跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃翊橙
研究生(外文):Yi-Cheng Huang
論文名稱:力學在醫學上之應用─第一部分:以毛細管力分析柴油微粒PM2.5對內皮細胞血液通透率之影響;第二部分:依結構力學進行放射性檢測固定裝置的設計與製作
論文名稱(外文):Medical Applications of Mechanics-Part I:Effect on Vascular Permeability of Endothelial Cells Due to PM2.5 Diesel Particles Using the Analysis of Capillary Forces; Part II: Design and Manufacturing of Immobilization Device for Radioactive Inspection Based on Structural Mechanics
指導教授:林柏廷林柏廷引用關係
指導教授(外文):Po-Ting Lin
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:119
中文關鍵詞:PM2.5 柴油微粒內皮細胞通透率毛細管數放射性檢驗致癌機率嬰孩固定裝置旋轉式固定插銷
外文關鍵詞:PM2.5 diesel exhaust particlesendothelial cellsviscositysurface tensionpermeabilityCapillary numberradioactive testsprobability of carcinogenicitybaby fixation devicerotary fixation pins
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
第一部分
為了解人體吸入空氣汙染所造成心血管疾病的影響,Chao等在2011年證實PM2.5 空污粒子中有14%為<100 nm微粒子,可能藉由破壞內皮細胞的黏合連接處進入血液循環中。文獻中並無標準方法來量化內皮細胞的通透率, 或達西等單位難以量化通透運輸的擴散現象,及血管壁孔洞開闔大小影響通透率的關係,此外通透率易隨著時間變化,瞬時量測值不易取得。本論文發展出一個標準量化血管通透率的研究方法,以了解空污廢氣粒子造成內皮細胞黏合連接處的破壞和內皮細胞通透性的影響。將不同濃度的PM2.5 柴油微粒加入HUVEC細胞培養液中,使其作用0、24、48、72小時後,利用MTS和Dextran-FITC試劑測量其細胞毒性與細胞通透率,並以毛細管數(Capillary Number; CA)來量化黏滯力對表面張力的相對關係,建立微粒子通過內皮細胞交界處由血液通透至組織的標準量化方法。實驗結果除了顯示微粒子暴露濃度及暴露時間的增加會使細胞通透率上升,也會使血液黏滯性上升、表面張力下降,因此毛細管數會微粒子暴露濃度及暴露時間的增加而上升。本論文使用參數模型擬合細胞毒性及細胞通透性隨微粒子暴露濃度及暴露時間改變的函數關係,根據臨界毛細管數的定義,進而建立微粒子暴露的上限函數。
第二部分
嬰孩在接受放射性檢驗或是治療時的情緒不易控制,操作上的疏忽常造成放射線過度曝露、成像不良、錯誤判斷、嬰孩肢體傷害等不良後果,除了影響嬰孩的發育,也可能增加致癌機率。本論文提出創新嬰孩固定裝置,目的在安穩地限制嬰孩在受診過程中的移動範圍,防止意想不到的瞬間快速運動。此外,此設計也注重嬰孩在被固定時的舒適程度、調整固定位置的方便性、其對於成像清晰度的影響、其對於嬰孩局部器官與肢體的保護程度等問題。本研究使用放射線穿透度高的壓克力材料,製作含多固定孔的基座;用壓克力插銷將活動元件(如固定帶、固定蓋等)穩固地固定至基座上,達到固定嬰孩的目的,使用快速旋轉式插銷與魔鬼氈的固定方式可隨著嬰幼兒身形大小做任意調整,以最快的速度順利完成放射性檢測或治療;以舒適且放射線穿透度高的泡棉材料支撐嬰孩的重量,並使用數值分析軟體評估泡棉墊的支撐能力及固定插銷的固定能力。分析結果說明泡棉墊支撐在50公斤的嬰孩時僅變形14.1397公釐,仍具有足夠支撐力,故能提供嬰孩足夠的舒適度且不會永久變形;固定插銷在20公斤的外力彎曲下,在基座固定處有55.7268MPa的彎曲應力,並未超過材料的降伏強度,故具有安全的固定能力。本論文研發的創新嬰孩固定裝置可以有效避免影像模糊、部位偏移或是假影等問題,避免重新拍攝,減少嬰幼兒曝露在輻射環境下的影響。

Part I
To understand the impact of inhaled air pollution on cardiovascular diseases, Chao et al., in 2011, confirmed that PM2.5 air pollution particles have a 14% chance of containing <100 nm particles that could destroy junction adhesion sites of endothelial cells to blood circulation regions. There is not a standard method to quantify the rate of endothelial cell permeability. The units of or Darcy cannot represent the diffusion phenomenon of permeability at the cell junction and the change of permeability due to opening and closing of the blood vessels. Furthermore, blood to the tissue permeability changes easily over time and it makes difficult to obtain the transient measurement of cell permeability. This thesis has developed a standard methodology to quantify the rate of vascular permeability in order to understand the damage of endothelial junction and the change of endothelial permeability cased by the fine particles in the air pollution. Various concentrations of diesel PM2.5 particles were added to a HUVEC cell culture medium for 0, 24, 48 and 72 hours. Afterward, MTS reagent