跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 04:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俞任
研究生(外文):LIN, YU-JEN
論文名稱:探討以石墨烯與磁珠修飾陣列型氧化鋅/二氧化鈦大面積染料敏化太陽能電池之等效電路分析及無線遠端即時監控系統之研究
論文名稱(外文):Investigation on Equivalent Circuit Analysis of Large-area Arrayed TiO2/ZnO Dye-sensitized Solar Cell Modified by Graphene Integrated with Magnetic Beads and Study on Wireless-based Remote Real-time Monitoring System
指導教授:周榮泉周榮泉引用關係
指導教授(外文):CHOU, JUNG-CHUAN
口試委員:周榮泉周學韜賴志賢廖義宏許渭州
口試委員(外文):CHOU, JUNG-CHUANCHOU, HSUEH-TAOLAI, CHIH-HSIENLIAO, YI-HUNGHSU, WEI-CHOU
口試日期:2016-06-08
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:194
中文關鍵詞:染料敏化太陽能電池氧化鋅緻密層低照度氧化石墨烯磁珠穩定度
外文關鍵詞:dye-sensitized solar cellZnO compact layerlow illuminationgraphene oxidemagnetic beadsstability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文提供一增進染料敏化太陽能電池(dye-sensitized solar cell, DSSC)光伏轉換效率(photovoltaic conversion efficiency, η)之結構,其中於導電透明(transparent conducting oxide, TCO)基板(substrate)與電解液(electrolyte)間所備製之氧化鋅緻密層(ZnO compact layer)除增加二氧化鈦薄膜 (TiO2 film)與導電基板 (TCO substrate)之附著性外,亦可隔絕電解液與導電基板之接觸,以降低電子電洞對之復合 (recombination of electron-hole pairs),提升電池之短路電流密度(Short-Circuit Current Density, Jsc)。同時,本論文之研究結合太陽光模擬器(sun light simulation system) 、電化學阻抗分析儀(electrochemical impedance spectroscopy, EIS) 配合一等效電路模型(equivalent circuit model)、場發射掃描式電子顯微鏡(field emission scanning electron microscopy, FE-SEM)、X光繞射儀(X-ray diffractometer, XRD)及ND濾光片(neutral density filters)探討氧化石墨烯(graphene oxide)與磁珠(magnetic beads)以不同堆疊結構(hierarchical structure)及串並聯模組(series-parallel connection module)對染料敏化太陽能電池於低照度下(under the low illumination)之光伏特性(photovoltaic performance)、異質接面處之界面阻抗(internal interface impedance)、表面形態(morphologies of surface)、薄膜厚度(thickness of film)及薄膜晶相(crystal phase)。經由實驗結果得知,氧化石墨烯之高比表面積(high specific surface area)特性與磁珠之優良傳導特性(conduction properties)有助於染料敏化太陽能電池之光伏轉換效率與電子傳輸(electron transfer)的改善。此外,將封裝完成之元件藉由電源量測單位(source measure unit, SMU)及國家儀器(National Instruments)之LabVIEW軟體進行無線遠端即時監控(wireless-based remote real-time monitor),分析元件於長時間下之穩定度(stability)。
This thesis provides a structure of increasing photovoltaic conversion efficiency for dye-sensitized solar cell (DSSC). ZnO compact layer between transparent conducting oxide (TCO) substrate and electrolyte not only increase the adhesion between TiO2 and TCO substrate but also cut off electrolyte contact with TCO substrate to reduce recombination of electron-hole pairs and to raise short-circuit current density. Simultaneously, we also integrated sun light simulation system, electrochemical impedance spectroscopy (EIS), which assorted with equivalent circuit model, field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD), neutral density filters etc. to investigate photovoltaic performance, internal interface impedance, morphologies, thickness, crystal phase of different hierarchical structures and different series-parallel connection module modified by graphene oxide and magnetic beads for DSSC under the low illumination. According to the experimental result, high specific surface area of graphene oxide and conduction properties of magnetic beads contribute improvement of photovoltaic conversion efficiency and electron transfer for DSSC. Besides, we studied on wireless-based remote real-time monitor and analyzed stability of device for a long time by source measure unit and LabVIEW from National Instruments.
