跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳廷翰
研究生(外文):CHEN, TING HAN
論文名稱:單耳及雙耳聽覺對移動聲源辨識能力之影響
論文名稱(外文):A Study of the Ability to Discriminate Moving Sound Source for Monaural Hearing and Binaural Hearing
指導教授:李宜軒李宜軒引用關係
口試委員:王淑娟鄧菊秀李宜軒
口試日期:2018-07-12
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:103
中文關鍵詞:雙耳聽覺移動聲源聽覺實驗
外文關鍵詞:binaural hearingmoving sound sourcenormal hearing experiment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:1
雙耳聽覺於語音辨識或是聲源定位表現皆優於單耳聽覺,而其中大多歸功於頭影效應與總和效應,而單耳聽覺在缺乏以上聽覺資訊判斷聲源於空間中的位置時,往往體感上僅剩音量的差異,嚴重影響其表現,另外在現實的環境中聲源亦可能是具有移動性的,而這即是本研究欲探討之議題。
本研究利用HRTF參數模擬實驗所需之靜態與動態聲源,並以聽常者作為實驗對象,實驗目標音源分為三種包括1000Hz純音、中文語音與被SSN噪音屏蔽之中文語音,聽覺模式則分為三種,雙耳、左單耳與右單耳,如此探討在單耳及雙耳聽覺對於不同目標音源的追蹤度。三組實驗流程皆相同且以1000Hz作為後續實驗基礎,建立比較分析的基準點,尤其聽力測試目前仍以純音為主流。
在另一方面而言,目標音源由簡單到複雜,由純音至語音,前者接近一般臨床測試而後者則是較接近現實情況,相互比較其結果可得知評估上的落差,另外中文語音具有聲調學上的特色,這亦可能是另一影響結果的因素。在實驗結果上也的確發現受試者於純音表現行為相當一致,但與語音的結果對比發現純音對於聲源追蹤而言可能有其盲點,而在噪音屏蔽之語音追蹤實驗則是個體差異極大,行為模式較無規律而無跡可循,可能須更深入的研究。

Binaural hearing outperforms monaural hearing in both speech perception and sound source localization owning to benefit from head shadow and summation effects. Especially monaural hearing is lacking in benefits from head shadow and summation effects, the only mean to discriminate is volume and that highly decreases performance of listeners. Furthermore, in real environment, sound source may be moving, that is the issue will be discussed in this thesis. HRTF database is used to simulate the dynamic or static audio used in experiments. All subject are normal-hearing and target sound sources includes 1000Hz pure tone, Chinese sentences and Chinese sentences with SSN, all these three cases will used in Binaural hearing test and monaural hearing(left ear only and right ear only) so that the result of tracking different sound sources will be acquired and discussed. The results from 1000Hz experiment will be used to compare to other results as a test basis. Also, acquiring comparison of 1000Hz and Chinese sentences will be necessary as Chinese is a tonal language. And the experiment results do actually show the behavior of all subjects are quiet close unlike the result from sentences experiment. Then the results of sentences with SSN are more unpredictable, some further research may be necessary to get more information.
摘要 I
Abstract II
目錄 III
圖目錄 IV
表目錄 V
第一章 緒論 1
1.1 聽力損失 1
1.2 聽覺輔助設備 1
1.2.1 助聽器 2
1.2.2 人工電子耳 3
1.2.3 Bone-Anchored Hearing Aids (BAHA) 5
1.3 研究動機與目標 5
1.4 本篇論文架構 6
第二章 相關研究 7
2.1 雙耳聽覺的優勢 7
2.2雙耳時間差 (ITD) 與 雙耳音量差 (ILD) 7
2.3 聽音辨位 10
第三章 純音音源追蹤實驗 11
3.1 實驗需求 11
3.1.1 實驗設備 11
3.1.2 實驗語料 11
3.1.3 實驗樣本 12
3.2 訊號的產生 12
3.2.1 虛擬聽力模擬 (Virtual Auditory Simulation, VAS) 12
3.2.2 單耳聽覺與雙耳聽覺模擬 13
3.3 實驗方法 13
3.4 結果與討論 16
3.4.1實驗結果 16
3.4.2純音音源追蹤實驗討論 21