and Dextran-FITC were used to investigate the cell cytotoxicity and the permeation rates, respectively. In addition, Capillary Number (CA) was used to measure the permeability behavior in terms of viscous force over surface tension in order to build a standardized way to quantify the blood-to-tissue transport phenomena of PM2.5 at the junction between the endothelial cells. The experimental results showed cell permeability increases with the concentration of PM2.5 and exposure time. Moreover, increasing viscosity and decreasing surface tension caused by larger PM2.5 concentration and longer exposure time leading to a higher measure of CA. This thesis parametrically modeled the responses of cell cytotoxicity and CA with respect to PM2.5 concentration and exposure time. A mathematical function was determined to represent the safety region of PM2.5 exposure under the decision of critical CA.
Part II
An infant’s mood when subject to radioactive test or treatment is not easy to control. This often causes negligent operation of the radiographer such as overexposure, poor image, misjudgment, bodily harm to the baby and other adverse consequences. In addition to affecting the baby''s development this also increases the risk for cancer in the baby. This paper presents an innovative baby fixture for the purpose of restricting rapid, instantaneous movement in a baby and secures the range of movement during the consultation process. In addition, this design also focuses on baby comfort while being fixed, convenient adjustment to the desired position, effects on the clarity of the image, and the degree of protection of sensitive organs and limbs. In this study, a highly penetrative the acrylic material was used for the fixed base containing fixation holes and acrylic plugs with the active components (such as straps fixed cover, etc.) which can be securely fixed to the base to the baby. A fast rotary fixation design and Velcro fastening means that the size of infants may vary and any adjustments can be easily made which aides in the successful completion of a fast radioactive detection or treatment. To provide more comfort, a highly radiation penetrating foam was added to support the weight of the baby. The use of numerical analysis software was used to assess the fixation device, the supporting foam pad and the pin fixation capacity. The results of the numerical simulations show that the foam pad supporting a 50 kg baby only deformed 14.1397 mm which provides adequate support force. It can provide sufficient comfort for the baby without permanent deformation. The fixation pins subject to a 20 kilograms of downward bending force when fixed at the base is subject to 55.7268MPa bending stress. This stress is less than the yield strength of the material therefore it will not fail. The innovative baby fixation device developed this thesis can effectively avoid image blur, offset, appearance of visual artifacts and other issues which avoids the need to re-shoot, therefore reducing the infant’s exposure to radiation.