Contents
Chinese Abstract------------------------------------------------------------------------------- i
English Abstract-------------------------------------------------------------------------------- iii
Acknowledgement----------------------------------------------------------------------------- iv
Contents----------------------------------------------------------------------------------------- v
List of Tables----------------------------------------------------------------------------------- ix
List of Figures---------------------------------------------------------------------------------- xi
Chapter 1 Introduction---------------------------------------------------------- 1
1.1 Background----------------------------------------------------------- 1
1.1.1 Development of Dye Sensitized Solar Cell---------------------- 2
1.1.2 Development of Working Electrode ----------------------------- 5
1.1.3 Development of Sensitized-dye ----------------------------------- 6
1.1.4 Development of Electrolyte --------------------------------------- 7
1.1.5 Development of Counter Electrode ------------------------------ 8
1.1.6 Development of Graphene and Graphene Oxide---------------- 9
1.1.7 Development of Magnetic Beads---------------------------------- 10
1.2 Motivation and Purpose-------------------------------------------- 11
Chapter 2 Theory Descriptions------------------------------------------------- 17
2.1 Basic Principle of Dye Sensitized Solar Cell-------------------- 17
2.2 Recombination Reaction of DSSC-------------------------------- 19
2.3 Principle of Electrochemical Impedance Spectroscopy ------- 21
2.4 Short-Circuit Current Density – Voltage (J-V) Measuring System----------------------------------------------------------------
23
Chapter 3 Experimental--------------------------------------------------------- 31
3.1 Reagents, Material and Instrument-------------------------------- 31
3.2 Fabrication Process-------------------------------------------------- 35
3.2.1 Substrate Cleaning--------------------------------------------------- 35
3.2.2 Synthesis of Graphene Oxide Solution--------------------------- 36
3.2.3 Fabrication of Compact Layer ------------------------------------ 37
3.2.4 Fabrication of Dye Adsorption Layer----------------------------- 38
3.2.5 Fabrication of Platinum Layer ------------------------------------ 39
3.2.6 Fabrication of Electrolyte ------------------------------------------ 39
3.2.7 Fabrication of N3 Dye --------------------------------------------- 39
3.2.8 Cell Assembling----------------------------------------------------- 40
3.3 Measurement System----------------------------------------------- 41
3.3.1 Field-Emission Scanning Electron Microscope (FE-SEM)---- 41
3.3.2 X-Ray Diffraction (XRD)------------------------------------------ 42
3.3.3 Solar Simulator Measurement System --------------------------- 43
3.3.4 Electrochemical Impedance Spectroscopy (EIS)---------------- 44
3.3.5 Ultraviolet-Visible (UV-vis) Spectroscopy---------------------- 44
Chapter 4 Results and Discussion--------------------------------------------- 64
4.1 Photocurrent-Voltage Characteristics of TiO2/ZnO Dye-sensitized Solar Cell Fabricated by Different Technologies---------------------------------------------------------

64
4.2 Photocurrent-Voltage Characteristics of Dye-sensitized Solar Cell Modified by Different Graphene Oxide Contents--------------------------------------------------------------- 68
4.3 Photocurrent-Voltage Characteristics of Dye-sensitized Solar Cell Modified by Different Magnetic Beads Contents--------------------------------------------------------------- 70
4.4 Performances and Analysis of Dye-sensitized Solar Cell by Different Structures of Working Electrode---------------------- 72
4.4.1 Photocurrent-Voltage Characteristics of Dye-sensitized Solar Cell Fabricated by Different Structures of Working Electrode-------------------------------------------------------------- 72
4.4.2 Electrochemical Impedance Spectroscopy of Dye-sensitized Solar Cell Fabricated by Different Structures of Working Electrode-------------------------------------------------------------- 73
4.4.3 Surface Morphology of Dye-sensitized Solar Cell Fabricated by Different Structures of Working Electrode------------------- 76
4.4.4 X-ray Diffractometer of Dye-sensitized Solar Cell Fabricated by Different Structures of Working Electrode------------------- 77
4.4.5 Dye Absorbance Analysis of Dye-sensitized Solar Cell Fabricated by Different Structures of Working Electrode 78
4.4.6 Transmittance Analysis of Dye-sensitized Solar Cell Fabricated by Different Structures of Working Electrode----- 79
4.5 Performances and Analysis of Dye-sensitized Solar Cell with Different Substrate-------------------------------------------------- 80
4.5.1 Photocurrent-Voltage Characteristics of Dye-sensitized Solar Cell with Different Substrates------------------------------------- 80
4.5.2 Electrochemical Impedance Spectroscopy Analysis of Dye-sensitized Solar Cell Fabricated with Different Structures of Working Electrode---------------------------------- 81
4.6 Performances and Analysis of Dye-sensitized Solar Cell under Different Illumination--------------------------------------- 82
4.7 Characteristics and Analysis of Large-area Dye-sensitized Solar Cell with Different Series-parallel Modules-------------- 83
4.8 Stability Analysis of Dye-sensitized Solar Cell of via Wireless-based Remote Real-time Monitoring System-------- 84
Chapter 5 Conclusions---------------------------------------------------------- 122
Chapter 6 Future Prospects----------------------------------------------------- 124
References--------------------------------------------------------------------------------------- 125
Appendix---------------------------------------------------------------------------------------- 142
Personal Profile--------------------------------------------------------------------------------- 179


References
[1]J. Gonga, J. Liangb, and K. Sumathy, “Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials,” Renewable and Sustainable Energy Reviews, Vol. 16, Issue 8, PP. 5848-5860, 2012.
