跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 21:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳韋德
研究生(外文):Wei-De Wu
論文名稱:探討牛樟芝萃取物對藥物誘導人類肝癌細胞死亡之影響
論文名稱(外文):To investigate the effect of Antrodia cinnamomea extracts on the anticancer activity of drugs treatment in hepatocellular carcinoma cells
指導教授:洪瑞祥
指導教授(外文):Jui-Hsiang Hung
口試委員:陳品晟李英瑞
口試委員(外文):Pin-Shern ChenYing-Ray Lee
口試日期:2015-07-16
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:120
中文關鍵詞:肝癌牛樟芝藥物EACHuh-7HepG2
外文關鍵詞:Hepatocellular carcinomaAntrodia cinnamomeaDrugsEACHuh-7HepG2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1069
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
肝癌在全球為排名第三的惡性腫瘤,超過75% 的肝癌病患出現在亞太地區。在台灣每年約有3700位病人因肝癌而死亡。目前有許多的化學物藥物已經使用在 肝癌的治療上。牛樟芝為醫藥用真菌且在台灣被當作保健食品,先前文獻指出牛樟芝萃取物可以抑制腫瘤細胞生長、維護肝臟功能、抗發炎及抗氧化等功能。然而牛樟芝對於肝癌患者在接受藥物治療的安全評估不清楚。因此牛樟芝萃取物對藥物誘導肝癌細胞死亡的影響需要去確認。
本研究想要去探討牛樟芝萃取物對於藥物處理肝癌細胞時所扮演的角色和機制影響。首先我們以酒精來萃取牛樟芝培養基 (EAC),初步結果顯示當給予高濃度的藥物 (5-25 M) 或牛樟芝萃取物 (200-250 g/ml) 處理48小時後可以明顯抑制Huh-7和HepG2肝癌細胞生長,而當以藥物合併EAC處理時發現EAC可以明顯增強Huh-7和HepG2細胞對低濃度藥物的敏感度。而在細胞的外觀上,藥物合併EAC處理時可以使Huh-7細胞從平貼變成圓形。這初步結果顯示EAC對於藥物在處理肝癌細胞時扮演重要角色。因此在本論文中我們進一步分析藥物合併EAC對Huh-7細胞週期的影響,G2 / M期細胞的百分比顯著增加;再更進一步分析Hun-7細胞週期相關蛋白質,經合併處理有抑制現象。在動物模式上,藥物合併EAC明顯抑制腫瘤生長。這樣的結果可以提供一個重要的牛樟芝保健食品安全資訊給在以藥物治療肝癌的病人。

Hepatocellular carcinoma (HCC) is the third most common malignancy worldwide. More than 75% of HCC cases occur in the Asia-Pacific region. In Taiwan, there are about 3,700 patients a year die from liver cancer. There are many chemical drugs have been used in liver cancer therapy. Antrodia cinnamomea is a medicinal fungus that has been served as a functional food in Taiwan for decades. Previous studies have shown that the secondary metabolites form Antrodia cinnamomea have various activities such as antitumor, protection of liver function, anti-inflammation and antioxidant. However, the safety and the possible interaction of Antrodia cinnamomea extracts with drugs in liver cancer patients have been not studied yet.
In the current project, we want to identify the possible role and mechanisms of Antrodia cinnamomea extracts in modulating the activity of drugs in hepatoma cells both in vitro and in vivo. First, Antrodia cinnamomea extracts (EAC) were isolated from culture medium using ethanol. Our preliminary results indicated that the exposure to high concentrations of drugs (5-25 M) or Antrodia cinnamomea extracts (200-250 g/ml) for 48 h caused significant death in Huh-7 and HepG2 cells. In addition, EAC could sensitive tumor cells to low dose of drugs in Huh-7 and HepG2 cells.Considering the cell morphology, the combination of drugs with EAC caused progressive changes in Huh-7 cells from flat to round. Therefore, our preliminary results indicated that EAC could have a positive role in the application of drugs for the treated hepatocellular carcinoma. In this paper, we will further analyze the effect of combination on cell cycle for Huh-7 cells. The percentage of G2/M phase cells notably increased. Then further analysis of cell cycle related proteins on Hun-7 cells, the combination-treated has inhibition. In animal models, the combination significantly inhibition of tumor growth. These results could provide important insight in chemotherapy and safety of Antrodia cinnamomea.