目錄
第一部分摘要 I
Part I Abstract II
第二部分摘要 IV
Part II Abstract VI
誌謝 VIII
目錄 X
圖目錄 XIV
表目錄 XVIII
符號說明 XIX
第一部分 以毛細管力分析柴油微粒PM2.5對內皮細胞血液通透率之影響
第一章、 緒論 1
1.1. 前言 1
1.2. 研究動機 1
1.3. 研究目的 2
1.4. 文獻回顧 3
1.4.1. 柴油微粒 3
1.4.2. 內皮細胞 5
1.4.3. 表面張力 7
1.4.4. 黏度係數 9
1.4.5. 通透率 11
1.4.6. 毛細管數 13
1.5. 論文架構 15
第二章、 實驗設置與操作 16
2.1. 實驗設置流程 16
2.1.1. 表面張力設置流程 16
2.1.2. 黏度係數設置流程 18
2.2. 實驗操作步驟 20
2.2.1. 表面張力量測 20
2.2.2. 黏度係數量測 21
第三章、 數據分析 23
3.1. 滲透率 25
3.2. 表面張力 28
3.3. 黏度係數 29
3.4. 毛細管數 30
第四章、 結論與未來展望 33
4.1. 結論 33
4.2. 未來展望 34
附錄I. 35
第二部分 依結構力學進行放射性檢測固定裝置的設計與製作
第一章、 緒論 39
1.1. 前言 39
1.2. 研究目的 39
1.3. 文獻回顧 40
1.3.1. 嬰孩固定裝置 40
1.3.1.1. 床墊 40
1.3.1.2. 固定機構 41
1.3.1.3. 調整裝置 43
1.3.2. 放射性醫療檢查與治療 44
1.4. 論文架構 47
第二章、 裝置設計 49
2.1. 插銷 49
2.2. 基板 50
2.3. 泡棉 52
第三章、 實驗儀器設置與操作 54
3.1. 實驗設置流程 54
3.1.1. 插銷加工流程 54
3.1.2. 基板加工流程 55
3.1.3. 泡棉加工流程 55
3.2. 實驗操作步驟 56
3.2.1. 插銷加工步驟 56
3.2.2. 基板加工步驟 57
3.2.3. 泡棉加工步驟 58
第四章、 結構數值分析 60
4.1. 有限元素分析 61
4.2. 實驗結果討論 63
第五章、 結論與未來展望 66
5.1. 結論 66
5.2. 未來展望 67
附錄II. 3D列印機操作與設定 68
附錄III. 3D列印軟體操作與設定 75
參考文獻 93
個人簡介 97

圖目錄
圖1. 空氣污染中懸浮微粒的大小[13]。 5
圖2. 血管內皮細胞的結構[30]。 6
圖3. 水滴圓弧狀示意圖[31]。 8
圖4. 三相交接示意圖[32]。 9
圖5. 通透性的運輸關係圖[6]。 14
圖6. 表面張力實驗量測儀器:(a)DSA10影像式接觸角量測儀(b)水銀氣壓計(c)溫度計。 17
圖7. 實驗中的水滴狀圖。 17
圖8. 黏度係數實驗量測儀器:(a)奧士瓦黏度計(b)溫度計(c)吸球。 19
圖9. 奧士瓦黏度計。 19
圖10. 表面張力量測流程。 21
圖11. 黏度係數量測流程。 22
圖12. 24小時柴油廢氣微粒子對於HUVEC 細胞的Dextran-FITC細胞通透率檢測[5]。 24
圖13. 24小時後MTS毒性分析[5]。 24
圖14. 毒性與懸浮微粒濃度及暴露時間之間的關係。 25
圖15. 通透性與懸浮微粒濃度及暴露時間之關係圖。 27
圖16. 柴油微粒濃度對表面張力之間的關係。 28
圖17. 柴油微粒濃度對黏度係數之間的關係。 29
圖18. 毛細管數與柴油微粒濃度及暴露時間的預測模型:(a)線性回歸(b)指數遞增(c)等高線。 32
圖19. 文獻中不同類型的床墊設計:(a)人形凹槽(b)軟墊(c)凹凸狀軟墊。 40
圖20. 獻中不同類型的固定機構設計:(a)纏繞式約束帶(b)纏繞式約束繩(c)交叉式約束帶(d)四肢固定器(e)前後固定蓋(f)前後固定軟墊(g)包覆袋(h)魔鬼氈。 42
圖21. 可調式固定孔的設計。 43
圖22. 市售X光攝影用病床[53]。 45
圖23. 輻射量比較圖。 46
圖24. 鉛衣防護。 47
圖25. 插銷工程圖。 49
圖26. 插銷3D圖。 50
圖27. 基板工程圖。 51
圖28. 基板孔洞放大圖。 51
圖29. 基板3D圖。 52
圖30. 基板反轉孔洞3D圖。 52
圖31. 泡棉工程圖。 53
圖32. 泡棉3D圖。 53
圖33. Witbox 3D列印機。 54
圖34. 銑床。 55
圖35. 泡棉加工工具:(a)電熱絲(b)金屬管(c)電源供應器。 56
圖36. 插銷加工流程。 57
圖37. 基板加工流程。 58
圖38. 泡棉加工流程。 59
圖39. 插銷剖面分析圖。 62
圖40. 泡棉分析圖。 63
圖41. 不同身材的嬰孩之固定方式:(a)嬰兒(b)孩童。 64
圖42. 固定裝置。 64
圖43. 固定插銷。 65
圖44. 3D列印機正面。 69
圖45. 3D列印機背面。 69
圖46. PLA線材。 70
圖47. 3D列印機狀態列。 70
圖48. 調整螺絲。 71
圖49. 第一點校正狀態。 72
圖50. 第二點校正狀態。 72
圖51. 第三點校正狀態。 73
圖52. 確認校正狀態。 73
圖53. 入料加熱後狀態。 73
圖54. 入料位置。 74
圖55. 出料狀態。 74
圖56. 軟體介面。 75
圖57. Cura欄位示意圖。 76
圖58. File位置示意圖。 77
圖59. Machine位置。 77
圖60. Machine settings參數示意圖。 78
圖61. Expert位置。 78