[2]S. Yoona, S. Tak, J. Kim, Y. Jun, K. Kang, and J. Park, “ Application of transparent dye-sensitized solar cells to building integrated photovoltaic systems,” Building and Environment, Vol. 46, PP. 1899-1904, 2011.
[3]W. Xuan, Z. Linjie, and M. Klaus, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Letters, Vol. 8, Issue 1, PP. 323-327, 2008.
[4]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells, ” Nature Materials, Vol. 4, PP. 455-459, 2005.
[5]Y. Horie, K. Daizaka, H. Mukae, S. Guo, and T. Nomiyama, “Enhancement of photocurrent by columnar Nb-doped TiO2 compact layer in dye sensitized solar cells with low temperature process of dc sputtering,” Electrochim. Acta, Vol. 187, PP. 348-357, 2016.
[6]J. Xia , N. Masaki , K. Jiang , and S. Yanagida, “Sputtered Nb2O5 as a novel blocking layer at conducting glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells,” J. Phys. Chem. C, Vol. 111, PP. 8092-8097, 2007.
[7]D. H. Kima, S. Leeb, J. H. Parka, J. H. Noha, I. J. Parka, W. M. Seonga, and K. S. Hong, “Transmittance optimized nb-doped TiO2/Sn-doped In2O3 multilayered photoelectrodes for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells, Vol. 96, PP. 276-280, 2012.
[8]Y. Yanga, X. Penga, S. Chena, L. Lina, B. Zhanga, and Y. Feng, “Performance improvement of dye-sensitized solar cells by introducing a hierarchical compact layer involving ZnO and TiO2 blocking films,” Ceram. Int., Vol. 40, PP. 15199-15206, 2014.
[9]T. Taguchi, X. Zhang, I. Sutanto, K. Tokuhiro, T. N. Rao, and H. Watanabe, T. Nakamori, M. Uragamic and A. Fujishima, “Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film,” Chem. Commun., Vol. 9, Issue 19, PP. 2480-2481, 2003.
[10]J. C. Chou, Y. Y. Chiu, Y. M. Yu, S. Y. Yang, P. H. Shih, and C. C. Chen, “Research of titanium dioxide compact layer applied to dye-sensitized solar cell with different substrates”, J. Electrochem. Soc., Vol. 159, PP. A145-A151, 2012.
[11]C. H. Chao, C. L. Chang, C. H. Chan, S. Y. Lien, K. W. Weng, and K. S. Yao, “Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells”, Thin Solid Films, Vol. 518, PP. 7209-7212, 2010.
[12]S. Q. Bia, Y. Z. Zhenga, H. Y. Dingb, X. Taoa, and J. F. Chen, “A gel-state dye-sensitized hierarchically structured ZnO solar cell: retention of power conversion efficiency and durability,” Electrochim. Acta, Vol. 114, PP. 700-705, 2013.
[13]http://www.giichinese.com.tw/report/sne242916-materials-four-key-components-dssc-research-trend.html.
[14]http://www.electronicproducts.com/Power_Products/Batteries_and_Fuel_Cells/Dye-Sensitized_Solar_Cells_Conservative_growth_forecasts_for_3rd_generation_solar_technology.aspx
[15]httpwww.grandviewresearch.comindustry-analysisdye-sensitized-solar-cell-market.
