跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 02:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐秉勳
研究生(外文):Ou, Ping-Hsun
論文名稱:神經滋養因子對於慢性間歇性低氧引發大鼠喉氣道過度反應之影響
論文名稱(外文):Effect of Neurotrophins on Laryngeal Airway Hyperreactivity Induced by Chronic Intermittent Hypoxia in Rats
指導教授:賴靜蓉賴靜蓉引用關係
指導教授(外文):Lai, Ching Jung
口試委員:林恂恂林佑穗賴靜蓉
口試委員(外文):Lin, Hsun-HsunLin, You-ShueiLai, Ching Jung
口試日期:2019-07-24
學位類別:碩士
校院名稱:慈濟大學
系所名稱:生理暨解剖醫學碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:64
中文關鍵詞:間歇性低氧神經滋養因子
外文關鍵詞:Intermittent HypoxiaNeurotrophins
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
睡眠呼吸中止症會伴隨著間歇性低氧,進而造成喉部發炎與喉氣道過度反應。喉氣道過度反應被認為是因發炎反應導致上喉辣椒素敏感型神經致敏化,造成呼吸道反射反應的增強。在近期的研究中顯示,神經滋養因子,尤其是nerve growth factor (NGF)以及brain-derived neurotrophic factor (BDNF)可促進喉部發炎作用,進而於喉氣道過度反應發展中扮演著重要的角色。然而NGF和BDNF是否參與在間歇性低氧所誘導大鼠的喉氣道過度反應中,其機制仍未明瞭。本實驗是將清醒的大鼠暴露於重複75秒一個循環的間歇性低氧中或是暴露於空氣之中,每天六小時,持續十四天,並且分別於有或無給予anti-NGF抗體、anti-BDNF抗體與IgG處理。於第十五天,在喉部給予化學刺激物(如:辣椒素、苯基二鳥胺酸與α,β-亞甲基三磷酸腺苷),並觀察喉部受到刺激後引發的呼氣暫停反射反應,視為喉氣道過度反應之程度。在本篇研究結果顯示,有暴露間歇性低氧的大鼠相較於空氣控制組的大鼠,其對於化學刺激物所引起的呼氣暫停反應有明顯的延長;而這個反應能夠被上喉神經以周邊神經辣椒素處理法或是上喉神經剪斷來阻斷。並且,此擴大化學刺激物引發呼氣暫停現象,於大鼠經由anti-NGF抗體處理後,可有效地被抑制。另外,若給予anti-BDNF抗體處理的大鼠經過暴露間歇性低氧後,於苯基二鳥胺酸以及α,β-亞甲基三磷酸腺苷的刺激下引發呼氣暫停增強之反應,有被抑制的現象;但辣椒素所引起的擴大呼氣暫停反應,其減弱效果未達統計上的差異。在生物化學的分析中,大鼠暴露間歇性低氧後,與空氣控制組相比,其喉部組織的NGF與BDNF蛋白質表現量會提升;另外,於喉部組織脂質過氧化測試中顯示其氧化壓力也有所提升。間歇性低氧增加喉部脂質過氧化之作用,於前處理anti-NGF抗體可有效減緩,但anti-BDNF的效果則不佳。再者,若是前處理IgG的間歇性低氧大鼠,其各項測驗與分析則與單獨間歇性低氧組相差無異。從各項實驗結果顯示,暴露間歇性低氧十四天可能導致上喉辣椒素敏感型神經致敏化,進而造成喉部對於化學刺激物所引起的呼氣暫停反應明顯增強,並且神經滋養因子正向調控作用參與於此致敏化過程中。
Obstructive sleep apnea (OSA), manifested by intermittent hypoxia (IH), is associated with laryngeal airway hyperreactivity (LAH) and laryngeal inflammation. LAH is the augmented airway reflexes resulting from the sensitization of superior laryngeal capsaicin-sensitive afferents under laryngeal inflammation. Recent studies have demonstrated that neurotrophins, particularly nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), play a critical role in prompting laryngeal inflammation resulting in the development of LAH. However, whether NGF and BDNF involve in IH-induced LAH in rats remain unclear. Conscious rats were exposed to repetitive 75 seconds cycles of IH or room air (RA) for 6 h/day for 14 consecutive days with/without daily treatment with anti-NGF antibody, anti-BDNF antibody or IgG. At 16 h after their last exposure, the reflex apneic responses to laryngeal provocations with chemical stimulants (e.g. capsaicin, phenylbiguanide, and ,-methylene-ATP) were measured to reflect laryngeal reflex reactivity. Our results showed that laryngeal provocations of three chemical stimulants induced augmentation of reflex apneic response in the IH-exposed rats as compared with the RA rats, which was blocked by sectioning of the superior laryngeal nerves or perineural capsaicin treatment of superior laryngeal nerves. The augmented apneic responses to three stimulants were inhibited by treatment with anti-NGF antibody in IH-exposed rats. Additionally, the enhanced apneic responses to phenylbiguanide and ,-methylene-ATP, but not capsaicin, were significantly suppressed by treatment with anti-BDNF antibody. Biochemical analysis demonstrated that rats exposed to IH displayed increased laryngeal levels of protein expression of NGF and BDNF, and lipid peroxidation (an index of oxidative stress), compared with those exposed to RA. The increased laryngeal lipid peroxidation was significantly prevented by treatment with anti-NGF antibody, but not by anti-BDNF antibody. Treatment with IgG exerted no significant effect on the IH-induced responses. These results suggest that IH exposure for 14 days sensitizes superior capsaicin-sensitive laryngeal afferents, leading to an exaggerated apneic reflex to stimulants; this sensitizing effect is mediated through upregulation of neurotrophins.