第四章 語音音源追蹤實驗 22
4.1 實驗需求 22
4.1.1 實驗設備 22
4.1.2 實驗語料 22
4.1.3 實驗樣本 22
4.2 訊號的產生 23
4.2.1 虛擬聽力模擬 (Virtual Auditory Simulation, VAS) 23
4.2.2 單耳聽覺與雙耳聽覺模擬 24
4.3 實驗方法 24
4.4 結果與討論 27
4.4.1實驗結果 27
4.4.2語音音源追蹤實驗討論 31
4.4.3純音音源追蹤實驗與語音追蹤實驗比較討論 32
第五章 噪音下語音音源追蹤實驗 36
5.1 實驗需求 36
5.1.1 實驗設備 36
5.1.2 實驗語料 36
5.1.3 噪音屏蔽 (Masker) 36
5.1.4 實驗樣本 38
5.2 訊號的產生 37
5.2.1 虛擬聽力模擬 (Virtual Auditory Simulation, VAS) 37
5.2.2 單耳聽覺與雙耳聽覺模擬 38
5.2.3 噪音源 38
5.3 實驗方法 38
5.4 結果與討論 41
5.4.1 噪音源位於0°測試結果 41
5.4.2 噪音源位於60°R測試結果 45
5.4.3 噪音源位於0°結果討論 50
5.4.4 噪音源位於60°R結果討論 51
5.4.5 噪音源位於0°與60°R結果討論 52
第六章 結論與未來展望 54
參考文獻 55
附錄A 聽覺測試中文語料列表I 58
附錄B 實驗樣本列表 66
附錄C Exp.A詳細數據 67
附錄D Exp.B詳細數據 79
附錄E Exp.C詳細數據 86
附錄F Exp.D詳細數據 91


圖目錄
圖1-1人工電子耳示意圖…………………………………………………………………………3
圖1-2耳蝸頻率分布圖……………………………………………………………………………4
圖2-1聲源角度與ITD ………………………………………………….…………………9
圖2-2不同頻率下聲源方向與ILD ………………………………………………………………9
圖3-1聲源角度定義…………………………………………… ………………………………13
圖3-2 純音音源追蹤度Exp.A1角度示意………………………………………………………14
圖3-3純音音源追蹤度Exp.A2角度示意圖……………………………………….……………14
圖3-4 Exp.A1-XX GUI(角度分別為45、35、25、15與5度) …………………………14
圖3-5 Exp.A2 GUI(角度分別為90、70、50、30與10度)……………………………………15
圖3-6(a)(b) 不同聽覺模式對各種移動範圍聲源辨識度………………………………..…16
圖3-7(a)~(e) Exp.A1受試者於各聲源的正確率分布 ……………………………………18
圖3-8(a)~(e) Exp.A2受試者於各聲源的正確率分布 ……………………………………20
圖4-1 聲源角度定義……………………………………………………………………………24
圖4-2 Exp.B1角度示意圖………………………………………………………………………25
圖4-3 Exp.B2角度示意圖………………………………………………………………………25
圖4-4 Exp.B1-XX GUI(角度為25度、15度與5度) …………………………………………25
圖4-5 Exp.B2-XX GUI(角度為50度、30度與10度) …………………………………………26
圖4-6(a)(b) 不同聽覺模式對各種移動範圍聲源辨識度………………………………...………27
圖4-7(a)~(c) Exp.B1受試者於各聲源的正確率分 …………………………………………28
圖4-8(a)~(c) Exp.B2受試者於各聲源的正確率分布 ……………………………………30
圖5-1 聲源角度定義……………………………………………………………………………39
圖5-2 Exp.C1與Exp.D1角度示意圖 …………………………………………………………40
圖5-3 Exp.C2與Exp.D2角度示意圖 …………………………………………………………40
圖5-4 Exp.C1-XX與Exp.D1-XX GUI (角度為25°、15°與5°) ………………………………40
圖5-5 Exp.C2-XX與Exp.D2-XX GUI (角度為50°、30°與10°) ……………………………41
圖5-6(a)(b) 不同聽覺模式對各種移動範圍聲源辨識度……………………………………42
圖5-7(a)~(c) EXP.C1受試者於各聲源的正確率分布 ………………………………………43
圖5-8(a)~(c) Exp.C2受試者於各聲源的正確率分布 ……………………………………45
圖5-9(a)(b) 不同聽覺模式對各種移動範圍聲源辨識度……………………………………46
圖5-10(a)~(c) Exp.D1受試者於各聲源的正確率分布………………………………………47
圖5-11(a)~(c) EXP.D2受試者於各聲源的正確率分布………………………………………49

表目錄
表3-1 EXP.A實驗樣本 12
表4-1 EXP.B實驗樣本 12
表4-2雙耳模式EXP.A1與EXP.B1整體正確率(左);EXP.A2與EXP.B2整體正確率(右) 33
表4-3 左單耳模式EXP.A1與EXP.B1整體正確率(左);EXP.A2與EXP.B2整體正確率(右) 33
表4-4 右單耳模式EXP.A1與EXP.B1整體正確率(左);EXP.A2與EXP.B2整體正確率(右) 33
表4-5雙耳模式於EXP.A1與EXP.B1中語句與純音為目標音源之比較 34
表4-6左單耳模式於EXP.A1與EXP.B1中語句與純音為目標音源之比較 34
表4-7右單耳模式於EXP.A1與EXP.B1中語句與純音為目標音源之比較 34
表4-8左單耳模式於EXP.A2與EXP.B2中語句與純音為目標音源之比較 35
表4-9右單耳模式於EXP.A2與EXP.B2中語句與純音為目標音源之比較 35
表5-1 EXP.C&D實驗樣本 37
表5-2 雙耳模式整體正確率比較 53
表5-3 左單耳模式整體正確率比較 53
表5-4 右單耳模式整體正確率比較 53