[16]B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, Vol. 353, PP.737-740, 1991.
[17]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” Journal of the American Chemical Society, Vol. 127, PP. 16835-16847, 2005.
[18]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency,” Science, Vol. 334, PP. 629-634, 2011.
[19]S. Nagaia, G. Hiranob, T. Besshoa, and K. Satoria, “Raman spectroscopic study of dye adsorption on TiO2 electrodes of dye-sensitized solar cells,” Vibrational Spectroscopy, Vol. 72, PP. 66-71, 2014.
[20]M. Hamadaniana, A. Gravanda, and V. Jabbaria, “High performance dye-sensitized solar cells (DSSCs) achieved via electrophoretic technique by optimizing of photoelectrode properties,” Advanced Oxides for Electronics, Vol. 16, Issue 5, PP. 1352-1359, 2013.
[21]W. Shu, Y. Liu, Z. Peng, K. Chen, C. Zhang, and W. Chen, “Synthesis and photovoltaic performance of reduced graphene oxide-TiO2 nanoparticles composites by solvothermal method,” Journal of Alloys and Compounds, Vol. 563, PP. 229-233, 2013.
[22]F. Hua, Y. Xiab, Z. Guana, X. Yinb, and T. Heb, “Low temperature fabrication of ZnO compact layer for high performance plastic dye-sensitized ZnO solar cells,” Electrochimica Acta, Vol. 69, PP. 97-101, 2012.
[23]M. Nazeeruddin, C. Klein, P. Liska, and M. Grätzel, “Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells,” Coordination Chemistry Reviews, Vol. 249, Issues 13-14, PP. 1460-1467, 2005.
[24]F. Hirose, M. Shikaku, Y. Kimura, and M. Niwano, “IR study on N719 dye adsorption with high temperature dye solution for highly efficient dye-sensitized solar cells,” Journal of the Electrochemical Society, Vol. 157, PP. B1578-B1581, 2010.
[25]M. J. Bosiaka, M. Rakowieckia, A. Wolana, J. Szlachtab, E. Stanekb, D. Cycońb, and K. Skupieńc,“ Highly efficient benzodifuran based ruthenium sensitizers for thin-film dye-sensitized solar cells,” Dyes and Pigments, Vol.121, PP. 79-87, 2015.
[26]S. Furukawa, H. Iino, T. Iwamoto, K. Kukita, and S. Yamauchi, “Characteristics of dyesensitized solar cells using natural dye,” Journal of Thin Solid Films, Vol.518, PP. 526-529, 2009.
[27]C. I. Oprea, A. Dumbravă, I. Enache, A. Georgescu, and M. Gîrţu, “A combined experimental and theoretical study of natural betalain pigments used in dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 240, PP. 5-13, 2012.
[28]N. Fua, Y. Duanb, Y. Fangb, X. Zhoub, Y. Liuc, F. Pengc, Y. Linb, and H. Huang, “Facile fabrication of highly porous photoanode at low temperature for all-plastic dye-sensitized solar cells with quasi-solid state electrolyte,” Journal of Power Sources, Vol. 271, PP. 8-15, 2014
[29]X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell,” Journal of Electroanalytical Chemistry, Vol. 570, PP. 257-263, 2004.
[30]N. Torabi, A. Behjat, and F. Jafari, “Dye-sensitized solar cells based on porous conjugated polymer counter electrodes,” Thin Solid Films, Vol. 573, PP. 112-116, 2014.
[31]Y. Gao, L. Chu, M. Wu, L. Wang, W. Guo, and T. Ma, “Improvement of adhesion of Pt-free counter electrodes for low-cost dye-sensitized solar cells” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 245, PP. 66-71, 2012.
[32]G. Yue, J. Y. Lin, S. Y. Tai, Y. Xiao, and J. Wu, “(MoS2)/graphene as the counter electrode,” Electrochimica Acta, vol. 85, pp. 162-168, 2012.
[33]M. Song, H. K. Seo, S. Ameen, M. S. Akhtar, H. S. Shin, 2014, “Low resistance transparent graphene-like carbon thin film substrates for high performance dye sensitized solar cells,” Electrochimica Acta, Vol. 115, PP. 559-565.
