rate 50 mVs-1. 83

Figure 6. 1 Schematic representation of SPCE/ANBA modified electrode in presence and absence of phosphate. 87
Figure 6. 2 Cyclic voltammogram (A) and Square wave voltammogram (B) of SPCE/ANBA (a), SPCE-AN (b) without phosphate and SPCE/ANBA (c) with 100 mM Phosphate in 0.1 M, pH 7 Acetate electrolyte. 90
Figure 6. 3 ANBA oxidation on SPCE* and ERSPCE* in 0.1 M, pH 7 Acetate electrolyte. 90
Figure 6. 4 XPS spectrum of SPCE/AQBA-Pi complex electrode (inset deconvoluted P-2P, B-1S and C-1S spectrums). 91
Figure 6. 5 DFT optimized geometries and molecular orbital diagrams of ANBA and ANBA-Pi complex. 93
Figure 6. 6 Total electron density diagram of ANBA and ANBA-Pi. 93
Figure 6. 7 Relative AQ current change in different electrolyte media. 94
Figure 6. 8 Square wave voltammogram (A) of (a) SPCE, (b) SPCE/ANBA, SPCE/ANBA with (c) 10 µM, (d) 30 µM, (e) 50 µM, (f) 100 µM, (g) 500 µM, (h) 1 mM, (i) 5 mM, (j) 10 mM, (k) 50 mM, (l) 100 mM phosphate in 0.1 M HCl, Corresponding calibration plot (B) and Interference study (C) at SPCE/ANBA with 1 mM Pi/ various interferants. 95
Figure 6. 9 Real sample analysis of Pi in tap water and lake water. 97

List of Tables
Table 3. 1 Comparison of hypochlorite detection at different chemically modified electrode. 45
Table 3. 2 Recovery in swimming pool water. 47

Table 4. 1 Comparison of fluoride ion detection with other reported boronic acid modified electrodes. 64
Table 4. 2 Real sample fluoride ion detection recovery data. 66

Table 6. 1 Real sample analysis of Pi in tap and lake water. 96
References
1.Sudhakara Prasad, K.; Muthuraman, G.; Zen, J.-M., The Role of Oxygen Functionalities and Edge Plane Sites on Screen-Printed Carbon Electrodes for Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid. Electrochem. Commun. 2008, 10, 559-563.
2.Thiyagarajan, N.; Chang, J.-L.; Senthilkumar, K.; Zen, J.-M., Disposable Electrochemical Sensors: A Mini Review. Electrochem. Commun. 2014, 38, 86-90.
3.Thiruppathi, M.; Thiyagarajan, N.; Gopinathan, M.; Zen, J.-M., Role of Defect Sites and Oxygen Functionalities on Preanodized Screen Printed Carbon Electrode for Adsorption and Oxidation of Polyaromatic Hydrocarbons. Electrochem. Commun. 2016, 69, 15-18.
4.Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications; John Wiely & Sons: Canada, 1980.
5.Harris, D. C., Quantitative Chemical Analysis, 8 ed.; W. H. Freeman and Company, 2010.
6.Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R., Fundamentals of Analytical Chemistry, 8 ed.; David Harris: Canada, 2004.
7.Lane, R. F.; Hubbard, A. T., Electrochemistry of Chemisorbed Molecules. I. Reactants Connected to Electrodes through Olefinic Substituents. The Journal of Physical Chemistry 1973, 77, 1401-1410.
8.Murray, R. W., Chemically Modified Electrodes. Acc. Chem. Res. 1980, 13, 135-141.
9.Zen, J.-M.; Senthil Kumar, A.; Tsai, D.-M., Recent Updates of Chemically Modified Electrodes in Analytical Chemistry. Electroanalysis 2003, 15, 1073-1087.
10.Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M., Adsorption of Phenolic Compounds by Activated Carbon—a Critical Review. Chemosphere 2005, 58, 1049-1070.
11.Guo, Y.; Kaplan, S.; Karanfil, T., The Significance of Physical Factors on the Adsorption of Polyaromatic Compounds by Activated Carbons. Carbon 2008, 46, 1885-1891.
12.Jia, Y.; Demopoulos, G. P., Adsorption of Silver onto Activated Carbon from Acidic Media: Nitrate and Sulfate Media. Industrial & Engineering Chemistry Research 2003, 42, 72-79.
13.Chen, P.; Fryling, M. A.; McCreery, R. L., Electron Transfer Kinetics at Modified Carbon Electrode Surfaces: The Role of Specific Surface Sites. Anal. Chem. 1995, 67, 3115-3122.
14.Chen, P.; McCreery, R. L., Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification. Anal. Chem. 1996, 68, 3958-3965.
15.McDermott, M. T.; McCreery, R. L., Scanning Tunneling Microscopy of Ordered Graphite and Glassy Carbon Surfaces: Electronic Control of Quinone Adsorption. Langmuir 1994, 10, 4307-4314.
16.Han, X.; Lin, H.; Zheng, Y., The Role of Oxygen Functional Groups in the Adsorption of Heteroaromatic Nitrogen Compounds. J. Hazard. Mater. 2015, 297, 217-223.
17.Zhang, G.; Kirkman, P. M.; Patel, A. N.; Cuharuc, A. S.; McKelvey, K.; Unwin, P. R., Molecular Functionalization of Graphite Surfaces: Basal Plane Versus Step Edge Electrochemical Activity. J. Am. Chem. Soc. 2014, 136, 11444-11451.
18.Haghseresht, F.; Finnerty, J. J.; Nouri, S.; Lu, G. Q., Adsorption of Aromatic Compounds onto Activated Carbons: Effects of the Orientation of the Adsorbates. Langmuir 2002, 18, 6193-6200.