目錄
壹、 背景知識 .................................................................................... 3
(一) 重要性 ................................................................................................................ 3
(二) 間歇性低氧 ...................................................................................................... 4
(三) 間歇性低氧促進發炎反應 ....................................................................... 6
(四) 間歇性低氧導致喉氣道過度反應(laryngeal airway
hyperreactivity, LAH) .................................................................................... 7
(五) 上喉感覺神經-上喉辣椒素敏感型 C 纖維 ....................................... 8
(六) 呼吸道中的神經滋養因子 ..................................................................... 10
(七) 間歇性低氧提高神經滋養因子之功能 ............................................ 12
二、 研究目的 .................................................................................. 15
貳、 實驗材料與方法 ......................................................................... 17
一、 研究方法 .................................................................................. 17
(一) 實驗動物 ......................................................................................................... 17
(二) 間歇性低氧模式 .......................................................................................... 17
(三) 動物的麻醉及插管 ..................................................................................... 18
(四) 生理參數測量 ............................................................................................... 19
(五) 喉氣道反射反應之測試 .......................................................................... 19
(六) 周邊神經辣椒素阻斷法( Perineural capsaicin treatment, PCT)
20
(七) 西方墨點法 (Western blotting) ........................................................... 21
(八) 喉組織脂質過氧化反應之測定 ........................................................... 23
二、 藥物製備 .................................................................................. 25
三、 實驗步驟 .................................................................................. 28
四、 資料分析與統計 ...................................................................... 30
參、 實驗結果 ..................................................................................... 31
肆、 討論 ............................................................................................. 35
伍、 結論 ............................................................................................. 41
陸、 圖表及說明 ................................................................................. 42
1. Aloe L, Tuveri MA, Carcassi U, Levi-Montalcini R (1992) Nerve growth factor in the synovial fluid of patients with chronic arthritis. Arthritis Rheum 35:351-355.
2. Barouch R, Kazimirsky G, Appel E, Brodie C (2001) Nerve growth factor regulates TNF-alpha production in mouse macrophages via MAP kinase activation. J Leukoc Biol 69:1019-1026.
3. Bischoff SC, Dahinden CA (1992) Effect of nerve growth factor on the release of inflammatory mediators by mature human basophils. Blood 79:2662-2669.
4. Braun A, Lommatzsch M, Lewin GR, Virchow JC, Renz H (1999a) Neurotrophins: a link between airway inflammation and airway smooth muscle contractility in asthma? Int Arch Allergy Immunol 118:163-165.
5. Braun A, Lommatzsch M, Mannsfeldt A, Neuhaus-Steinmetz U, Fischer A, Schnoy N, Lewin GR, Renz H (1999b) Cellular sources of enhanced brain-derived neurotrophic factor production in a mouse model of allergic inflammation. Am J Respir Cell Mol Biol 21:537-546.
6. Braun A, Lommatzsch M, Neuhaus-Steinmetz U, Quarcoo D, Glaab T, McGregor GP, Fischer A, Renz H (2004) Brain-derived neurotrophic factor (BDNF) contributes to neuronal dysfunction in a model of allergic airway inflammation. Br J Pharmacol 141:431-440.
7. Broytman O, Braun RK, Morgan BJ, Pegelow DF, Hsu PN, Mei LS, Koya AK, Eldridge M, Teodorescu M (2015) Effects of chronic intermittent hypoxia on allergen-induced airway inflammation in rats. Am J Respir Cell Mol Biol 52:162-170.
8. Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ (2004) Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol 557:543-558.
9. Chen X, Alessandri-Haber N, Levine JD (2007) Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4-/- mice. Mol Pain 3:31.
10. Donnelly WT, Bartlett D, Jr., Leiter JC (2016) Serotonin in the solitary tract nucleus shortens the laryngeal chemoreflex in anaesthetized neonatal rats. Exp Physiol 101:946-961.
11. Fahey E, Doyle SL (2019) IL-1 Family Cytokine Regulation of Vascular Permeability and Angiogenesis. Front Immunol 10:1426.
12. Fletcher EC (2000) Effect of episodic hypoxia on sympathetic activity and blood pressure. Respir Physiol 119:189-197.
13. Freund-Michel V, Frossard N (2008) The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol Ther 117:52-76.
14. Freund V, Pons F, Joly V, Mathieu E, Martinet N, Frossard N (2002) Upregulation of nerve growth factor expression by human airway smooth muscle cells in inflammatory conditions. Eur Respir J 20:458-463.
15. Fricke K, Vieira M, Younas H, Shin MK, Bevans-Fonti S, Berger S, Lee R, D'Alessio FR, Zhong Q, Nelson A, Loube J, Sanchez I, Hansel NN, Mitzner W, Polotsky VY (2018) High fat diet induces airway hyperresponsiveness in mice. Sci Rep 8:6404.
16. Furukawa K, Akaike N, Onodera H, Kogure K (1992) Expression of 5-HT3 receptors in PC12 cells treated with NGF and 8-Br-cAMP. J Neurophysiol 67:812-819.
17. Gao X, Zhao L, Zhuang J, Zang N, Xu F (2017) Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation. FASEB J 31:4325-4334.
18. Gon Y, Hashimoto S (2018) Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int 67:12-17.
19. Gould HJ, 3rd, Gould TN, England JD, Paul D, Liu ZP, Levinson SR (2000) A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain. Brain Res 854:19-29.
20. Hahn C, Islamian AP, Renz H, Nockher WA (2006) Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J Allergy Clin Immunol 117:787-794.
21. Harrington AW, Ginty DD (2013) Long-distance retrograde neurotrophic factor signalling in neurons. Nat Rev Neurosci 14:177-187.
22. Hempstead BL (2006) Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res 3:19-24.
23. Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43:143-201.
24. Horigome K, Pryor JC, Bullock ED, Johnson EM, Jr. (1993) Mediator release from mast cells by nerve growth factor. Neurotrophin specificity and receptor mediation. J Biol Chem 268:14881-14887.
25. Huang YC, Yuan ZF, Yang CH, Shen YJ, Lin JY, Lai CJ (2018) Estrogen Modulates the Sensitivity of Lung Vagal C Fibers in Female Rats Exposed to Intermittent Hypoxia. Front Physiol 9:847.
26. Hull JH, Menon A (2015) Laryngeal hypersensitivity in chronic cough. Pulm Pharmacol Ther 35:111-116.
27. Iannone F, De Bari C, Dell'Accio F, Covelli M, Patella V, Lo Bianco G, Lapadula G (2002) Increased expression of nerve growth factor (NGF) and high affinity NGF receptor (p140 TrkA) in human osteoarthritic chondrocytes. Rheumatology (Oxford) 41:1413-1418.
28. Irnich D, Burgstahler R, Bostock H, Grafe P (2001) ATP affects both axons and Schwann cells of unmyelinated C fibres. Pain 92:343-350.
29. Iturriaga R, Oyarce MP, Dias ACR (2017) Role of Carotid Body in Intermittent Hypoxia-Related Hypertension. Curr Hypertens Rep 19:38.
30. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57-68.
31. Kips JC, Tavernier J, Pauwels RA (1992) Tumor necrosis factor causes bronchial hyperresponsiveness in rats. Am Rev Respir Dis 145:332-336.
32. Lavie L (2015) Oxidative stress in obstructive sleep apnea and intermittent hypoxia--revisited--the bad ugly and good: implications to the heart and brain. Sleep Med Rev 20:27-45.
33. Lee LY, Hsu CC, Lin YJ, Lin RL, Khosravi M (2015) Interaction between TRPA1 and TRPV1: Synergy on pulmonary sensory nerves. Pulm Pharmacol Ther 35:87-93.
34. Lee LY, Gu Q, Lin AH, Khosravi M, Gleich G (2019) Airway hypersensitivity induced by eosinophil granule-derived cationic proteins. Pulm Pharmacol Ther:101804.
