跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭萬銓
研究生(外文):Peng, Wan-Chuan
論文名稱:氧化鋅摻雜鎵應用於非酵素葡萄糖感測器
論文名稱(外文):Ga doped ZnO nanorods of amperometric non-enzymatic glucose sensor
指導教授:黃建盛黃建盛引用關係
指導教授(外文):Huang, Chien-Sheng
口試委員:楊智強楊勝州
口試委員(外文):Yanga, Chih-ChiangYoung, Sheng-Joue
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:鎵摻雜氧化鋅奈米柱水熱法非酵素型葡萄糖感測器
外文關鍵詞:Gallium doped zinc oxidenanorodshydrothermal methodnon-enzymaticglucose sensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅(Zinc Oxide)是一種無機金屬氧化物半導體材料,為II-VI族的N-type寬能隙半導體材料,能隙約為3.37 eV,激子束縛能高達60 meV,所以化學穩定性良好,氧化鋅除了具有高熔點、熱穩定性外還適合成奈米結構,增加其感測面積,其材料無毒性且具高生物相容性和高電子傳遞能力讓氧化鋅材料在葡萄糖感測器上的應用有很好的潛力,本實驗藉由摻雜三族半導體中的鎵元素以提升葡萄感測器效果,摻雜鎵元素可以減少電阻率、增加載子濃度及較低的電子移動率,摻雜相較於其他方法也較便宜、簡單、安全。
本研究分三階段,第一階段使用低溫且低成本之水熱法製備氧化鋅奈米柱用於當基準。第二階段,調配不同比例摻雜,由於載子濃度增加,有效提升感測效果,其結果再與階段一比較,第三階段以固定時間改變摻雜比例為基準下製備高體表面積比之鎵摻雜氧化鋅奈米柱,並將其研製為非酵素型的葡萄糖感測器。
利用物性分析(掃描電子顯微鏡、穿透式電子顯微鏡、X-射線繞射分析),觀察其奈米結構、元素含量、均勻度都有良好結果,也更確切知道影響感測器之因素。利用電性分析(循環伏安法)觀察不同摻雜量下的氧化鋅奈米柱,藉由摻雜鎵元素改善後,量測在不同濃度下葡萄糖溶液(0~10mM)之循環伏安圖,發現具有良好的靈敏度35.5(μA/cm2-mM)與決定係數(R2)0.994,由階段二觀察到摻雜三族中的鎵元素可以有效提升靈敏度與增強其對葡萄糖分子的催化特性。也藉由階段三成長不同表面積鎵摻雜氧化鋅奈米柱,得出體表面積越大,其感測面積越大,靈敏度值也會隨之提升。

Zinc oxide is an inorganic compound which is wide band gap II-VI compound semiconductors, it’s has a wide-direct band gap 3.37 eV at room temperature ,large exciton binding energy 60 meV and high chemical and thermal stability. In the other hand, it’s have an advantage like high thermal stability, low melting points and suitable for growth of nanostructure. High isoelectric point allowed ZnO as a good biocompatibility and high electron mobility and its low toxicity thus have great potential for non- enzymatic glucose sensing. In this work, doped with group III elements (Gallium), which were decreases the resistivity, increase the carrier concentration and lower electron mobility while with doping. By using doped methods is a relatively cheap and simple over the other enhancement methods.
This study was divided into three phases. The first stage is ZnO nanorods were synthesized by hydrothermal growth technique. The second stage is ZnO doped Ga were mixed at different proportions, which were compared with pure ZnO nanorods. The third stage is high surface-to-volume ratios of gallium lead to enhancement and development of non-enzyme glucose sensor.