圖62. Expert參數設定值。 81
圖63. 基礎設定參數設定值。 83
圖64. 進階設定參數設定值。 85
圖65. Simplify3D軟體介面。 86
圖66. Simplify3D欄位示意圖。 87
圖67. Extruder參數設定值。 88
圖68. Layer參數設定值。 89
圖69. Infill參數設定值。 90
圖70. Scripts參數設定值。 91
圖71. Support參數設定值。 92

表目錄
表1. 2014年各縣市PM2.5濃度[5]。 2
表2. 待測液滲透率。 26
表3. 待測液平均滲透率。 27
表4. 待測液表面張力。 28
表5. 待測液黏度係數。 29
表6. 待測液毛細管數。 31
表7. 針頭規格。 35
表8. 純水黏度係數。 36
表9. 純水密度。 37
表10. 不同物質的穿透性比較。 60
表11 材料係數。 61

參考文獻
[1]E. Alfaro-Moreno, T. S. Nawrot, A. Nemmar and B. Nemery, "Particulate matter in the environment: pulmonary and cardiovascular effects," Current opinion in pulmonary medicine, vol. 13, pp. 98-106, 2007.
[2]R. L. Bradow, "Diesel particle emissions," Bulletin of the New York Academy of Medicine, vol. 56, p. 797, 1980.
[3]I. Aguilera Jiménez, M. Pedersen, R. García Esteban, F. Ballester, M. Basterrechea, A. Esplugues, A. Fernández Somoano, A. Lertxundi, A. Tardón and J. Sunyer Deu, "Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study," Environmental Health Perspectives. 2013; 121 (3): 387-392, 2013.
[4]C. H. Backes, T. Nelin, M. W. Gorr and L. E. Wold, "Early life exposure to air pollution: how bad is it?," Toxicology letters, vol. 216, pp. 47-53, 2013.
[5]行政院環境保護署-空氣品質監測網. Available: http://taqm.epa.gov.tw/taqm/tw/YearlyDataDownload.aspx
[6]I. Hussaini and C. Wang, "Measurement of relative permeability of fuel cell diffusion media," Journal of Power Sources, vol. 195, pp. 3830-3840, 2010.
[7]M. L. Bell, "Assessment of the health impacts of particulate matter characteristics," Research report (Health Effects Institute), pp. 5-38, 2012.
[8]A. J. Ghio, M. S. Carraway and M. C. Madden, "Composition of air pollution particles and oxidative stress in cells, tissues, and living systems," Journal of Toxicology and Environmental Health, Part B, vol. 15, pp. 1-21, 2012.
[9]J. O. Anderson, J. G. Thundiyil and A. Stolbach, "Clearing the air: a review of the effects of particulate matter air pollution on human health," Journal of Medical Toxicology, vol. 8, pp. 166-175, 2012.
[10]J. S. Brown, K. L. Zeman and W. D. Bennett, "Ultrafine particle deposition and clearance in the healthy and obstructed lung," American journal of respiratory and critical care medicine, vol. 166, pp. 1240-1247, 2002.
[11]R. Bradow, "Diesel particle and organic emissions: engine simulation, sampling, and artifacts," Developments in toxicology and environmental science, vol. 10, pp. 33-47, 1981.