19.McDermott, M. T.; Kneten, K.; McCreery, R. L., Anthraquinonedisulfonate Adsorption, Electron-Transfer Kinetics, and Capacitance on Ordered Graphite Electrodes: The Important Role of Surface Defects. The Journal of Physical Chemistry 1992, 96, 3124-3130.
20.Cho, H.-H.; Smith, B. A.; Wnuk, J. D.; Fairbrother, D. H.; Ball, W. P., Influence of Surface Oxides on the Adsorption of Naphthalene onto Multiwalled Carbon Nanotubes. Environ. Sci. Technol 2008, 42, 2899-2905.
21.McCreery, R. L., Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev 2008, 108, 2646-2687.
22.Engstrom, R. C., Electrochemical Pretreatment of Glassy Carbon Electrodes. Anal. Chem. 1982, 54, 2310-2314.
23.Alsmeyer, D. C.; McCreery, R. L., In Situ Raman Monitoring of Electrochemical Graphite Intercalation and Lattice Damage in Mild Aqueous Acids. Anal. Chem. 1992, 64, 1528-1533.
24.Moreno-Castilla, C.; Ferro-Garcia, M.; Joly, J.; Bautista-Toledo, I.; Carrasco-Marin, F.; Rivera-Utrilla, J., Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir 1995, 11, 4386-4392.
25.Chiu, M.-H.; Wei, W.-C.; Zen, J.-M., The Role of Oxygen Functionalities at Carbon Electrode to the Electrogenerated Chemiluminescence of Ru (Bpy) 3 2+. Electrochem. Commun. 2011, 13, 605-607.
26.Yan, J.; Springsteen, G.; Deeter, S.; Wang, B., The Relationship among Pka, Ph, and Binding Constants in the Interactions between Boronic Acids and Diols—It Is Not as Simple as It Appears. Tetrahedron 2004, 60, 11205-11209.
27.Springsteen, G.; Wang, B., A Detailed Examination of Boronic Acid–Diol Complexation. Tetrahedron 2002, 58, 5291-5300.
28.Tan, L.; Wang, B.; Feng, H., Comparative Studies of Graphene Oxide and Reduced Graphene Oxide as Carbocatalysts for Polymerization of 3-Aminophenylboronic Acid. RSC. Adv. 2013, 3, 2561-2565.
29.Wang, Z.; Shang, K.; Dong, J.; Cheng, Z.; Ai, S., Electrochemical Immunoassay for Subgroup J of Avian Leukosis Viruses Using a Glassy Carbon Electrode Modified with a Film of Poly (3-Thiophene Boronic Acid), Gold Nanoparticles, Graphene and Immobilized Antibody. Microchim. Acta 2012, 179, 227-234.
30.Shoji, E.; Freund, M. S., Potentiometric Saccharide Detection Based on the Pka Changes of Poly(Aniline Boronic Acid). J. Am. Chem. Soc. 2002, 124, 12486-12493.
31.Wu, S.; Han, T.; Guo, J.; Cheng, Y., Poly(3-Aminophenylboronic Acid)-Reduced Graphene Oxide Nanocomposite Modified Electrode for Ultrasensitive Electrochemical Detection of Fluoride with a Wide Response Range. Sens. Actuators. B Chem 2015, 220, 1305-1310.
32.Çiftçi, H.; Oztekin, Y.; Tamer, U.; Ramanavicine, A.; Ramanavicius, A., Development of Poly(3-Aminophenylboronic Acid) Modified Graphite Rod Electrode Suitable for Fluoride Determination. Talanta 2014, 126, 202-207.
33.Nicolas, M.; Fabre, B.; Marchand, G.; Simonet, J., New Boronic-Acid- and Boronate-Substituted Aromatic Compounds as Precursors of Fluoride-Responsive Conjugated Polymer Films. Eur. J. Org. Chem. 2000, 2000, 1703-1710.
34.Morita, K.; Hirayama, N.; Imura, H.; Yamaguchi, A.; Teramae, N., Grafting of Phenylboronic Acid on a Glassy Carbon Electrode and Its Application as a Reagentless Glucose Sensor. J. Electroanal. Chem. 2011, 656, 192-197.
35.Lapinsonnière, L.; Picot, M.; Poriel, C.; Barrière, F., Phenylboronic Acid Modified Anodes Promote Faster Biofilm Adhesion and Increase Microbial Fuel Cell Performances. Electroanalysis 2013, 25, 601-605.
36.Lawrence, K.; Nishimura, T.; Haffenden, P.; Mitchels, J. M.; Sakurai, K.; Fossey, J. S.; Bull, S. D.; James, T. D.; Marken, F., Pyrene-Anchored Boronic Acid Receptors on Carbon Nanoparticle Supports: Fluxionality and Pore Effects. New J. Chem. 2013, 37, 1883-1888.
37.Takahashi, S.; Anzai, J.-i., Phenylboronic Acid Monolayer-Modified Electrodes Sensitive to Sugars. Langmuir 2005, 21, 5102-5107.
38.Li, M.; Zhu, W.; Marken, F.; James, T. D., Electrochemical Sensing Using Boronic Acids. Chem. Commun. 2015, 51, 14562-14573.
39.Armstrong, B.; Hutchinson, E.; Unwin, J.; Fletcher, T., Lung Cancer Risk after Exposure to Polycyclic Aromatic Hydrocarbons: A Review and Meta-Analysis. Environ. Health Perspect. 2004, 112, 970-978.