中文摘要 I
Abstract III
目錄 IV
圖目錄 VII
附錄 XI
英文縮寫對照表 XII
第一章 緒論 1
1.1肝癌 1
1.2 Sorafenib (Nexavar,蕾莎瓦) 5
1.3 牛樟芝萃取物 ( Antrodia cinnamomea extracts , EAC ) 8
1.4 細胞週期 (Cell cycle) 13
1.5 細胞凋亡 (Apoptosis) 21
1.6 絲裂原活化蛋白激酶家族 (MAPKs) 途徑與細胞凋亡 28
1.7 研究動機 31
第二章 材料與方法 33
2.1 材料 33
2.1.1 藥品 33
2.1.2 器材 35
2.2 牛樟芝菌絲體培養與萃取 35
2.3 細胞培養 35
2.3.1 細胞培養條件 35
2.3.2 細胞繼代培養 36
2.3.3 計數細胞 36
2.3.4 冷凍細胞 37
2.3.5 解凍細胞 37
2.4 細胞存活率 (MTT assay) 38
2.5 細胞外型觀察 39
2.5.1 單一藥物處理 39
2.5.2 兩種藥物合併處理 39
2.6 螢光染色 39
2.7 細胞週期的分析 (Flow cytometry,流式細胞儀) 40
2.8 Caspase-3 分析 (Flow cytometry,流式細胞儀) 41
2.9 Apoptosis 分析 (Flow cytometry,流式細胞儀) 42
2.10 傷口癒合實驗 (Wound Healing assay) 43
2.11 西方墨點法 43
2.11.1 細胞內蛋白質萃取 43
2.11.2 蛋白質定量 44
2.11.3 膠體配製 45
2.11.4 蛋白質電泳 47
2.11.5 蛋白質轉漬 47
2.11.6 免疫墨點法 48
2.12 腫瘤抑制動物模式 49
第四章 討論 59
第五章 結論 64
參考文獻 65
圖 76
附錄 98

1.Shariff MI, Cox IJ, Gomaa AI, et al. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev Gastroenterol Hepatol. 2009;3:353-67.
2.Bruix J, Sherman M, American Association for the Study of Liver D. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020-2.
3.Carr BI. Hepatocellular carcinoma: current management and future trends. Gastroenterology. 2004;127:S218-24.
4.Nowak A, Findlay M, Culjak G, Stockler M. Tamoxifen for hepatocellular carcinoma. Cochrane Database Syst Rev. 2004:CD001024.
5.Barbare JC, Bouche O, Bonnetain F, et al. Treatment of advanced hepatocellular carcinoma with long-acting octreotide: a phase III multicentre, randomised, double blind placebo-controlled study. Eur J Cancer. 2009;45:1788-97.
6.Grimaldi C, Bleiberg H, Gay F, et al. Evaluation of antiandrogen therapy in unresectable hepatocellular carcinoma: results of a European Organization for Research and Treatment of Cancer multicentric double-blind trial. J Clin Oncol. 1998;16:411-7.
7.Yang TS, Chang HK, Chen JS, et al. Chemotherapy using 5-fluorouracil, mitoxantrone, and cisplatin for patients with advanced hepatocellular carcinoma: an analysis of 63 cases. J Gastroenterol. 2004;39:362-9.
8.Wrzesinski SH, Taddei TH, Strazzabosco M. Systemic therapy in hepatocellular carcinoma. Clin Liver Dis. 2011;15:423-41, vii-x.
9.Chaparro M, Gonzalez Moreno L, Trapero-Marugan M, Medina J, Moreno-Otero R. Review article: pharmacological therapy for hepatocellular carcinoma with sorafenib and other oral agents. Aliment Pharmacol Ther. 2008;28:1269-77.
10.Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665-67.
11.Gusani N, Jiang Y, Kimchi E, et al. New Pharmacological Developments in the Treatment of Hepatocellular Cancer. Drugs. 2009;69:2533-40.
12.Zhang H, Dong B, Lu JJ, et al. Efficacy of sorafenib on metastatic renal cell carcinoma in Asian patients: results from a multicenter study. BMC Cancer. 2009;9:249.