[1]American Speech-Language Hearing Association, “Type, degree, and configuration of hearing loss”, Audiology Information Series, pp. 7976-8016, 2011.
[2]http://www.who.int/mediacentre/factsheets/fs300/en
[3]N. Oishi and J. Schacht, “Emerging treatments for noise-induced hearing loss”, Expert Opinion on Emerging Drugs, 16(2):235-245, Jun. 2011.
[4]S. Albert et al., “SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations”, European Journal of Human Genetics, 14(6):773-779, Jun. 2006.
[5]M.J. Schell et al., “Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation”, Journal of Clinical Oncology, 7(6):754-760, Jun. 1989.
[6]T.C. Morata et al., Toluene-induced hearing loss among rotogravure printing workers”, Scandinavian Journal of Work, Environment & Health, 23(4):289-298, Aug. 1997.
[7]C.S. Rebert et al., “Toluene-induced hearing loss in rats evidenced by the brainstem auditory-evoked response”, Neurobehavioral Toxicology and Teratology, 5(1):59-62, Jan.-Feb. 1983.
[8]B.C. Moore, Cochlear Hearing Loss: Physiological, Psychological and Technical Issues, Wiley, 1998.
[9]P.C. Loizou, “Introduction to cochlear implants,” IEEE Engineering in Medicine and Biology Magazine, 18(1):32-34, Jan./Feb. 1999.
[10]B.S. Wilson and M.F. Dorman, “Cochlear implants: a remarkable past and a brilliant future,” Hearing Research, 242(1-2):3-21, Aug. 2008.
[11]https://en.wikipedia.org/wiki/cochlear_implant
[12]B. Fraysse et al., “Residual hearing conservation and electroacoustic stimulation with the nucleus 24 contour advance cochlear implant”, Otology & Neurotology, 27(5):624-633, A. 2006.
[13]重返有聲世界 傾聽生命感動, 馬偕院訊
http://www.mmh.org.tw/MackayInfo2/article/B287/150.htm.
[14]A. Tjellström and B. Håkansson, “The bone-anchored hearing aid. Design principles, indications, and long-term clinical results”, Otolaryngologic Clinics of North America, 28(1):53-72, Feb. 1995.
[15]Y. Fan et al., “The efficacy of unilateral bone-anchored hearing devices in Chinese Mandarin-speaking patients with bilateral aural atresia”, JAMA Otolaryngology - Head & Neck Surgery, 140(4):357-362, Apr. 2014.
[16]L.G. Potts et al., “Recognition and localization of speech by adult cochlear implant recipients wearing a digital hearing aid in the nonimplanted ear (bimodal hearing)”, Journal of the American Academy of Audiology, 20(6):353-373, Jun. 2009.
[17]A. Ciorba et al., “The impact of hearing loss on the quality of life of elderly adults”, Clinical Interventions in Aging, 7:159-163, 2012.
[18]J.F. Feuerstein, “Monaural versus binaural hearing: ease of listening, word recognition, and attentional effort”, Ear and Hearing, 13(2):80-86, Apr. 1002.
[19]S. Arlinger, “Negative consequences of uncorrected hearing loss-a review”, International Journal of Audiology, 42(2):2S17-2S20, Jul. 2003.