40.Barathi, P.; Kumar, A. S., Facile Electrochemical Oxidation of Polyaromatic Hydrocarbons to Surface-Confined Redox-Active Quinone Species on a Multiwalled Carbon Nanotube Surface. Chemistry – A European Journal 2013, 19, 2236-2241.
41.Chu, S. N.; Sands, S.; Tomasik, M. R.; Lee, P. S.; McNeill, V. F., Ozone Oxidation of Surface-Adsorbed Polycyclic Aromatic Hydrocarbons: Role of Pah−Surface Interaction. J. Am. Chem. Soc. 2010, 132, 15968-15975.
42.Clough, R. L., .Gamma.-Radiation-Oxidation of Polycyclic Aromatic Hydrocarbons: Involvement of Singlet Oxygen. J. Am. Chem. Soc. 1980, 102, 5242-5245.
43.Hammel, K. E., Mechanisms for Polycyclic Aromatic Hydrocarbon Degradation by Ligninolytic Fungi. Environ. Health Perspect. 1995, 103, 41-43.
44.Jonsson, S.; Persson, Y.; Frankki, S.; van Bavel, B.; Lundstedt, S.; Haglund, P.; Tysklind, M., Degradation of Polycyclic Aromatic Hydrocarbons (Pahs) in Contaminated Soils by Fenton's Reagent: A Multivariate Evaluation of the Importance of Soil Characteristics and Pah Properties. J. Hazard. Mater. 2007, 149, 86-96.
45.Paddon, C. A.; Banks, C. E.; Davies, I. G.; Compton, R. G., Oxidation of Anthracene on Platinum Macro- and Micro-Electrodes: Sonoelectrochemical, Cryoelectrochemical and Sonocryoelectrochemical Studies. Ultrason. Sonochem. 2006, 13, 126-132.
46.Rubio-Clemente, A.; Torres-Palma, R. A.; Peñuela, G. A., Removal of Polycyclic Aromatic Hydrocarbons in Aqueous Environment by Chemical Treatments: A Review. Sci. Total Environ. 2014, 478, 201-225.
47.Subramanian, P.; Murthy, M. S., Mechanism of Vapor-Phase Oxidation of Anthracene over Vanadium Pentoxide Catalyst. Industrial & Engineering Chemistry Process Design and Development 1974, 13, 112-115.
48.Theodoridou, E., Catalytic Reactivity of Carbon-Fibre Supported Cerium Ions in Electro-Oxidations. Synth. Met. 1986, 16, 87-92.
49.Xiong, L.; Batchelor-McAuley, C.; Gonçalves, L. M.; Rodrigues, J. A.; Compton, R. G., The Indirect Electrochemical Detection and Quantification of DNA through Its Co-Adsorption with Anthraquinone Monosulphonate on Graphitic and Multi-Walled Carbon Nanotube Screen Printed Electrodes. Biosens. Bioelectron. 2011, 26, 4198-4203.
50.Convey, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications.; Kluwer Academic Plenum Publishers: New York, 1999, p p.698.
51.Cui, G.; Yoo, J. H.; Lee, J. S.; Yoo, J.; Uhm, J. H.; Cha, G. S.; Nam, H., Effect of Pre-Treatment on the Surface and Electrochemical Properties of Screen-Printed Carbon Paste Electrodes. Analyst 2001, 126, 1399-1403.
52.Wang, J.; Pedrero, M.; Sakslund, H.; Hammerich, O.; Pingarron, J., Electrochemical Activation of Screen-Printed Carbon Strips. Analyst 1996, 121, 345-350.
53.Neumann, C. C. M.; Batchelor-McAuley, C.; Downing, C.; Compton, R. G., Anthraquinone Monosulfonate Adsorbed on Graphite Shows Two Very Different Rates of Electron Transfer: Surface Heterogeneity Due to Basal and Edge Plane Sites. Chemistry – A European Journal 2011, 17, 7320-7326.
54.Chang, J.-L.; Chang, K.-H.; Hu, C.-C.; Cheng, W.-L.; Zen, J.-M., Improved Voltammetric Peak Separation and Sensitivity of Uric Acid and Ascorbic Acid at Nanoplatelets of Graphitic Oxide. Electrochem. Commun. 2010, 12, 596-599.
55.Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A., General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 163106.
56.Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R., Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. PCCP 2007, 9, 1276-1290.
57.Li, H.; Zhu, S.; Cheng, T.; Wang, S.; Zhu, B.; Liu, X.; Zhang, H., Binary Boronic Acid-Functionalized Attapulgite with High Adsorption Capacity for Selective Capture of Nucleosides at Acidic Ph Values. Microchim. Acta 2016, 183, 1779-1786.
58.Zhong, M.; Teng, Y.; Pang, S.; Yan, L.; Kan, X., Pyrrole–Phenylboronic Acid: A Novel Monomer for Dopamine Recognition and Detection Based on Imprinted Electrochemical Sensor. Biosens. Bioelectron. 2015, 64, 212-218.
59.Badhulika, S.; Tlili, C.; Mulchandani, A., Poly(3-Aminophenylboronic Acid)-Functionalized Carbon Nanotubes-Based Chemiresistive Sensors for Detection of Sugars. Analyst 2014, 139, 3077-3082.
60.Hong, S.; Lee, L. Y. S.; So, M.-H.; Wong, K.-Y., A Dopamine Electrochemical Sensor Based on Molecularly Imprinted Poly(Acrylamidophenylboronic Acid) Film. Electroanalysis 2013, 25, 1085-1094.
61.Senthilkumar, K.; Zen, J.-M., Free Chlorine Detection Based on Ec’ Mechanism at an Electroactive Polymelamine-Modified Electrode. Electrochem. Commun. 2014, 46, 87-90.