13.Lam ET, Ringel MD, Kloos RT, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol. 2010;28:2323-30.
14.Gupta-Abramson V, Troxel AB, Nellore A, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 2008;26:4714-9.
15.Escudier B, Szczylik C, Hutson TE, et al. Randomized phase II trial of first-line treatment with sorafenib versus interferon Alfa-2a in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:1280-9.
16.Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125-34.
17.Duntas LH, Bernardini R. Sorafenib: rays of hope in thyroid cancer. Thyroid. 2010;20:1351-8.
18.Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in Advanced Hepatocellular Carcinoma. New England Journal of Medicine. 2008;359:378-90.
19.Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25-34.
20.Autier J, Escudier B, Wechsler J, Spatz A, Robert C. Prospective study of the cutaneous adverse effects of sorafenib, a novel multikinase inhibitor. Arch Dermatol. 2008;144:886-92.
21.Yang CH, Yu CJ, Shih JY, et al. Specific EGFR mutations predict treatment outcome of stage IIIB/IV patients with chemotherapy-naive non-small-cell lung cancer receiving first-line gefitinib monotherapy. J Clin Oncol. 2008;26:2745-53.
22.Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666-76.
23.Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408-17.
24.Y. S, C. H, C. H, et al. A phase II study of sorafenib in combination with tegafur/uracil (UFT) for Asian patients with advanced hepatocellular carcinoma (HCC). . Journal of Clinical Oncology. 2009: 4589.
25.Ao ZH, Xu ZH, Lu ZM, et al. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J Ethnopharmacol. 2009;121:194-212.
26.Zang M, CH S. Ganoderma comphoratum, a new taxon in genus Ganoderma from Taiwan, China. Acta Bot. Yunnanica 1990.
27.Chang TT, Chou. WN. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol. Res. . 1995.
28.Wu SH, Ryvarden L, Chang. TT. Antrodia camphorata (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan. . Bot. Bull. Acad. Sinica. 1997.
29.Lin JH, Wu TZ, Chou JC. In vitro induction of fruiting body in Antrodia cinnamomea - a medicinally important fungus. Botanical Studies. 2006: 47, 267-72.
30.Shi L-S, Chao C-H, Shen D-Y, et al. Biologically Active Constituents from the Fruiting Body of Taiwanofungus camphoratus. Bioorganic & medicinal chemistry. 2011;19:677-83.
31.Geethangili M, Tzeng Y-M. Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evidence-based Complementary and Alternative Medicine : eCAM. 2011;2011:212641.
32.Wasser SP, Weis AL. Medicinal Properties of Substances Occurring in Higher Basidiomycetes Mushrooms: Current Perspectives (Review). 1999;1:31-62.
33.Wang SY, Hsu ML, Hsu HC, et al. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer. 1997;70:699-705.
34.Eo SK, Kim YS, Lee CK, Han SS. Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidum. J Ethnopharmacol. 1999;68:175-81.
35.Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 2002;60:258-74.
36.Mizuno T. The Extraction and Development of Antitumor-Active Polysaccharides from Medicinal Mushrooms in Japan (Review). 1999;1:9-29.
37.Chen YS, Pan JH, Chiang BH, Lu FJ, Sheen LY. Ethanolic extracts of Antrodia cinnamomea mycelia fermented at varied times and scales have differential effects on hepatoma cells and normal primary hepatocytes. J Food Sci. 2008;73:H179-85.
38.Liu Y-M, Liu Y-K, Lan K-L, et al. Medicinal Fungus Antrodia cinnamomea Inhibits Growth and Cancer Stem Cell Characteristics of Hepatocellular Carcinoma. Evidence-based Complementary and Alternative Medicine : eCAM. 2013;2013:569737.
39.Smith ML, Fornace AJ, Jr. Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat. Res. 1996;340:109-24

40.Tyson JJ, Novak B, Odell GM, Chen K, Dennis Thron C. Chemical kinetic theory: understanding cell-cycle regulation. Trends in Biochemical Sciences. 1996;21:89-96.
41.King RW, Jackson PK, Kirschner MW. Mitosis in transition. Cell. 1994;79:563-71.
42.McGill CJ, Brooks G. Cell cycle control mechanisms and their role in cardiac growth. Cardiovascular Research. 1995;30:557-69.