[20]M.L. Hawley, R.Y. Litovsky, and H.S. Colburn, “Speech intelligibility and localization in a multi-source environment”, The Journal of the Acoustical Society of America, 105(6):3436-3448, Jun. 1999.
[21]Q.J. Fu et al., “Importance of tonal envelope cues in Chinese speech recognition”, The Journal of the Acoustical Society of America, 104(1):505-510, Jul. 1998.
[22]M.J. Yip, The tonal phonology of Chinese, Dissertation of Dept. of Linguistics and Philosophy, Massachusetts Institute of Technology, 1980.
[23]C. Morera et al., “Advantages of binaural hearing provided through bimodal stimulation via a cochlear implant and a conventional hearing aid: A 6-month comparative study”, Acta Oto-Laryngologica, 125(6):596-606, Jun. 2005.
[24]A.W. Bronkhorst and R. Plomp, “The effect of head-induced interaural time and level differences on speech intelligibility in noise,” The Journal of the Acoustical Society of America, 83(4):1508-1516, Apr. 1988.
[25]M.D. Arsenault and J.L. Punch, “Nonsense-syllable recognition in noise using monaural and binaural listening strategies”, The Journal of the Acoustical Society of America, 105(3)1821-1830, Mar. 1999.
[26]P. Schleich, P. Nopp, and P. D’Haese, “Head shadow, squelch, and summation effects in bilateral users of the MED-EL COMBI 40/40+ cochlear implant”, Ear and Hearing, 25(3):197-204, Jun. 2004.
[27]G.S. Reynolds and S.S. Stevens, “Binaural summation of loudness”, The Journal of the Acoustical Society of America, 32(10):1337-1344, 1960.
[28]R. Litovsky et al., “Simultaneous bilateral cochlear implantation in adults: A multicenter clinical study”, Ear and Hearing, 27(6):714-731, Dec. 2006.
[29]A.W. Mills, “On the minimum audible angle”, The Journal of the Acoustical Society of America, 30(4):237-246, 1958.
[30]W.A. Yost, “Discriminations of interaural phase differences”, The Journal of the Acoustical Society of America, 55(6):1299-1303, Jun. 1974.
[31]G.B. Henning, “Detectability of interaural delay in high-frequency complex waveforms”, The Journal of the Acoustical Society of America, 55(1):84-90, Jan. 1974.
[32]D. McFadden and E.G. Pasanen, “Lateralization at high frequencies based on interaural time differences”, The Journal of the Acoustical Society of America, 59(3):634-639, Mar. 1976.
[33]F.L. Wightman and D.J. Kistler, “The dominant role of low-frequency interaural time differences in sound localization”, The Journal of the Acoustical Society of America, 91(3):1648-1661, Mar. 1992.
[34]B.C.J. Moore, An introduction to the psychology of hearing, Bingley: Emerald, 2008.
[35]W.E. Feddersen et al., “Localization of high-frequency tones”, The Journal of the Acoustical Society of America, 29(9):988-991, 1957.
[36]J. Blauert, Spatial hearing: The psychophysics of human sound localization, Cambridge, MA: MIT Press, 1983.
[37]T.T. Sandel et al., “Localization of sound from single and paired sources”, The Journal of the Acoustical Society of America, 27(5): 842-852, 1955.
[38]D.S. Brungart and W.M. Rabinowitz, “Auditory localization of nearby sources. Head-related transfer functions”, The Journal of the Acoustical Society of America, 106(3):1465-1479, Sep. 1999.
[39]J.W.S. Rayleigh, The theory of sound, New York: Dover, 1907.
[40]V.R. Algazi et al., “The CIPIC HRTF database”, Proc. of the IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, pp. 99-102, Oct. 2001.
[41]D.R. Perrott and A.D. Musicant, “Minimum auditory movement angle: Binaural localization of moving sound sources”, The Journal of the Acoustical Society of America, 62(6):1463-1466, Dec. 1977.
[42]S. Getzmann and J. Lewald, “Localization of moving sound”, Perception & Psychophysics, 69(6):1022-1034, Aug. 2007.
[43]黃銘緯, 台灣地區噪音下漢語語音聽辨測試, 國立台北護理學院聽語障礙科學研究所碩士論文, Jan. 2005.
[44]W.G. Gardner and K.D. Martin, “HRTF measurements of a KEMAR”, Journal of the Acoustical Society of America, 97(6): 3907-3908, Jun. 1995.











QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top