62.Wang, Q.; Kaminska, I.; Niedziolka-Jonsson, J.; Opallo, M.; Li, M.; Boukherroub, R.; Szunerits, S., Sensitive Sugar Detection Using 4-Aminophenylboronic Acid Modified Graphene. Biosens. Bioelectron. 2013, 50, 331-337.
63.Qiang, Z.; Adams, C. D., Determination of Monochloramine Formation Rate Constants with Stopped-Flow Spectrophotometry. Environ. Sci. Technol 2004, 38, 1435-1444.
64.Liu, G.; Luais, E.; Gooding, J. J., The Fabrication of Stable Gold Nanoparticle-Modified Interfaces for Electrochemistry. Langmuir 2011, 27, 4176-4183.
65.Wong, C.-S.; Chen, Y.-D.; Chang, J.-L.; Zen, J.-M., Biomolecule-Free, Selective Detection of Clenbuterol Based on Disposable Screen-Printed Carbon Electrode. Electrochem. Commun. 2015, 60, 163-167.
66.Xu, L. Q.; Liu, Y. L.; Neoh, K.-G.; Kang, E.-T.; Fu, G. D., Reduction of Graphene Oxide by Aniline with Its Concomitant Oxidative Polymerization. Macromol. Rapid Commun. 2011, 32, 684-688.
67.Laviron, E., General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. J. electroanal. chem. interfacial electrochem. 1979, 101, 19-28.
68.White, G. C., Handbook of Chlorination, 2 ed.; Van Nostrand Reinhold Company Inc: New York, 1986.
69.Wilcox, M. H.; Fawley, W. N.; Wigglesworth, N.; Parnell, P.; Verity, P.; Freeman, J., Comparison of the Effect of Detergent Versus Hypochlorite Cleaning on Environmental Contamination and Incidence of Clostridium Difficile Infection. J. Hosp. Infect. 2003, 54, 109-114.
70.Organization, W. H., Guidelines for Safe Recreational Water Environments. Volume 2: Swimming Pools and Similar Environments; World Health Organization, 2006.
71.Compton, R. G.; Banks, C. E., Understanding Voltammetry; Imperial college press: London, 2010.
72.Salazar, P.; Martín, M.; García-García, F. J.; González-Mora, J. L.; González-Elipe, A. R., A Novel and Improved Surfactant-Modified Prussian Blue Electrode for Amperometric Detection of Free Chlorine in Water. Sens. Actuators. B Chem 2015, 213, 116-123.
73.Pathiratne, K.; Skandaraja, S.; Jayasena, E., Linear Sweep Voltammetric Determination of Free Chlorine in Waters Using Graphite Working Electrodes. J. Natl. Sci. Found. Sri 2009, 36, 25-31.
74.Tsai, T.-H.; Lin, K.-C.; Chen, S.-M., Electrochemical Synthesis of Poly (3, 4-Ethylenedioxythiophene) and Gold Nanocomposite and Its Application for Hypochlorite Sensor. Int. J. Electrochem. Sci 2011, 6, 2672-2687.
75.Hallaj, T.; Amjadi, M.; Manzoori, J. L.; Shokri, R., Chemiluminescence Reaction of Glucose-Derived Graphene Quantum Dots with Hypochlorite, and Its Application to the Determination of Free Chlorine. Microchim. Acta 2015, 182, 789-796.
76.Lin, Y.; Yao, B.; Huang, T.; Zhang, S.; Cao, X.; Weng, W., Selective Determination of Free Dissolved Chlorine Using Nitrogen-Doped Carbon Dots as a Fluorescent Probe. Microchim. Acta 2016, 183, 2221-2227.
77.Yu, H.; Zheng, L., Manganese Dioxide Nanosheets as an Optical Probe for Photometric Determination of Free Chlorine. Microchim. Acta 2016, 183, 2229-2234.
78.Moberg, L.; Karlberg, B., An Improved N,N′-Diethyl-P-Phenylenediamine (Dpd) Method for the Determination of Free Chlorine Based on Multiple Wavelength Detection. Anal. Chim. Acta 2000, 407, 127-133.
79.Cametti, M.; Rissanen, K., Highlights on Contemporary Recognition and Sensing of Fluoride Anion in Solution and in the Solid State. Chem. Soc. Rev. 2013, 42, 2016-2038.
80.Everett, E., Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics. Journal of dental research 2011, 90, 552-560.
81.Ayoob, S.; Gupta, A. K., Fluoride in Drinking Water: A Review on the Status and Stress Effects. Critical Reviews in Environmental Science and Technology 2006, 36, 433-487.
82.Jagtap, S.; Yenkie, M. K.; Labhsetwar, N.; Rayalu, S., Fluoride in Drinking Water and Defluoridation of Water. Chem. Rev. 2012, 112, 2454-2466.
83.Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P. A., Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038-8155.
84.Fawell, J. K.; Bailey, K., Fluoride in Drinking-Water; World Health Organization, 2006.
85.Badugu, R.; Lakowicz, J. R.; Geddes, C. D., A Wavelength–Ratiometric Fluoride-Sensitive Probe Based on the Quinolinium Nucleus and Boronic Acid Moiety. Sens. Actuators. B Chem 2005, 104, 103-110.
86.Ashokkumar, P.; Weißhoff, H.; Kraus, W.; Rurack, K., Test‐Strip‐Based Fluorometric Detection of Fluoride in Aqueous Media with a Bodipy‐Linked Hydrogen‐Bonding Receptor. Angew. Chem. Int. Ed. 2014, 53, 2225-2229.
87.Cooper, C.; James, T., Selective Fluorescence Detection of Fluoride Using Boronic Acids. Chem. Commun. 1998, 1365-1366.