[12]R. D. Brook, J. R. Brook, B. Urch, R. Vincent, S. Rajagopalan and F. Silverman, "Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults," Circulation, vol. 105, pp. 1534-1536, 2002.
[13]J. R. Brook, R. L. Poirot, T. F. Dann, P. K. Lee, C. D. Lillyman and T. Ip, "Assessing sources of PM2. 5 in cities influenced by regional transport," Journal of Toxicology and Environmental Health, Part A, vol. 70, pp. 191-199, 2007.
[14]N. L. Mills, K. Donaldson, P. W. Hadoke, N. A. Boon, W. MacNee, F. R. Cassee, T. Sandström, A. Blomberg and D. E. Newby, "Adverse cardiovascular effects of air pollution," Nature Clinical Practice Cardiovascular Medicine, vol. 6, pp. 36-44, 2009.
[15]R. D. Brook, J. R. Brook and S. Rajagopalan, "Air pollution: the" Heart" of the problem," Current hypertension reports, vol. 5, pp. 32-39, 2003.
[16]G. Oberdörster, "Pulmonary effects of inhaled ultrafine particles," International archives of occupational and environmental health, vol. 74, pp. 1-8, 2000.
[17]A. Behndig, I. Mudway, J. Brown, N. Stenfors, R. Helleday, S. Duggan, S. Wilson, C. Boman, F. R. Cassee and A. Frew, "Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans," European Respiratory Journal, vol. 27, pp. 359-365, 2006.
[18]B. Bleck, B. T. Doris, M. A. C. De Lafaille, F. Zhang and J. Reibman, "Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation and polarization via thymic stromal lymphopoietin," Journal of clinical immunology, vol. 28, pp. 147-156, 2008.
[19]R. Mabilia, A. Cecinato, E. Guerriero and M. Possanzini, "Uncertainties of polynuclear aromatic hydrocarbon and carbonyl measurements in heavy?uty diesel emission," Journal of separation science, vol. 29, pp. 302-307, 2006.
[20]M. M. Maricq, R. E. Chase, N. Xu and P. M. Laing, "The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: Light duty diesel vehicles," Environmental Science & Technology, vol. 36, pp. 283-289, 2002.
[21]T. Murahashi, "Determination of mutagenic 3-nitrobenzanthrone in diesel exhaust particulate matter by three-dimensional high-performance liquid chromatography," Analyst, vol. 128, pp. 42-45, 2003.
[22]M. Murakami, J. Yamada, H. Kumata and H. Takada, "Sorptive behavior of nitro-PAHs in street runoff and their potential as indicators of diesel vehicle exhaust particles," Environmental science & technology, vol. 42, pp. 1144-1150, 2008.
[23]V. Muzyka, S. Veimer and N. Shmidt, "Particle-bound benzene from diesel engine exhaust," Scandinavian journal of work, environment & health, pp. 481-485, 1998.
[24]B. Onat, Ü. A. Şahin and C. Bayat, "Assessment of particulate matter in the urban atmosphere: size distribution, metal composition and source characterization using principal component analysis," Journal of Environmental Monitoring, vol. 14, pp. 1400-1409, 2012.
[25]K.-i. Ohyama, T. Ito and M. Kanisawa, "The roles of diesel exhaust particle extracts and the promotive effects of NO 2 and/or SO 2 exposure on rat lung tumorigenesis," Cancer letters, vol. 139, pp. 189-197, 1999.
[26]Y. Okayama, M. Kuwahara, A. K. Suzuki and H. Tsubone, "Role of reactive oxygen species on diesel exhaust particle-induced cytotoxicity in rat cardiac myocytes," Journal of Toxicology and Environmental Health, Part A, vol. 69, pp. 1699-1710, 2006.
[27]D. B. Peden, "Pollutants and asthma: role of air toxics," Environmental health perspectives, vol. 110, p. 565, 2002.
[28]A. Nemmar, D. Subramaniyan, J. Yasin and B. H. Ali, "Impact of experimental type 1 diabetes mellitus on systemic and coagulation vulnerability in mice acutely exposed to diesel exhaust particles," Particle and fibre toxicology, vol. 10, pp. 1-10, 2013.