[34]https://en.wikipedia.org/wiki/Graphene
[35]H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-Graphene composite as a high performance photocatalyst,” Journal of the American Chemical Society Nano, Vol. 4, PP. 380-386, 2010.
[36]X. Xu, D. Huang, K. Cao, M. Wang, S. M. Zakeeruddin, and M. Grӓtzel, “Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells,” Science, Vol. 3, PP. 1-7, 2013.
[37]Y. Gao, H. L. Yip, S. K. Hau, K. M. O’Malley, N. C. Cho, H. Chen, and A. K. Y. Jen, “Anode modification of inverted polymer solar cells using graphene oxide,” Applied Physics Letters, Vol. 97, PP. 203306-1-23306-3, 2010.
[38]https://en.wikipedia.org/wiki/Iron(II,III)_oxide

[39]L. Cuifen, X. Yuying, C. Benli and X. Hua, “Sythesis of magnetie nanometer Fe3O4 powder and Fe3O4 /Tio2 composite material,” Journal of south china normal university, Vol. 2, 4 pages, 2010.
[40]L. Wang, Y. Shi, Y. Wang, H. Zhang, H. Zhou, Y. Wei, S. Taoa and T. Ma, “Composite catalyst of rosin carbon/Fe3O4: highly efficient counter electrode for dye-sensitized solar cells,” Chem. Commun, Vol. 50, PP. 1701-1703, 2014.
[41]A. O. T. Patrocinio, L. G. Paterno, and N. Y. M. Iha, “Layer-by-layer TiO2 Films as Efficient Blocking Layers in Dye-sensitized Solar Cells,” Journal of Photochemistry and Photobiology A:Chemistry, Vol. 205, PP. 23-27, 2009.
[42]M. Gratzel, “Perspectives for Dye-sensitized Nanocrystalline Solar Cells,” Progress In Photovoltaics: Research And Applications, Vol. 8, PP. 171-185, 2000.
[43]Y. M. Yu, “Design and study of the optimal structure for enhancing efficiency of dye-sensitized solar cell,” Master Thesis, Graduate School of Optoelectronics, National Yunlin University of Science and Technology, 2010.
[44]H. Yu, S. Zhang, H. Zhao, G. Will, P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cell,” Electrochimica Acta, Vol. 54, PP.1319-1324, 2009.
[45]M. Shanmugam, M. F. Aroughi, and D. Galipeau, “Effect of atomic layer deposited ultra thin HfO2 and Al2O3 interfacial layers on the performance of dye sensitized solar cells,” Thin Solid Films, Vol. 518, PP. 2678-2682, 2010.
[46]M. F. Hossain, S. Biswas, and T. Takahashi, “The Effect of Sputter-deposited TiO2 Passivating Layer on the Performance of Dye-sensitized Solar Cells Based on Sol–gel Derived Photoelectrode,” Thin Solid Films, Vol. 517, PP.1294-1300, 2008.
[47]周啟達,以紫質及酞花青敏化之二氧化鈦染料敏化太陽能電池研究,化學工程系,國立台灣科技大學,碩士論文,2006。
[48]鞏峰,染料敏化太陽能電池阻抗分析,化工系,天津大學,碩士論文,2007。

[49]Y. I. Chiu, “Research of titanium dioxide compact layer and silver reflected film applied to the flexible dye-sensitized solar cell,” Master Thesis, Graduate School of Optoelectronics, National Yunlin University of Science and Technology, 2011.
[50]http://www.greenrhinoenergy.comsolarradiationspectra.php

[51]H. Ahmeda, J. Doranb, S. J. McCormack, “Increased short-circuit current density and external quantum efficiency of silicon and dye sensitised solar cells through plasmonic luminescent down-shifting layers,” Solar Energy, Vol. 126, PP.146-155, 2016.
[52]X. Z. Guo, Y. H. Luo, C. H. Li, D. Qin, D. M. Li, Q. B. Meng, “Can the incident photo-to-electron conversion efficiency be used to calculate short-circuit current density of dye-sensitized solar cells” Current Applied Physics, Vol. 12, PP.e54-e58, 2012.
[53]http://ecee.colorado.edu/~bart/book/solar.htm

[54]http://www.globalspec.com/learnmore/manufacturing_process_equipment/surface_coating_protection/spin_coaters

[55]K. M. Lin, “Study on improvement of TiO2 working electrode and application to dye sensitized solar cell,” Master Thesis, Graduate School of Optoelectronics, National Yunlin University of Science and Technology, 2015.