88.Cheng, X.; Li, S.; Xu, G.; Li, C.; Qin, J.; Li, Z., A Reaction‐Based Colorimetric Fluoride Probe: Rapid “Naked‐Eye” Detection and Large Absorption Shift. ChemPlusChem 2012, 77, 908-913.
89.Hu, R.; Feng, J.; Hu, D.; Wang, S.; Li, S.; Li, Y.; Yang, G., A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angew. Chem. Int. Ed. 2010, 49, 4915-4918.
90.Jeyanthi, D.; Iniya, M.; Krishnaveni, K.; Chellappa, D., Novel Indole Based Dual Responsive “Turn-on” Chemosensor for Fluoride Ion Detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 136, 1269-1274.
91.Cho, E. J.; Moon, J. W.; Ko, S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C., A New Fluoride Selective Fluorescent as Well as Chromogenic Chemosensor Containing a Naphthalene Urea Derivative. J. Am. Chem. Soc. 2003, 125, 12376-12377.
92.Mahapatra, A. K.; Maiti, K.; Sahoo, P.; Nandi, P. K., A New Colorimetric and Fluorescent Bis (Coumarin) Methylene Probe for Fluoride Ion Detection Based on the Proton Transfer Signaling Mode. J. Lumin. 2013, 143, 349-354.
93.Liu, Z.-Q.; Shi, M.; Li, F.-Y.; Fang, Q.; Chen, Z.-H.; Yi, T.; Huang, C.-H., Highly Selective Two-Photon Chemosensors for Fluoride Derived from Organic Boranes. Org. Lett. 2005, 7, 5481-5484.
94.Lin, Z.-h.; Zhao, Y.-g.; Duan, C.-y.; Zhang, B.-g.; Bai, Z.-p., A Highly Selective Chromo-and Fluorogenic Dual Responding Fluoride Sensor: Naked-Eye Detection of F− Ion in Natural Water Via a Test Paper. Dalton Transactions 2006, 3678-3684.
95.Guha, S.; Saha, S., Fluoride Ion Sensing by an Anion− Π Interaction. J. Am. Chem. Soc. 2010, 132, 17674-17677.
96.Shamsipur, M.; Safavi, A.; Mohammadpour, Z.; Zolghadr, A. R., Fluorescent Carbon Nanodots for Optical Detection of Fluoride Ion in Aqueous Media. Sens. Actuators. B Chem 2015, 221, 1554-1560.
97.Cheng, F.; Bonder, E. M.; Jäkle, F., Electron-Deficient Triarylborane Block Copolymers: Synthesis by Controlled Free Radical Polymerization and Application in the Detection of Fluoride Ions. J. Am. Chem. Soc. 2013, 135, 17286-17289.
98.Wu, X.; Chen, X.-X.; Song, B.-N.; Huang, Y.-J.; Ouyang, W.-J.; Li, Z.; James, T. D.; Jiang, Y.-B., Direct Sensing of Fluoride in Aqueous Solutions Using a Boronic Acid Based Sensor. Chem. Commun. 2014, 50, 13987-13989.
99.Yamaguchi, S.; Akiyama, S.; Tamao, K., Colorimetric Fluoride Ion Sensing by Boron-Containing Π-Electron Systems. J. Am. Chem. Soc. 2001, 123, 11372-11375.
100.Kubo, Y.; Yamamoto, M.; Ikeda, M.; Takeuchi, M.; Shinkai, S.; Yamaguchi, S.; Tamao, K., A Colorimetric and Ratiometric Fluorescent Chemosensor with Three Emission Changes: Fluoride Ion Sensing by a Triarylborane–Porphyrin Conjugate. Angew. Chem. Int. Ed. 2003, 42, 2036-2040.
101.Gupta, M.; Balamurugan, A.; Lee, H.-i., Azoaniline-Based Rapid and Selective Dual Sensor for Copper and Fluoride Ions with Two Distinct Output Modes of Detection. Sens. Actuators. B Chem 2015, 211, 531-536.
102.Kwon, S.-M.; Shin, H.-S., Sensitive Determination of Fluoride in Biological Samples by Gas Chromatography–Mass Spectrometry after Derivatization with 2-(Bromomethyl) Naphthalene. Anal. Chim. Acta 2014, 852, 162-167.
103.Pagliano, E.; Meija, J.; Ding, J.; Sturgeon, R. E.; D’Ulivo, A.; Mester, Z. n., Novel Ethyl-Derivatization Approach for the Determination of Fluoride by Headspace Gas Chromatography/Mass Spectrometry. Anal. Chem. 2012, 85, 877-881.
104.Tao, J.; Zhao, P.; Li, Y.; Zhao, W.; Xiao, Y.; Yang, R., Fabrication of an Electrochemical Sensor Based on Spiropyran for Sensitive and Selective Detection of Fluoride Ion. Anal. Chim. Acta 2016, 918, 97-102.
105.Andreyev, E. A.; Komkova, M. A.; Nikitina, V. N.; Zaryanov, N. V.; Voronin, O. G.; Karyakina, E. E.; Yatsimirsky, A. K.; Karyakin, A. A., Reagentless Polyol Detection by Conductivity Increase in the Course of Self-Doping of Boronate-Substituted Polyaniline. Anal. Chem. 2014, 86, 11690-11695.
106.Gupta, V. K.; Jain, A. K.; Pal, M. K.; Bharti, A. K., Comparative Study of Fluoride Selective Pvc Based Electrochemical Sensors. Electrochim. Acta 2012, 80, 316-325.