[29]R. F. Furchgott and P. M. Vanhoutte, "Endothelium-derived relaxing and contracting factors," The FASEB Journal, vol. 3, pp. 2007-2018, 1989.
[30]Wikipedia. Endothelium. Available: https://en.wikipedia.org/wiki/Endothelium
[31]F. Bashforth and J. C. Adams, An attempt to test the theories of capillary action: by comparing the theoretical and measured forms of drops of fluid: University Press, 1883.
[32]T. Young, "An essay on the cohesion of fluids," Philosophical Transactions of the Royal Society of London, pp. 65-87, 1805.
[33]C. Michel and F. Curry, "Microvascular permeability," Physiological reviews, vol. 79, pp. 703-761, 1999.
[34]R. Steck and M. L. K. Tate, "In silico stochastic network models that emulate the molecular sieving characteristics of bone," Annals of biomedical engineering, vol. 33, pp. 87-94, 2005.
[35]H. Lum and A. B. Malik, "Regulation of vascular endothelial barrier function," American Journal of Physiology-Lung Cellular and Molecular Physiology, vol. 267, pp. L223-L241, 1994.
[36]M. Jungner, P.-O. Gärnde, G. Mattiasson and P. Bentzer, "Effects on brain edema of crystalloid and albumin fluid resuscitation after brain trauma and hemorrhage in the rat," Anesthesiology, vol. 112, pp. 1194-1203, 2010.
[37]R. C. Leon, "Rack for the support of the human body," US Patent 2,671,442, 1954.
[38]R. C. Creelman, "Surgical operating table for small infants," US Patent 2,751,268, 1956.
[39]W. J. Gabriele and J. M. Gabriele, "Child immobilizing device for X-rays," US Patent 4,030,719, 1977.
[40]T. D. Joe and C. A. Miller, "Infant positioner," US Patent 7,716,764, 2010.
[41]C. A. Mason, "Infant support pad," US Patent 5,127,120, 1992.
[42]M. D. Popitz, "Infant support," US Patent 5,048,136, 1991.
[43]E. Rodin, "Restraining device for live bodies," US Patent 2,867,483, 1959.
[44]K. C. Bowman, "Medical patient restraint device," US Patent 5,329,934, 1994.
[45]E. M. Cabansag, "Immobilizer device," US Patent 3,933,154, 1976.
[46]R. I. A. A, "Infant restraining device," US Patent 2,995,407, 1961.
[47]W. K. L, "Safety device for supporting an infant," US Patent 3,045,258, 1962.
[48]J. P. Biondo, K. L. Kramer, C. W. Riley, G. W. Branson, R. W. Chance, T. Leblanc, B. P. Markwick, P. A. Koloski, T. D. Acton and M. E. Cerimele, "Pulmonary therapy apparatus," US Patent 6,817,363, 2004.
[49]D. H. Delk and B. D. Hand, "Prone patient apparatus," US Patent 6,065,165, 2000.
[50]E. Rodin, "Infant''s surgical tray with quick release restraining means," US Patent 2,926,054, 1960.
[51]A. S. Lee, "Ballistocardiograph," US Patent 4,679,569, 1987.
[52]E. L. Hoffmann and F. W. Birch, "Immobilizer for X-ray analysis having pressure functioning fastening means," US Patent 3,358,141, 1967.
[53]TR-620X 急診推床X光罩型(群橋科技股份有限公司). Available: http://qun.aestore.com.tw/product-detail.asp?lang=1&pid=PD-060516-002781
[54]蔣乃辛揭露近半兒童電腦斷層輻射偏高憂心後遺症害童(中國時報). Available: http://www.ly.gov.tw/03_leg/0301_main/leg_news/newsView.action?id=72187&lgno=00116&stage=7&atcid=72187
[55]H. N. Wagner, G. A. Wiseman, C. S. Marcus, H. A. Nabi, C. E. Nagle, D. M. Fink-Bennett, D. M. Lamonica and P. S. Conti, "Administration guidelines for radioimmunotherapy of non-Hodgkin''s lymphoma with 90Y-labeled anti-CD20 monoclonal antibody," Journal of Nuclear Medicine, vol. 43, pp. 267-272, 2002.
[56]世界衛生組織, "世界衛生組織最新的兒童生長標準," 2006.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