43.Vecchione A, Ishii H, Baldassarre G, et al. FEZ1/LZTS1 is down-regulated in high-grade bladder cancer, and its restoration suppresses tumorigenicity in transitional cell carcinoma cells. Am J Pathol. 2002;160:1345-52.
44.Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol. 1999;1:88-93.
45.Sutherland C, Campbell DG, Cohen P. Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2. Identification of two threonines phosphorylated during activation by mitogen-activated protein kinase. Eur J Biochem. 1993;212:581-8.
46.Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 1993;7:812-21.
47.Courjal F, Louason G, Speiser P, et al. Cyclin gene amplification and overexpression in breast and ovarian cancers: evidence for the selection of cyclin D1 in breast and cyclin E in ovarian tumors. Int J Cancer. 1996;69:247-53.
48.Koff A, Cross F, Fisher A, et al. Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell. 1991;66:1217-28.
49.Ohtani K, DeGregori J, Nevins JR. Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci U S A. 1995;92:12146-50.
50.Wimmel A, Lucibello FC, Sewing A, Adolph S, Muller R. Inducible acceleration of G1 progression through tetracycline-regulated expression of human cyclin E. Oncogene. 1994;9:995-7.
51.Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science. 1999;283:851-4.
52.Martinez AM, Afshar M, Martin F, et al. Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity. EMBO J. 1997;16:343-54.
53.Andersen G, Busso D, Poterszman A, et al. The structure of cyclin H: common mode of kinase activation and specific features. EMBO J. 1997;16:958-67.
54.Li JM, Brooks G. Cell cycle regulatory molecules (cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors) and the cardiovascular system; potential targets for therapy? Eur Heart J. 1999;20:406-20.
55.Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501-12.
56.Jeffrey PD, Russo AA, Polyak K, et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature. 1995;376:313-20.
57.McConnell BB, Gregory FJ, Stott FJ, Hara E, Peters G. Induced expression of p16(INK4a) inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol Cell Biol. 1999;19:1981-9.
58.Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature. 1999;400:464-8.
59.Wlodkowic D, Telford W, Skommer J, Darzynkiewicz Z. Apoptosis and Beyond: Cytometry in Studies of Programmed Cell Death. Methods in Cell Biology. 2011;103:55-98.
60.Zakeri Z, Lockshin RA. Physiological cell death during development and its relationship to aging. Ann N Y Acad Sci. 1994;719:212-29.
61.Ishizaki Y. [Physiological functions of programmed cell death]. Seikagaku. 1998;70:365-70.
62.RA L, J. B. Programmed cell death. Life Sci. 1974:15:1549-65.
63.Afford S, Randhawa S. Apoptosis. Mol Pathol. 2000;53:55-63.
64.White E. Life, death, and the pursuit of apoptosis. Genes Dev. 1996;10:1-15.
65.Raff MC. Social controls on cell survival and cell death. Nature. 1992;356:397-400.
66.Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007;35:495-516.
67.Kerr JF, Wyllie AH, Currie AR. Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics. Br J Cancer. 1972;26:239-57.
68.Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305-8.
69.Strasser A, O'Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem. 2000;69:217-45.
70.Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269-90.
71.Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770-6.
72.Salvesen GS, Dixit VM. Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A. 1999;96:10964-7.
73.Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther. 2001;92:57-70.
74.Eskes R, Desagher S, Antonsson B, Martinou J-C. Bid Induces the Oligomerization and Insertion of Bax into the Outer Mitochondrial Membrane. Molecular and Cellular Biology. 2000;20:929-35.
75.Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998;94:481-90.
76.Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94:491-501.
77.Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275:1129-32.
78.Gibbons GH, Pollman MJ. Death receptors, intimal disease, and gene therapy: are therapies that modify cell fate moving too Fas? Circ Res. 2000;86:1009-12.
79.Ekert PG, Silke J, Hawkins CJ, Verhagen AM, Vaux DL. Diablo Promotes Apoptosis by Removing Miha/Xiap from Processed Caspase 9. The Journal of Cell Biology. 2001;152:483-90.
80.Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000;102:1-4.
81.Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309-12.
82.Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000;403:98-103.