107.Bala, A.; Pietrzak, M.; Zajda, J.; Malinowska, E., Further Studies on Application of Al (Iii)-Tetraazaporphine in Membrane-Based Electrochemical Sensors for Determination of Fluoride. Sens. Actuators. B Chem 2015, 207, 1004-1009.
108.Manibalan, K.; Mani, V.; Huang, S.-T., A Switchable Electrochemical Redox Ratiometric Substrate Based on Ferrocene for Highly Selective and Sensitive Fluoride Detection. RSC. Adv. 2016, 6, 71727-71732.
109.Čerňanská, M.; Tomčík, P.; Jánošíková, Z.; Rievaj, M.; Bustin, D., Indirect Voltammetric Detection of Fluoride Ions in Toothpaste on a Comb-Shaped Interdigitated Microelectrode Array. Talanta 2011, 83, 1472-1475.
110.Aboubakr, H.; Brisset, H.; Siri, O.; Raimundo, J.-M., Highly Specific and Reversible Fluoride Sensor Based on an Organic Semiconductor. Anal. Chem. 2013, 85, 9968-9974.
111.Ćwik, P.; Wawrzyniak, U. E.; Jańczyk, M.; Wróblewski, W., Electrochemical Studies of Self-Assembled Monolayers Composed of Various Phenylboronic Acid Derivatives. Talanta 2014, 119, 5-10.
112.Mani, V.; Li, W.-Y.; Gu, J.-A.; Lin, C.-M.; Huang, S.-T., Electrochemical Off–on Ratiometric Chemodosimeters for the Selective and Rapid Detection of Fluoride. Talanta 2015, 131, 121-126.
113.Aydogan, A.; Koca, A.; Şener, M. K.; Sessler, J. L., Edot-Functionalized Calix [4] Pyrrole for the Electrochemical Sensing of Fluoride in Water. Org. Lett. 2014, 16, 3764-3767.
114.Thiruppathi, M.; Thiyagarajan, N.; Gopinathan, M.; Chang, J.-L.; Zen, J.-M., A Dually Functional 4-Aminophenylboronic Acid Dimer for Voltammetric Detection of Hypochlorite, Glucose and Fructose. Microchim. Acta 2017, 184, 4073-4080.
115.Wang, J.-Y.; Chou, T.-C.; Chen, L.-C.; Ho, K.-C., Using Poly (3-Aminophenylboronic Acid) Thin Film with Binding-Induced Ion Flux Blocking for Amperometric Detection of Hemoglobin A1c. Biosens. Bioelectron. 2015, 63, 317-324.
116.Fortin, N.; Klok, H.-A., Glucose Monitoring Using a Polymer Brush Modified Polypropylene Hollow Fiber-Based Hydraulic Flow Sensor. ACS Applied Materials & Interfaces 2015, 7, 4631-4640.
117.Komkova, M. A.; Andreyev, E. A.; Nikitina, V. N.; Krupenin, V. A.; Presnov, D. E.; Karyakina, E. E.; Yatsimirsky, A. K.; Karyakin, A. A., Novel Reagentless Label-Free Detection Principle for Affinity Interactions Resulted in Conductivity Increase of Conducting Polymer. Electroanalysis 2015, 27, 2055-2062.
118.Li, G.; Li, Y.; Peng, H.; Chen, K., Synthesis of Poly(Anilineboronic Acid) Nanofibers for Electrochemical Detection of Glucose. Macromol. Rapid Commun. 2011, 32, 1195-1199.
119.Ma, Y.; Yang, X., One Saccharide Sensor Based on the Complex of the Boronic Acid and the Monosaccharide Using Electrochemical Impedance Spectroscopy. J. Electroanal. Chem. 2005, 580, 348-352.
120.Manesh, K. M.; Santhosh, P.; Gopalan, A.; Lee, K.-P., Electrospun Poly(Vinylidene Fluoride)/Poly(Aminophenylboronic Acid) Composite Nanofibrous Membrane as a Novel Glucose Sensor. Anal. Biochem. 2007, 360, 189-195.
121.Nikitina, V. N.; Kochetkov, I. R.; Karyakina, E. E.; Yatsimirsky, A. K.; Karyakin, A. A., Tuning Electropolymerization of Boronate-Substituted Anilines: Fluoride-Free Synthesis of the Advanced Affinity Transducer. Electrochem. Commun. 2015, 51, 121-124.
122.Şenel, M.; Nergiz, C.; Dervisevic, M.; Çevik, E., Development of Amperometric Glucose Biosensor Based on Reconstitution of Glucose Oxidase on Polymeric 3-Aminophenyl Boronic Acid Monolayer. Electroanalysis 2013, 25, 1194-1200.
123.Shoji, E.; Freund, M. S., Potentiometric Sensors Based on the Inductive Effect on the Pka of Poly(Aniline): A Nonenzymatic Glucose Sensor. J. Am. Chem. Soc. 2001, 123, 3383-3384.
124.Vasu, K. S.; Sridevi, S.; Sampath, S.; Sood, A. K., Non-Enzymatic Electronic Detection of Glucose Using Aminophenylboronic Acid Functionalized Reduced Graphene Oxide. Sens. Actuators. B Chem 2015, 221, 1209-1214.
125.Wu, Z.; Zhang, S.; Zhang, X.; Shu, S.; Chu, T.; Yu, D., Phenylboronic Acid Grafted Chitosan as a Glucose-Sensitive Vehicle for Controlled Insulin Release. J. Pharm. Sci. 2011, 100, 2278-2286.
126.Zhou, M.; Lu, F.; Jiang, X.; Wu, Q.; Chang, A.; Wu, W., Switchable Glucose-Responsive Volume Phase Transition Behavior of Poly(Phenylboronic Acid) Microgels. Polymer Chemistry 2015, 6, 8306-8318.
