| 
[ 1 ]. ZENG, L. C., SCHAIBLE, S., and YAO, J. C., Iterative Algorithm for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities, Journal of Optimizatio Theory and Applications, Vol. 124, pp. 725-738, 2005.
  [ 2 ]. BLUM, E., and OETTLI, W., From Optimization and Variational Inequalities to Equilibrium Problems, The Mathematics Student, Vol. 63, pp. 123-145, 1994.
  [ 3 ]. COMBETTES, P. L., and HIRSTOAGA, S. A., Equilibrium Programming in Hilbert Spaces, Journal of Nonlinear and Convex Analysis, Vol. 6, pp. 117-136, 2005.
  [ 4 ]. FLAM, S. D., and ANTIPIN, A. S., Equilibrium Programming Using Proximal-Like Algorithms, Mathematical Programming, Vol. 78, pp. 29-41, 1997.
  [ 5 ]. ZENG, L. C., and YAO, J. C., Implicit Iteration Scheme with Perturbed Mapping for Common Fixed Points of a Finite Family of Nonexpansive Mappings, Nonlinear Analysis, Vol. 64, pp. 2507-2515, 2006.
  [ 6 ]. ZENG, L. C., and YAO, J. C., Strong Convergence Theorem by an Extragradient Method for Fixed Point Problems and Variational Inequality Problems, Taiwanese Journal of Mathematics, Vo1. 10, No. 5, pp. 1293-1303, 2006.
  [ 7 ]. MOUDAFI, A., Viscosity Approximation Methods for Fixed-Point Problems, Journal of Mathematical Analysis and Applications, Vol. 241, pp. 46-55, 2000.
  [ 8 ]. TAKAHASHI, S., and TAKAHASHI, W., Viscosity Approximation Methods for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces, Journal of Mathematical Analysis and Applications, Vol. 331, pp. 506-515, 2007.
  [ 9 ]. WITTMANN, R., Approximation of Fixed Points of Nonexpansive Mappings, Archiv der Mathematik, Vol. 58, pp. 486-491, 1992.
  [ 10 ]. TADA, A., and TAKAHASHI, W., Strong Convergence Theorem for an Equilibrium Problem and a Nonexpansive Mapping, in: Nonlinear Analysis and Convex Analysis , pp. 609-617 (W. Takahashi and T. Tanaka (Eds.)), Yokohama Publishers, Yokohama, 2007.
  [ 11 ]. ANSARI, Q. H., and YAO, J. C., Iterative Schemes for Solving Mixed Variational-Like Inequalities, Journal of Optimization Theory and Applications, Vol. 108, pp. 527-541, 2001.
  [ 12 ]. NADLER, S. B., Jr., Multivalued Contraction Mappings, Pacific Journal of Mathematics, Vol. 30, pp. 475-488, 1969.
  [ 13 ]. FAN, K., A Generalization of Tychonoff''s Fixed-Point Theorem, Mathematische Annalen, Vol. 142, pp. 305-310, 1961.
  [ 14 ]. XU, H. K., Iterative Algorithms for Nonlinear Operators, Journal of the London Mathematical Society, Vol. 66, pp. 240-256, 2002.
   |