83.Ferrari D, Pinton P, Szabadkai G, et al. Endoplasmic reticulum, Bcl-2 and Ca2+ handling in apoptosis. Cell Calcium. 2002;32:413-20.
84.Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47-59.
85.Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood. 2001;98:2603-14.
86.Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci. 2006;63:60-72.
87.Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305:626-9.
88.Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell. 1996;87:171.
89.Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376:37-43.
90.Nicholson DW, Thornberry NA. Apoptosis. Life and death decisions. Science. 2003;299:214-5.
91.Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem. 1999;274:20049-52.
92.Stennicke HR, Salvesen GS. Properties of the caspases. Biochim Biophys Acta. 1998;1387:17-31.
93.Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322-6.
94.Xue D, Horvitz HR. Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor. Nature. 1997;390:305-8.
95.Cheng EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science. 1997;278:1966-8.
96.Sturgill TW, Ray LB. Muscle proteins related to microtubule associated protein-2 are substrates for an insulin-stimulatable kinase. Biochem Biophys Res Commun. 1986;134:565-71.
97.Boulton TG, Cobb MH. Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul. 1991;2:357-71.
98.Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911-2.
99.Bacus SS, Gudkov AV, Lowe M, et al. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene. 2001;20:147-55.
100.Nguyen TT, Tran E, Nguyen TH, et al. The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis. 2004;25:647-59.
101.She QB, Bode AM, Ma WY, Chen NY, Dong Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res. 2001;61:1604-10.
102.Barr RK, Bogoyevitch MA. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int J Biochem Cell Biol. 2001;33:1047-63.
103.Liu J, Lin A. Role of JNK activation in apoptosis: A double-edged sword. Cell Res. 2005;15:36-42.
104.Cheng WH, Zheng X, Quimby FR, Roneker CA, Lei XG. Low levels of glutathione peroxidase 1 activity in selenium-deficient mouse liver affect c-Jun N-terminal kinase activation and p53 phosphorylation on Ser-15 in pro-oxidant-induced aponecrosis. Biochem J. 2003;370:927-34.
105.Eichhorst ST, Muller M, Li-Weber M, et al. A novel AP-1 element in the CD95 ligand promoter is required for induction of apoptosis in hepatocellular carcinoma cells upon treatment with anticancer drugs. Mol Cell Biol. 2000;20:7826-37.
106.Yu C, Minemoto Y, Zhang J, et al. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell. 2004;13:329-40.
107.Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807-69.
108.Deak M, Clifton AD, Lucocq LM, Alessi DR. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998;17:4426-41.
109.Wiggin GR, Soloaga A, Foster JM, et al. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol. 2002;22:2871-81.
110.Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005;15:11-8.
111.Hendrickx N, Volanti C, Moens U, et al. Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J Biol Chem. 2003;278:52231-9.
112.Olson JM, Hallahan AR. p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med. 2004;10:125-9.
113.Weng MS, Ho YS, Lin JK. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem Pharmacol. 2005;69:1815-27.
114.Mayr M, Hu Y, Hainaut H, Xu Q. Mechanical stress-induced DNA damage and rac-p38MAPK signal pathways mediate p53-dependent apoptosis in vascular smooth muscle cells. FASEB J. 2002;16:1423-5.
115.Watabe M, Hishikawa K, Takayanagi A, Shimizu N, Nakaki T. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells. J Biol Chem. 2004;279:6017-26.
116.Lin YW, Chiang BH. 4-acetylantroquinonol B isolated from Antrodia cinnamomea arrests proliferation of human hepatocellular carcinoma HepG2 cell by affecting p53, p21 and p27 levels. J Agric Food Chem. 2011;59:8625-31.
117.Lu Z-m, Xu Z-h. Antcin A contributs to anti-inflammatory effect of Niuchangchih (Antrodia camphorata). Acta Pharmacologica Sinica. 2011;32:981-82.
118.Song M, Park DK, Park H-J. Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth. Evidence-based Complementary and Alternative Medicine : eCAM. 2013;2013:321096.
119.Liu DZ, Liang HJ, Chen CH, et al. Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid-state culture of Taiwanofungus camphoratus in microglia and the mechanism of its action. J Ethnopharmacol. 2007;113:45-53.