127.Rick, J.; Chou, T.-C., Amperometric Protein Sensor – Fabricated as a Polypyrrole, Poly-Aminophenylboronic Acid Bilayer. Biosens. Bioelectron. 2006, 22, 329-335.
128.Wang, J.-Y.; Chou, T.-C.; Chen, L.-C.; Ho, K.-C., Using Poly(3-Aminophenylboronic Acid) Thin Film with Binding-Induced Ion Flux Blocking for Amperometric Detection of Hemoglobin A1c. Biosens. Bioelectron. 2015, 63, 317-324.
129.Plesu, N.; Kellenberger, A.; Taranu, I.; Taranu, B. O.; Popa, I., Impedimetric Detection of Dopamine on Poly(3-Aminophenylboronic Acid) Modified Skeleton Nickel Electrodes. React. Funct. Polym. 2013, 73, 772-778.
130.Ali, S. R.; Ma, Y.; Parajuli, R. R.; Balogun, Y.; Lai, W. Y. C.; He, H., A Nonoxidative Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine. Anal. Chem. 2007, 79, 2583-2587.
131.Hu, L.; Han, S.; Liu, Z.; Parveen, S.; Yuan, Y.; Xu, G., A Versatile Strategy for Electrochemical Detection of Hydrogen Peroxide as Well as Related Enzymes and Substrates Based on Selective Hydrogen Peroxide-Mediated Boronate Deprotection. Electrochem. Commun. 2011, 13, 1536-1538.
132.Wang, C.; Zholudov, Y. T.; Nsabimana, A.; Xu, G.; Li, J., Sensitive and Selective Electrochemical Detection of Artemisinin Based on Its Reaction with P-Aminophenylboronic Acid. Anal. Chim. Acta 2016, 937, 39-42.
133.Liu, Q.; Xiao, K.; Wen, L.; Dong, Y.; Xie, G.; Zhang, Z.; Bo, Z.; Jiang, L., A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nanochannel. ACS Nano 2014, 8, 12292-12299.
134.Çiftçi, H.; Tamer, U., Electrochemical Determination of Iodide by Poly(3-Aminophenylboronic Acid) Film Electrode at Moderately Low Ph Ranges. Anal. Chim. Acta 2011, 687, 137-140.
135.Jamkratoke, M.; Ruangpornvisuti, V.; Tumcharern, G.; Tuntulani, T.; Tomapatanaget, B., A-D-a Sensors Based on Naphthoimidazoledione and Boronic Acid as Turn-on Cyanide Probes in Water. The Journal of Organic Chemistry 2009, 74, 3919-3922.
136.Deore, B.; Freund, M. S., Saccharide Imprinting of Poly(Aniline Boronic Acid) in the Presence of Fluoride. Analyst 2003, 128, 803-806.
137.Deore, B. A.; Freund, M. S., Self-Doped Polyaniline Nanoparticle Dispersions Based on Boronic Acid−Phosphate Complexation. Macromolecules 2009, 42, 164-168.
138.Deore, B. A.; Hachey, S.; Freund, M. S., Electroactivity of Electrochemically Synthesized Poly(Aniline Boronic Acid) as a Function of Ph: Role of Self-Doping. Chem. Mater. 2004, 16, 1427-1432.
139.Deore, B. A.; Yu, I.; Freund, M. S., A Switchable Self-Doped Polyaniline: Interconversion between Self-Doped and Non-Self-Doped Forms. J. Am. Chem. Soc. 2004, 126, 52-53.
140.Wang, F.; Zou, F.; Yu, X.; Feng, Z.; Du, N.; Zhong, Y.; Huang, X., Electrochemical Synthesis of Poly(3-Aminophenylboronic Acid) in Ethylene Glycol without Exogenous Protons. PCCP 2016, 18, 9999-10004.
141.McCreery, R. L., Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646-2687.
142.Yan, X.; Jia, Y.; Odedairo, T.; Zhao, X.; Jin, Z.; Zhu, Z.; Yao, X., Activated Carbon Becomes Active for Oxygen Reduction and Hydrogen Evolution Reactions. Chem. Commun. 2016, 52, 8156-8159.
143.Niu, X.; Shi, L.; Li, X.; Pan, J.; Gu, R.; Zhao, H.; Qiu, F.; Yan, Y.; Lan, M., Simple Anodization of Home-Made Screen-Printed Carbon Electrodes Makes Significant Activity Enhancement for Hydrogen Evolution: The Synergistic Effect of Surface Functional Groups, Defect Sites, and Hydrophilicity. Electrochim. Acta 2017, 235, 64-71.
144.Naohiro, K.; Kazuhisa, H., Fluorescence-Responsive H2po4− Receptor Based on Macrocyclic Boron Complex. Chem. Lett. 2006, 35, 536-537.
145.Cabell, L. A.; Monahan, M.-K.; Anslyn, E. V., A Competition Assay for Determining Glucose-6-Phosphate Concentration with a Tris-Boronic Acid Receptor. Tetrahedron Lett. 1999, 40, 7753-7756.
146.Cumba, L. R.; Foster, C. W.; Brownson, D. A. C.; Smith, J. P.; Iniesta, J.; Thakur, B.; do Carmo, D. R.; Banks, C. E., Can the Mechanical Activation (Polishing) of Screen-Printed Electrodes Enhance Their Electroanalytical Response? Analyst 2016, 141, 2791-2799.
147.Vishnu, N.; Kumar, A. S.; Pillai, K. C., Unusual Neutral Ph Assisted Electrochemical Polymerization of Aniline on a Mwcnt Modified Electrode and Its Enhanced Electro-Analytical Features. Analyst 2013, 138, 6296-6300.