[56]A. Luı´sa, C. Rui, R. H. Aguilar, and M. Ade´lio, “Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting,” International Journal of Hydrogen Energy, Vol. 35, PP. 8876-8883, 2010
[57]H. P. Wu, L. L. Li, C. C. Chen, and W. G. Diau, “The analysis of interface impedances of dye-sensitized solar cell (I),” Materialsnet, Vol. 294, PP. 198-204, , 2011.
[58]T. P. Chou, Q. Zhang, and G. Cao, “Effects of Dye Loading Conditions on the Energy Conversion Efficiency of ZnO and TiO2 Dye-Sensitized Solar Cells,” J. Phys. Chem. C, Vol. 111, PP. 18804-18811, 2007.
[59]Y. Lv, W. Li, J. Li, Y. Yang, Y. Li, and Q. Chen, “In situ formation of ZnO scattering sites within a TiO2 nanoparticles film for improved dye-sensitized solar cells performance,” Electrochimica Acta, Vol. 174, PP. 438-445, 2015.
[60]F. Anderson S. Lima, I. F. Vasconcelos, and M. Lira-Cantu, “Electrochemically synthesized mesoporous thin films of ZnO for highly efficient dye sensitized solar cells,” Ceramics International, Vol. 41, PP. 9314-9320, 2015.
[61]T. Horiuchi , H. Miura , K. Sumioka , and S. Uchida, “High efficiency of dye-sensitized solar cells based on metal-free indoline dyes,” J. Am. Chem. Soc, Vol. 126, PP. 12218-12219, 2004.
[62]Q. Zhang, K. Park, and G. Cao, “Synthesis of ZnO aggregates and their application in dye-sensitized solar cells,” Material Matters, Vol. 5, PP. 13 pages, 2010.
[63]H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-Graphene composite as a high performance photocatalyst,” Journal of the American Chemical Society Nano, Vol. 4, PP. 380-386, 2010
[64]X. Xu, D. Huang, K. Cao, M. Wang, S. M. Zakeeruddin, and M. Grӓtzel, “Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells,” Science, Vol. 3, PP. 1-7, 2013.
[65]H. Khurshid, J. Alonso, Z. Nemati, M. H. Phan, P. Mukherjee,M. L. Fdez-Gubieda, J. M. Barandiarán and H. Srikanth, “Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles,” J. Appl. Phys. Vol. 117, 17A337, 2015.
[66]J. C. Chou, C. M. Chu, Y. H. Liao, C. H. Huang, Y. J. Lin, H. Wu, Y. H. Nien, “The incorporation of graphene and magnetic beads into dye-sensitized solar cells and application with electrochemical capacitor,” IEEE Journal of Photovoltaics, Vol. 06, No. 01, PP. 223 - 229, 2016
[67]E. Kouhestanian, S.A. Mozaffari, M. Ranjbar, H. SalarAmoli, and M. H. Armanmehr, “Electrodeposited ZnO thin film as an efficient alternative blocking layer for TiCl4 pre-treatment in TiO2-based dye sensitized solar cells”, Superlattices and Microstructures, Vol. 96, PP. 82-94, 2016.
[68]M. Song, H. K. Seo, S. Ameen, M. S. Akhtar, and H. S. Shin, “Low resistance transparent graphene-like carbon thin film substrates for high performance dye sensitized solar cells,” Electrochimica Acta, Vol. 115, PP. 559-565, 2014
[69]J. Zhao, J. Wu, F. Yu, X. Zhang, Z. Lan, and J. Lin, “Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode”, Electrochimica Acta, Vol. 96, PP. 110-116, 2013
[70]X. Wang , L. Zhi , and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., Vol. 8, PP. 323-327, 2008.
[71]L. Kavan, J. H. Yum, and M. Grätzel, “Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets,” ACS Nano, Vol. 5, PP. 165-172, 2010.
[72]I. Shin, H. Seo, M. K. Son, J. K. Kim, K. Prabakar, abd H. J. Kim, “Analysis of TiO2 thickness effect on characteristic of a dye-sensitized solar cell by using electrochemical impedance spectroscopy,” Current Applied Physics, Vol. 10, PP. 422-424, 2010.