120.Chiou J-F, Wu ATH, Wang W-T, et al. A Preclinical Evaluation of Antrodia camphorata Alcohol Extracts in the Treatment of Non-Small Cell Lung Cancer Using Non-Invasive Molecular Imaging. Evidence-based Complementary and Alternative Medicine : eCAM. 2011;2011:914561.
121.Huang C-C, Hsu M-C, Huang W-C, Yang H-R, Hou C-C. Triterpenoid-Rich Extract from Antrodia camphorata Improves Physical Fatigue and Exercise Performance in Mice. Evidence-based Complementary and Alternative Medicine : eCAM. 2012;2012:364741.
122.Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099-109.
123.Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117-34.
124.Zwick E, Bange J, Ullrich A. Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol Med. 2002;8:17-23.
125.Herrera R, Sebolt-Leopold JS. Unraveling the complexities of the Raf/MAP kinase pathway for pharmacological intervention. Trends Mol Med. 2002;8:S27-31.
126.Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 2001;15:981-94.
127.林文鑫, 陳俊憲, 陳勁初, 呂鋒州. 樟芝液態發酵萃取物對腫瘤細胞株之毒殺性分析. 中華民國食品科學技術學會 第三十次會員大會手冊. 2000.
128.李炫璋, 莊正宏, 蔡金川, et al. 中華民國食品科學技術學會. 第三十二次(第十六屆第二次)會員大會手冊. 2002:p. 339.
129.戴宇昀. 樟芝菌絲體與子實體對四氯化碳及酒精誘導之慢性及急性肝損傷之保肝功能評估. 國立中興大學 食品科學系研究所碩士論文. 2001.
130.Jane EP, Premkumar DR, Pollack IF. Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther. 2006;319:1070-80.
131.Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66:11851-8.
132.張中姿, 陳俊憲, 林文鑫, 陳勁初, 呂鋒洲. 深紅色樟芝菌絲體之甲醇萃取物對肝癌細胞株之研究. 中華民國食品科學技術學會第三十一次會員大會論文摘要. 2001:265.
133.Lavelle D, DeSimone J, Hankewych M, Kousnetzova T, Chen YH. Decitabine induces cell cycle arrest at the G1 phase via p21(WAF1) and the G2/M phase via the p38 MAP kinase pathway. Leuk Res. 2003;27:999-1007.
134.Zhang Z, Leonard SS, Huang C, et al. Role of reactive oxygen species and MAPKs in vanadate-induced G(2)/M phase arrest. Free Radic Biol Med. 2003;34:1333-42.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 樟芝菌絲體與子實體對四氯化碳及酒精誘導之慢性及急性肝損傷之保肝功能評估
2. 以薄層層析法檢測Cinnamomum sp. 酒精萃物之研究
3. 牛樟芝子實體萃取物對於人類肝癌細胞株 HepG2之細胞凋亡機制探討
4. 椴木栽培牛樟芝子實體中三萜類活性成分 Antcin K藉由誘導人類肝癌細胞粒線體及內質網壓力調節之細胞凋亡達到抑癌效果
5. 以細胞培養模式評估固態培養牛樟芝菌絲體萃取物之抗肝癌生物活性及其機制
6. 椴木栽培牛樟芝子實體之活性成分齒孔酸(三萜類)誘導人類肝癌細胞內質網壓力調節之自體吞噬
7. 牛樟芝子實體純化物antcin A在肝癌異種移植模型中誘導腫瘤細胞凋亡機制探討
8. 樟芝之保肝以及啤酒花與HALOFERAXMEDITERRANEI酒精萃取物之抗肝癌細胞活性之研究
9. 深層發酵樟芝菌絲體乙醇萃取物對人類肺癌及肝癌細胞生長之影響與其作用機轉之探討
10. 藉由蛋白質體學分析牛樟芝對肝癌的醫療效益
11. 牛樟芝成份分析、生物活性及其 對人類肝癌細胞Hep G2抑制之研究
12. 探討牛樟芝萃取物對於以化學治療藥物處理肝癌細胞的影響
13. 牛樟芝乙醇萃取物抑制人類非小細胞肺癌以及人類肝癌細胞遷移相關分子機制
14. 探討人類肝癌細胞HepG2經doxorubicin處理後KLF4及相關訊息傳遞調控
15. J5人類肝癌細胞株之胰島素受器與胰島素作用之研究
 
無相關期刊