148.Baskar, S.; Liao, C.-W.; Chang, J.-L.; Zen, J.-M., Electrochemical Synthesis of Electroactive Poly(Melamine) with Mechanistic Explanation and Its Applicability to Functionalize Carbon Surface to Prepare Nanotube–Nanoparticles Hybrid. Electrochim. Acta 2013, 88, 1-5.
149.Eftekhari, A.; Afshani, R., Electrochemical Polymerization of Aniline in Phosphoric Acid. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3304-3311.
150.Engblom, S. O., The Phosphate Sensor. Biosens. Bioelectron. 1998, 13, 981-994.
151.Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P., Rational Design of a Fluorescence-Turn-on Sensor Array for Phosphates in Blood Serum. Angew. Chem. Int. Ed. 2007, 46, 7849-7852.
152.Mak, W. C.; Chan, C.; Barford, J.; Renneberg, R., Biosensor for Rapid Phosphate Monitoring in a Sequencing Batch Reactor (Sbr) System. Biosens. Bioelectron. 2003, 19, 233-237.
153.Cheng, W.-L.; Sue, J.-W.; Chen, W.-C.; Chang, J.-L.; Zen, J.-M., Activated Nickel Platform for Electrochemical Sensing of Phosphate. Anal. Chem. 2010, 82, 1157-1161.
154.Lee, W. H.; Lee, J.-H.; Bishop, P. L.; Papautsky, I., Biological Application of Micro-Electro Mechanical Systems Microelectrode Array Sensors for Direct Measurement of Phosphate in the Enhanced Biological Phosphorous Removal Process. Water Environ. Res 2009, 81, 748-754.
155.Murphy, J.; Riley, J. P., A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31-36.
156.Quintana, J. B.; Rodil, R.; Reemtsma, T., Determination of Phosphoric Acid Mono- and Diesters in Municipal Wastewater by Solid-Phase Extraction and Ion-Pair Liquid Chromatography−Tandem Mass Spectrometry. Anal. Chem. 2006, 78, 1644-1650.
157.Colina, M.; Gardiner, P. H. E., Simultaneous Determination of Total Nitrogen, Phosphorus and Sulphur by Means of Microwave Digestion and Ion Chromatography. J. Chromatogr. A 1999, 847, 285-290.
158.Cheng, W.-L.; Chang, J.-L.; Su, Y.-L.; Zen, J.-M., Facile Fabrication of Zirconia Modified Screen-Printed Carbon Electrodes for Electrochemical Sensing of Phosphate. Electroanalysis 2013, 25, 2605-2612.
159.Mishra, R. K.; Hubble, L. J.; Martín, A.; Kumar, R.; Barfidokht, A.; Kim, J.; Musameh, M. M.; Kyratzis, I. L.; Wang, J., Wearable Flexible and Stretchable Glove Biosensor for on-Site Detection of Organophosphorus Chemical Threats. ACS Sensors 2017, 2, 553-561.
160.Warwick, C.; Guerreiro, A.; Gomez-Caballero, A.; Wood, E.; Kitson, J.; Robinson, J.; Soares, A., Conductance Based Sensing and Analysis of Soluble Phosphates in Wastewater. Biosens. Bioelectron. 2014, 52, 173-179.
161.Rahman, M. A.; Park, D.-S.; Chang, S.-C.; McNeil, C. J.; Shim, Y.-B., The Biosensor Based on the Pyruvate Oxidase Modified Conducting Polymer for Phosphate Ions Determinations. Biosens. Bioelectron. 2006, 21, 1116-1124.
162.Berchmans, S.; Issa, T. B.; Singh, P., Determination of Inorganic Phosphate by Electroanalytical Methods: A Review. Anal. Chim. Acta 2012, 729, 7-20.
163.Law al, A. T.; Adeloju, S. B., Progress and Recent Advances in Phosphate Sensors: A Review. Talanta 2013, 114, 191-203.
164.Warwick, C.; Guerreiro, A.; Soares, A., Sensing and Analysis of Soluble Phosphates in Environmental Samples: A Review. Biosens. Bioelectron. 2013, 41, 1-11.
165.Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaï, F. P., Fluoride Ion Complexation and Sensing Using Organoboron Compounds. Chem. Rev. 2010, 110, 3958-3984.
166.Tharmaraj, V.; Pitchumani, K., D-Glucose Sensing by (E)-(4-((Pyren-1-Ylmethylene)Amino)Phenyl) Boronic Acid Via a Photoinduced Electron Transfer (Pet) Mechanism. RSC. Adv. 2013, 3, 11566-11570.
167.Wu, X.; Li, Z.; Chen, X.-X.; Fossey, J. S.; James, T. D.; Jiang, Y.-B., Selective Sensing of Saccharides Using Simple Boronic Acids and Their Aggregates. Chem. Soc. Rev. 2013, 42, 8032-8048.
168.Raj, M. A.; John, S. A., Fabrication of Electrochemically Reduced Graphene Oxide Films on Glassy Carbon Electrode by Self-Assembly Method and Their Electrocatalytic Application. The Journal of Physical Chemistry C 2013, 117, 4326-4335.
169.Fabre, B.; Hauquier, F., Boronic Acid-Functionalized Oxide-Free Silicon Surfaces for the Electrochemical Sensing of Dopamine. Langmuir 2017, 33, 8693-8699.
170.Qu, K.; Zheng, Y.; Zhang, X.; Davey, K.; Dai, S.; Qiao, S. Z., Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano 2017, 11, 7293-7300.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