[73]J. C. Chou, S. C. Lin, Y. H. Liao, J. E. Hu, S. W. Chuang, and C. H. Huang, “The influence of electrophoretic deposition for fabricating dye-sensitized solar cell”, J. Nanomater. Vol. 2014, PP. 1-7, 2014.
[74]A. Afifi, and M. K. Tabatabaei, “Efficiency investigation of dye-sensitized solar cells based on the Zinc oxide nanowires”, Oriental J. Chem., Vol. 30, PP. 155-160, 2014.
[75]H. Wang, S. L. Leonard, and Y. H. Hu, “Promoting effect of graphene on dye-sensitized solar cells”, Americould Chem. Soc. Ind. Eng. Chem. Res., Vol. 51, PP. 10613-10620, 2012.
[76]M. M. S. Sanad, A. E. Shalan, M. M. Rashad, and M. H. H. Mahmoud, “Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs),” Applied Surface Science, Vol. 359, PP. 315-322, 2015.
[77]Q. Wang , J. E. Moser , and M. Grätzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells” J. Phys. Chem. B, Vol. 109, PP. 14945-14953, 2005.
[78]A. Sacco, S. Porro, A. Lamberti, M. Gerosa, M. Castellino, A. Chiodoni, and S. Bianco, “Investigation of transport and recombination properties in graphene/titanium dioxide nanocomposite for dye-Sensitized solar cell photoanodes,” Electrochimica Acta, Vol. 131, PP. 154-159, 2014.
[79]Clifford JN, Forneli A, López-Arroyo L, Caballero R, de la Cruz P, Langa F, Palomares E., “Electron transfer dynamics in dye-sensitized solar cells utilizing oligothienylvinylene derivates as organic sensitizers,” ChemSusChem., Vol. 2, PP. 344-349, 2009.
[80]A. Hauch, A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells,” Electrochimica Acta, Vol. 46, PP. 3457-3466, 2001.
[81]H. Tian, X. Yang, J. Cong, R. Chen, C. Teng, J. Liu, Y. Hao, L. Wang, L. Sun, 2010, “Effect of different electron donating groups on the performance of dye-sensitized solar cells”, Dyes and Pigments, Vol. 84, PP. 62-68.
[82]Y. S. Park, H. K. Kim, “The effects of annealing temperature on the characteristics of carbon counter electrodes for dye-sensitized solar cells,” Current Applied Physics, Vol. 11, PP. 989-994, 2011.
[83]J. Y. Lee, S. Horiuchi, and H. K. Choi, “Effects of deposition temperature and chemical composition on the ZnO crystal growth on the surface of Pd catalyst through electroless chemical reaction,” Materials Chemistry and Physics, Vol. 101, PP. 387-394, 2007.
[84]Lu, R. Lia, K. Fan, and T. Peng, “Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles,” Solar Energy, Vol. 84, PP. 844-853, 2010.
[85]J. Zhao, J. Wu, F. Yu, X. Zhang, Z. Lan, and J. Lin,“Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode,” Electrochim. Acta, Vol. 96, PP. 110-116, 2013.
[86]X. Fang, M. Li, K. Guo, Y. Zhu, Z. Hu, X. Liu, B. Chen, and X. Zhao, “Improved properties of dye-sensitized solar cells by incorporation of grapheme into the photoelectrodes,” Electrochim. Acta, Vol. 65, PP. 174-178, 2012.
[87]B. Lin, H. Shang, F. Chu, Y. Ren, N. Yuan, B. Jia, S. Zhang, X. Yu, Y. Wei, and J. Ding, “Ionic liquid-tethered Graphene Oxide/Ionic Liquid Electrolytes for Highly Efficient Dye Sensitized Solar Cells,” Electrochim. Acta., Vol. 134, PP. 209-214, 2014.
[88]S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, Vol. 90, PP. 1176-1188, 2006.
[89]Oviri O.K. and Ekpunobi A.J., “Transmittance and band gap analysis of dye sensitized solar cell” research journal of recent sciences, Vol. 2, PP. 25-31, 2013.
[90]M. Velusamy, K. R. Justin Thomas , J. T. Lin , Y. C. Hsu , and K. C. Ho, “Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells” Org. Lett., Vol. 7, PP. 1899-1902, 2005.