The surface morphology and physical properties were characterized by SEM, TEM and X-ray, respectively. Sensing response to compared in a 0~10mM glucose solution with gallium doping and without doping by using cyclic voltammetry method. The glucose sensor with gallium doping show a 35.5 (μA/cm2-mM) and Correlation coefficient (R2) 0.994, compared with the pure ZnO nanorods were 27.28 (μA/cm2-mM) and Correlation coefficient 0.983. On the other hand, samples with different surface-to-volume ratios were obtained by changing the various hydrothermal reaction times, the superiority of gallium doping glucose sensor under hydrothermal reaction 6 hours have the high sensitivity and accuracy is attributed mainly to the high surface area and higher conductivity.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1前言 1
1-2 研究動機 2
1.2.1 糖尿病 2
1.2.2比較酵素與非酵素型葡萄糖感測器 4
1.2.3摻雜的優點 5
第二章 文獻回顧 7
2.1何謂生物感測器 7
2.1.1生物感測器分類 8
2.1.2 依據換能器之分類 9
2.2葡萄糖感測器歷史 13
2.2.1第一型葡萄糖感測器 13
2.2.2第二代葡萄糖感測器 14
2.2.3第三代葡萄糖感測器 15
2.3非酵素型葡萄糖感測器 15
2.3.1 奈米材料被應用於非酵素型葡萄糖感測器 15
2.3.2 氧化鋅奈米結構修飾電極 16
2.4 IHOAM 模型 16
2.5電化學原理 17
2.5.1三極式電化學量測系統 19
2.5.2 循環伏安法 20
2.6氧化鋅基本結構與特性 21
2.7氧化鋅奈米結構成長機制 23
2.7.1氣-液-固 (Vapor-Liquid-Solid,VLS)成長機制 23
2.7.2氣-固 (Vapor-Solid, VS)成長機制 24
2.7.3溶液-液-固(Solution-Liquid-Solid, SLS)成長機制 25
2.8氧化鋅奈米結構合成方法 25
2.8.1化學氣相沉積(Chemical Vapor Deposition, CVD) 25
2.8.2物理氣相沉積(Physical Vapor Deposition, PVD) 26
2.8.3水溶液法(Aqueous solution method) 27
2.8.4水熱法(Hydrothermal method) 28
第三章 實驗方法 29
3.1實驗儀器介紹 29
3.1.1 場發射掃描式電子顯微鏡(Field Emission Electron Microscope,FE-SEM) 29
3.1.2高解析場發射穿透式電子顯微鏡(High-Resolution Transmission Electron Microscopy,HR-TEM) 29
3.1.3 X-射線繞射分析(XRD) 30
3.1.4 電子束蒸鍍機 (E-beam Evaporator) 31
3.1.4 射頻濺鍍機(RF sputtering) 32
3.2 氧化鋅實驗步驟 32
3.2.1氧化鋅工作電極製作流程 32
3.2.2玻璃基板清洗 33
3.2.3電子束蒸鍍鉻層、金極 35
3.2.4 氧化鋅晶種沉積 36
3.2.5低溫水熱法合成一維氧化鋅奈米結構 37
3.2.6氧化鋅奈米結構製作葡萄糖感測器 38
3.2.7 葡萄糖電解質溶液的調配 39
3.2.8 電化學量測系統 40
3.3氧化鋅不同鎵濃度摻雜實驗步驟 40
3.3.1 氧化鋅摻雜鋁工作電極製作流程 40
3.3.2低溫水熱法合成一維鎵摻雜氧化鋅奈米結構 41
3.3.3鎵摻雜氧化鋅奈米結構製作葡萄糖感測器 43
第四章 結果與討論 44
4.1 氧化鋅奈米柱結果討論 44
4.1.1氧化鋅奈米柱FE-SEM分析 44
4.1.2 氧化鋅奈米柱之循環伏安法量測 45
4.2 鎵摻雜氧化鋅奈米柱結果討論 47
4.2.1不同鎵摻雜氧化鋅奈米柱FE-SEM分析 47
4.2.2不同鎵摻雜氧化鋅奈米柱XRD分析 48
4.2.3不同鎵摻雜氧化鋅奈米柱HR-TEM分析 49
4.2.4不同鎵摻雜氧化鋅奈米柱之循環伏安法量測 55
4.2.5氧化鋅奈米柱之穩定性量測 59
4.3 表面積對鎵摻雜氧化鋅奈米柱靈敏度影響 67
4.3.1 表面積於FE-SEM與循環伏安分析 67
第五章 結論 69
參考文獻 70
Conference 73
[1]馬遠榮, "低維奈米材料," 科學發展,2004年10月,382期.
[2]J. X. Wang et al., "Zinc oxide nanocomb biosensor for glucose detection," Applied Physics Letters, vol. 88, no. 23, Jun 5 2006.
[3]E. Gizeli, "Design considerations for the acoustic waveguide biosensor," Smart Materials and Structures, vol. 6, no. 6, pp. 700-706, 1997.
[4]A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, "Prospects of nanotechnology in clinical immunodiagnostics," Sensors (Basel), vol. 10, no. 7, pp. 6535-81, 2010.
[5]S. Y. Lin, S. J. Chang, and T. J. Hsueh, "ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose," Applied Physics Letters, vol. 104, no. 19, May 12 2014.
[6]S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, "Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation," J Phys Chem B, vol. 109, no. 7, pp. 2526-31, Feb 24 2005.
[7]V. Assuncao et al., "Influence of the deposition pressure on the properties of transparent and conductive ZnO : Ga thin-film produced by r.f. sputtering at room temperature," Thin Solid Films, vol. 427, no. 1-2, pp. 401-405, Mar 3 2003.
[8]"About diabetes. World Health Organization. [4 April 2014].".
[9]"Diabetes Fact sheet N°312. WHO. October 2013 [25 March 2014].".
[10]A. E. Kitabchi, G. E. Umpierrez, J. M. Miles, and J. N. Fisher, "Hyperglycemic crises in adult patients with diabetes," Diabetes Care, vol. 32, no. 7, pp. 1335-43, Jul 2009.
[11]G. D. G, Dolores, and Shoback, Greenspan's basic & clinical endocrinology 9th, 2011.
[12]P. J. Twomey, A. Viljoen, T. M. Reynolds, and A. S. Wierzbicki, "Biological Variation in HbA1c Predicts Risk of Retinopathy and Nephropathy in Type 1 Diabetes: Response to McCarter et al," Diabetes Care, vol. 27, no. 10, pp. 2569-2569, 2004.
