跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 07:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃韻如
研究生(外文):Yun-ru Huang
論文名稱:廣義平衡問題及固定點問題的黏性近似方法
論文名稱(外文):Viscosity Approximation Methods for Generalized Equilibrium Problems and Fixed Point Problems
指導教授:姚任之
指導教授(外文):JEN-CHIH YAO
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:40
中文關鍵詞:非擴張映射固定點廣義平衡問題黏性近似方法
外文關鍵詞:Generalized equilibrium problemStrong convergenceFixed pointNonexpansive mappingViscosity approximation method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
本論文的目的是研究在一個廣義平衡問題(簡稱,GEP)以及在一個希爾伯特空間內的非擴張映射的固定點問題裡,找到一般元素解的集合。首先,透過使用著名的KKM技術,我們為GEP得到輔助問題的解的存在和唯一性。其次,因為這個結果和納德勒的定理,我們透過黏性近似方法實施一個反覆的迭代找到各種GEP解的集合和各種非擴張映射的固定點的集合的一般元素。
The purpose of this paper is to investigate the problem of finding a common element of the set of solutions of a generalized equilibrium problem (for short, GEP) and the set of fixed points of a nonexpansive mapping in a Hilbert space. First, by using the well-known KKM technique we derive the existence and uniqueness of solutions of the auxiliary problems for the GEP. Second, on account of this result and Nadler''s theorem, we introduce an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of the GEP and the set of fixed points of the nonexpansive mapping. Furthermore, it is proven that the sequences generated by this iterative scheme converge strongly to a common element of the set of solutions of the GEP and the set of fixed points of the nonexpansive mapping.
1. Introduction 7
2. Preliminaries 12
3. Auxiliary Problem and Iterative Scheme 16
4. Strong Convergence Theorems 26
5. References 37
[ 1 ]. ZENG, L. C., SCHAIBLE, S., and YAO, J. C., Iterative Algorithm for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities, Journal of Optimizatio Theory and Applications, Vol. 124, pp. 725-738, 2005.

[ 2 ]. BLUM, E., and OETTLI, W., From Optimization and Variational Inequalities to Equilibrium Problems, The Mathematics Student, Vol. 63, pp. 123-145, 1994.

[ 3 ]. COMBETTES, P. L., and HIRSTOAGA, S. A., Equilibrium Programming in Hilbert Spaces, Journal of Nonlinear and Convex Analysis, Vol. 6, pp. 117-136, 2005.

[ 4 ]. FLAM, S. D., and ANTIPIN, A. S., Equilibrium Programming Using Proximal-Like Algorithms, Mathematical Programming, Vol. 78, pp. 29-41, 1997.

[ 5 ]. ZENG, L. C., and YAO, J. C., Implicit Iteration Scheme with Perturbed Mapping for Common Fixed Points of a Finite Family of Nonexpansive Mappings, Nonlinear Analysis, Vol. 64, pp. 2507-2515, 2006.

[ 6 ]. ZENG, L. C., and YAO, J. C., Strong Convergence Theorem by an Extragradient Method for Fixed Point Problems and Variational Inequality Problems, Taiwanese Journal of Mathematics, Vo1. 10, No. 5, pp. 1293-1303, 2006.

[ 7 ]. MOUDAFI, A., Viscosity Approximation Methods for Fixed-Point Problems, Journal of Mathematical Analysis and Applications, Vol. 241, pp. 46-55, 2000.

[ 8 ]. TAKAHASHI, S., and TAKAHASHI, W., Viscosity Approximation Methods for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces, Journal of Mathematical Analysis and
Applications, Vol. 331, pp. 506-515, 2007.

[ 9 ]. WITTMANN, R., Approximation of Fixed Points of Nonexpansive Mappings, Archiv der Mathematik, Vol. 58, pp. 486-491, 1992.

[ 10 ]. TADA, A., and TAKAHASHI, W., Strong Convergence Theorem for an Equilibrium Problem and a Nonexpansive Mapping, in: Nonlinear Analysis and Convex Analysis , pp. 609-617 (W. Takahashi and T. Tanaka (Eds.)), Yokohama Publishers, Yokohama, 2007.

[ 11 ]. ANSARI, Q. H., and YAO, J. C., Iterative Schemes for Solving Mixed Variational-Like Inequalities, Journal of Optimization Theory and Applications, Vol. 108, pp. 527-541, 2001.

[ 12 ]. NADLER, S. B., Jr., Multivalued Contraction Mappings, Pacific Journal of Mathematics, Vol. 30, pp. 475-488, 1969.

[ 13 ]. FAN, K., A Generalization of Tychonoff''s Fixed-Point Theorem, Mathematische Annalen, Vol. 142, pp. 305-310, 1961.

[ 14 ]. XU, H. K., Iterative Algorithms for Nonlinear Operators, Journal of the London Mathematical Society, Vol. 66, pp. 240-256, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