[91]D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, and H. Minoura, “Room-Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye-Sensitized Solar Cells,” Advanced functional materials, Vol. 16, PP. 1228-1234, 2006.
[92]https://infoscience.epfl.ch/record/150259/files/EPFL_TH4805.pdf

[93]J. L. Lan, T. C. Wei, S. P. Feng, C. C. Wan, and G. Cao, “Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities,” physical chemistry, Vol. 116, PP. 25727-25733, 2012.
[94]https://zh.wikipedia.org/wiki/TeamViewer




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以紫質及酞花青敏化之二氧化鈦染料敏化太陽能電池研究
2. 銀絲透明導電膜應用於染料敏化太陽能電池之研究
3. 研製以AZO/IGZO透明導電薄膜製成染敏太陽能電池於低照度、串並聯模組之光電特性與阻抗分析
4. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型 TiO2 (NiO)葡萄糖與尿素感測器之感測特性、穩定性及即時感測系統之量測
5. 探討以石墨烯修飾IGZO工作電極雙層結構可撓式陣列型TiO2染敏太陽能電池模組於低照度之光伏特性 、等效電路分析與即時監控系統之研究
6. 以微流體架構研究差動對參考電極整合磁珠與氧化石墨烯修飾可撓式陣列型IGZO/Al抗壞血酸生醫感測器特性、等效電路及即時感測系統之量測
7. 染料敏化與鈣鈦礦太陽能電池電極優化之研究
8. 以水熱法改質二氧化鈦散射層與摻雜氧化石墨烯於電解液之染料敏化太陽能電池之特性研究
9. 合成含電子匱乏之單,雙錨基有機染料及其染料敏化太陽能電池之探討
10. 石墨烯/錳大環錯合物/聚二氧乙基噻吩複合材料之製備及其於染料敏化太陽能電池對電極應用
11. 共軛高分子摻雜白金作為染料敏化太陽能電池對電極之光電和電化學特性探討
12. 研製以黑磷烯修飾二氧化鈦光電極與銀修飾鉑對電極於低照度之染料敏化太陽能電池
13. 探討以石墨烯與磁珠整合氧化鋅奈米線修飾 可撓式陣列型二氧化鈦染料敏化太陽能電池於低照度 之光電特性與大面積串並聯等效電路的阻抗分析
14. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型氧化鎳葡萄糖與乳酸感測器之穩定性、干擾性、阻抗分析及即時感測系統之量測
15. 還原氧化石墨烯/大環金屬錯合物混成材料在染料敏化太陽能電池背電極之研究
 
無相關期刊
 
1. 以微流體架構研究差動對參考電極整合磁珠與石墨烯修飾陣列型可撓式IGZO葡萄糖感測器與多功能酵素即時感測系統之研製
2. 探討以石墨烯與磁珠整合氧化鋅奈米線修飾 可撓式陣列型二氧化鈦染料敏化太陽能電池於低照度 之光電特性與大面積串並聯等效電路的阻抗分析
3. 以石墨烯修飾之陣列型染料敏化太陽能電池的 光電特性與阻抗分析
4. 以石墨烯修飾磁珠與微流體架構研製差動對參考電極整合於陣列型可撓式葡萄糖生醫感測系統之量測與阻抗分析
5. 探討以石墨烯修飾IGZO工作電極雙層結構可撓式陣列型TiO2染敏太陽能電池模組於低照度之光伏特性 、等效電路分析與即時監控系統之研究
6. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型氧化鎳葡萄糖與乳酸感測器之穩定性、干擾性、阻抗分析及即時感測系統之量測
7. 氧化鈷改質石墨烯/奈米碳管複合材料應用於鋰離子電池
8. 液相電漿法製備奈米二氧化錫之特性探討
9. 矽鍺異質接面應用於矽基太陽電池之研究
10. 新型電動捲線器之研究與設計
11. 以微流體架構研究差動對參考電極整合磁珠與氧化石墨烯修飾可撓式陣列型IGZO/Al抗壞血酸生醫感測器特性、等效電路及即時感測系統之量測
12. 整合型滲透測試技術之研究—竊取已加密之帳號密碼登入網站安全為例
13. 基泰工程司在台灣發展之研究
14. 大小刷頭電動牙刷於牙菌斑清除效果研究
15. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型 TiO2 (NiO)葡萄糖與尿素感測器之感測特性、穩定性及即時感測系統之量測