[13]"衛生福利部."
[14]S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan 18 2006.
[15]M. Chen et al., "X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films," Applied Surface Science, vol. 158, no. 1-2, pp. 134-140, May 2000.
[16]C. Bundesmann et al., "Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li," Applied Physics Letters, vol. 83, no. 10, pp. 1974-1976, Sep 8 2003.
[17]C. K. Chiang et al., "Electrical-Conductivity in Doped Polyacetylene," Physical Review Letters, vol. 39, no. 17, pp. 1098-1101, 1977.
[18]T. Aoki, Y. Hatanaka, and D. C. Look, "ZnO diode fabricated by excimer-laser doping, Applied Physics Letters, vol. 76, no. 22, pp. 3257-3258, May 29 2000.
[19]D. Chattopadhyay and H. J. Queisser, "Electron scattering by ionized impurities in semiconductors," Reviews of Modern Physics, vol. 53, no. 4, pp. 745-768, 1981.
[20]"蘇宏基“化學生物感測器講義”東華大學化學系."
[21]P.Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurements," 1970.
[22]M. M. F. Choi, "Progress in enzyme-based biosensors using optical transducers," Microchimica Acta, vol. 148, no. 3-4, pp. 107-132, Dec 2004.
[23]"黃仕泓,柯正浩 (2004) 表面聲波感測器之前瞻研究,物理雙月刊 23(6): 512-518.
[24]C. J.Wang, "Electrochemical GlucoseBiosensors," 2008.
[25]G. N. Dar et al., "Fabrication of Highly Sensitive Non-Enzymatic Glucose Biosensor Based on ZnO Nanorods," Science of Advanced Materials, vol. 3, no. 6, pp. 901-906, Dec 2011.
[26]D. Pletcher, "Electrocatalysis - Present and Future," Journal of Applied Electrochemistry, vol. 14, no. 4, pp. 403-415, 1984.
[27]L. D. Burke, "Premonolayer Oxidation and Its Role in Electrocatalysis," Electrochimica Acta, vol. 39, no. 11-12, pp. 1841-1848, Aug 1994.
[28]J. O. M. Bockris and A. K. N. Reddy, Modern electrochemistry 2B. Springer US, 2000.
[29]A. J. B. L. R. Faulkner, "Electrochemical Methods, Fundamentals and Applications."
[30]"胡啟章,電化學原理與方法,五南圖書出版有限公司,2002."
[31]P. T. K. W. R. Heineman, "Cyclic Voltammetry."
[32]D. Pradhan, F. Niroui, and K. T. Leung, "High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate," ACS Appl Mater Interfaces, vol. 2, no. 8, pp. 2409-12, Aug 2010.
[33]G.-C. Yi, Vapor–Liquid–Solid Growth of Semiconductor Nanowires. 2012.
[34]R. S. Wagner and W. C. Ellis, "Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth," Applied Physics Letters, vol. 4, no. 5, pp. 89-90, 1964.
[35]Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou, and Z. L. Wang, "Systematic Study of the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor–Solid Process," Advanced Functional Materials, vol. 16, no. 17, pp. 2243-2251, 2006.
[36]A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, "Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties," Journal of Crystal Growth, vol. 282, no. 1-2, pp. 131-136, 2005.
[37]F. D. Wang, A. G. Dong, J. W. Sun, R. Tang, H. Yu, and W. E. Buhro, "Solution-liquid-solid growth of semiconductor nanowires,"Inorganic Chemistry, vol. 45, no. 19, pp. 7511-7521, Sep 18 2006.
[38]D. D. M. K. Zuraw, Principles of Chemical Vapor Deposition. 2003.
[39]"炙昇科技有限公司."
[40]D. A. Jameel, "Thin Film Deposition Processes " International Journal of Modern Physics and Applications vol. 1, no. 4, pp. 193-199 2015.
[41]"中國數字科技館."
[42]L. Vayssieres, "Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions," Advanced Materials, vol. 15, no. 5, pp. 464-466, 2003.
[43]W. I. Park, D. H. Kim, S.-W. Jung, and G.-C. Yi, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Applied Physics Letters, vol. 80, no. 22, pp. 4232-4234, 2002.
[44]C. Pacholski, A. Kornowski, and H. Weller, "Self‐Assembly of ZnO: From Nanodots to Nanorods," Angewandte Chemie International Edition, vol. 41, no. 7, pp. 1188-1191, 2002.
[45]A. Wei et al., "Growth mechanism of tubular ZnO formed in aqueous solution," Nanotechnology, vol. 17, no. 6, pp. 1740-4, Mar 28 2006.
[46]國立成功大學微奈米中心.
[47]M. Oikawa and K. Toda, "Preparation of Pb(Zr,Ti)O3 Thin-Films by an Electron-Beam Evaporation Technique," Applied Physics Letters, vol. 29, no. 8, pp. 491-492, 1976.
[48]D. R. Behrisch, Sputtering by Particle Bombardment I. 1981.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