35. Leslie TA, Emson PC, Dowd PM, Woolf CJ (1995) Nerve growth factor contributes to the up-regulation of growth-associated protein 43 and preprotachykinin A messenger RNAs in primary sensory neurons following peripheral inflammation. Neuroscience 67:753-761.
36. Lieu TM, Myers AC, Meeker S, Undem BJ (2012) TRPV1 induction in airway vagal low-threshold mechanosensory neurons by allergen challenge and neurotrophic factors. Am J Physiol Lung Cell Mol Physiol 302:L941-948.
37. Lin YJ, Lin YS, Lai CJ, Yuan ZF, Ruan T, Kou YR (2013) Perivagal antagonist treatment in rats selectively blocks the reflex and afferent responses of vagal lung C fibers to intravenous agonists. J Appl Physiol (1985) 114:361-370.
38. Lindholm D, Heumann R, Meyer M, Thoenen H (1987) Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330:658-659.
39. Lommatzsch M, Braun A, Renz H (2003) Neurotrophins in allergic airway dysfunction: what the mouse model is teaching us. Ann N Y Acad Sci 992:241-249.
40. Mutoh T, Tsubone H (2003) Hypersensitivity of laryngeal C-fibers induced by volatile anesthetics in young guinea pigs. Am J Respir Crit Care Med 167:557-562.
41. Mutoh T, Kanamaru A, Kojima K, Nishimura R, Sasaki N, Tsubone H (2000) Effects of perineural capsaicin treatment on compound action potentials of superior laryngeal nerve afferents in sevoflurane-anesthetized dogs. J Vet Med Sci 62:117-120.
42. Naida AM, Ghosh TK, Mathew OP (1996) Airway protective reflexes elicited by laryngeal ammonia: role of C-fiber afferents. Respir Physiol 103:11-17.
43. Nassenstein C, Braun A, Erpenbeck VJ, Lommatzsch M, Schmidt S, Krug N, Luttmann W, Renz H, Virchow JC, Jr. (2003) The neurotrophins nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 are survival and activation factors for eosinophils in patients with allergic bronchial asthma. J Exp Med 198:455-467.
44. Nishino T (2000) Physiological and pathophysiological implications of upper airway reflexes in humans. Jpn J Physiol 50:3-14.
45. O'Byrne PM, Inman MD (2003) Airway hyperresponsiveness. Chest 123:411S-416S.
46. Ogawa H, Azuma M, Uehara H, Takahashi T, Nishioka Y, Sone S, Izumi K (2012) Nerve growth factor derived from bronchial epithelium after chronic mite antigen exposure contributes to airway hyperresponsiveness by inducing hyperinnervation, and is inhibited by in vivo siRNA. Clin Exp Allergy 42:460-470.
47. Oyarce MP, Iturriaga R (2018) Proinflammatory Cytokines in the Nucleus of the Solitary Tract of Hypertensive Rats Exposed to Chronic Intermittent Hypoxia. Adv Exp Med Biol 1071:69-74.
48. Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53:159-227.
49. Pan J, Rhode HK, Undem BJ, Myers AC (2010) Neurotransmitters in airway parasympathetic neurons altered by neurotrophin-3 and repeated allergen challenge. Am J Respir Cell Mol Biol 43:452-457.
50. Path G, Braun A, Meents N, Kerzel S, Quarcoo D, Raap U, Hoyle GW, Nockher WA, Renz H (2002) Augmentation of allergic early-phase reaction by nerve growth factor. Am J Respir Crit Care Med 166:818-826.
51. Pirogov AB, Gassan DA, Zinov'ev SS, Prikhodko AG, Kolosov VP, Perelman JM (2019) Destruction of the bronchial epithelium in patients with severe asthma according to different patterns of inflammation and cold airway hyperresponsiveness. Ter Arkh 91:31-35.
52. Prakash Y, Thompson MA, Meuchel L, Pabelick CM, Mantilla CB, Zaidi S, Martin RJ (2010) Neurotrophins in lung health and disease. Expert Rev Respir Med 4:395-411.
53. Puthon L, Bouzat P, Rupp T, Robach P, Favre-Juvin A, Verges S (2016) Physiological characteristics of elite high-altitude climbers. Scand J Med Sci Sports 26:1052-1059.
54. Redzhebova OK, Chizhov A (1992) [Results of utilization of intermittent normobaric hypoxia in patients with bronchial asthma and chronic obstructive bronchitis]. Fiziol Zh 38:39-42.
55. Reinert A, Kaske A, Mense S (1998) Inflammation-induced increase in the density of neuropeptide-immunoreactive nerve endings in rat skeletal muscle. Exp Brain Res 121:174-180.
56. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286:2358-2361.
57. Ryan S, Taylor CT, McNicholas WT (2006) Predictors of elevated nuclear factor-kappaB-dependent genes in obstructive sleep apnea syndrome. Am J Respir Crit Care Med 174:824-830.
58. Safdari BK, Sia TC, Wattchow DA, Smid SD (2016) Effects of pro-inflammatory cytokines, lipopolysaccharide and COX-2 mediators on human colonic neuromuscular function and epithelial permeability. Cytokine 83:231-238.
59. Shieh KR, Yang SC, Tseng HL, Yi CH, Liu TT, Chen CL (2014) Evidence for up-regulation of purinergic receptor genes associating with TRPV1 receptors and neurotrophic factors in the inflamed human esophagus. Curr Mol Med 14:1205-1214.
60. Silveira JS, Antunes GL, Kaiber DB, da Costa MS, Marques EP, Ferreira FS, Gassen RB, Breda RV, Wyse ATS, Pitrez P, da Cunha AA (2019) Reactive oxygen species are involved in eosinophil extracellular traps release and in airway inflammation in asthma. J Cell Physiol.
61. Song M, Martinowich K, Lee FS (2017) BDNF at the synapse: why location matters. Mol Psychiatry 22:1370-1375.
62. Spillane M, Ketschek A, Donnelly CJ, Pacheco A, Twiss JL, Gallo G (2012) Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex. J Neurosci 32:17671-17689.
63. Steiner P, Pfeilschifter J, Boeckh C, Radeke H, Otten U (1991) Interleukin-1 beta and tumor necrosis factor-alpha synergistically stimulate nerve growth factor synthesis in rat mesangial cells. Am J Physiol 261:F792-798.
64. Sun WL, Wang JL, Jia GH, Mi WJ, Liao YX, Huang YW, Hu Z, Zhang LQ, Chen YH (2019) Impact of obstructive sleep apnea on pulmonary hypertension in
patients with chronic obstructive pulmonary disease. Chin Med J (Engl) 132:1272-1282.
65. Takano S, Uchida K, Miyagi M, Inoue G, Fujimaki H, Aikawa J, Iwase D, Minatani A, Iwabuchi K, Takaso M (2016) Nerve Growth Factor Regulation by TNF-alpha and IL-1beta in Synovial Macrophages and Fibroblasts in Osteoarthritic Mice. J Immunol Res 2016:5706359.
66. Thach BT (2007) Maturation of cough and other reflexes that protect the fetal and neonatal airway. Pulm Pharmacol Ther 20:365-370.
67. Townley SL, Grimbaldeston MA, Ferguson I, Rush RA, Zhang SH, Zhou XF, Conner JM, Finlay-Jones JJ, Hart PH (2002) Nerve growth factor, neuropeptides, and mast cells in ultraviolet-B-induced systemic suppression of contact hypersensitivity responses in mice. J Invest Dermatol 118:396-401.
68. Tsai TL, Chang SY, Ho CY, Kou YR (2009) Role of ATP in the ROS-mediated laryngeal airway hyperreactivity induced by laryngeal acid-pepsin insult in anesthetized rats. J Appl Physiol (1985) 106:1584-1592.
69. Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263-11268.
70. Vicente E, Marin JM, Carrizo SJ, Osuna CS, Gonzalez R, Marin-Oto M, Forner M, Vicente P, Cubero P, Gil AV, Soler X (2016) Upper airway and systemic inflammation in obstructive sleep apnoea. Eur Respir J 48:1108-1117.
71. von Boyen GB, Steinkamp M, Reinshagen M, Schafer KH, Adler G, Kirsch J (2006) Nerve growth factor secretion in cultured enteric glia cells is modulated by proinflammatory cytokines. J Neuroendocrinol 18:820-825.
72. Wang Y, Hu K, Liu K, Li Z, Yang J, Dong Y, Nie M, Chen J, Ruan Y, Kang J (2015) Obstructive sleep apnea exacerbates airway inflammation in patients with chronic obstructive pulmonary disease. Sleep Med 16:1123-1130.
73. Yang CH, Zhuang WL, Shen YJ, Lai CJ, Kou YR (2016) NADPH Oxidase-Derived ROS Induced by Chronic Intermittent Hypoxia Mediates Hypersensitivity of Lung Vagal C Fibers in Rats. Front Physiol 7:166.
74. Yang YG, Tian WM, Zhang H, Li M, Shang YX (2013) Nerve growth factor exacerbates allergic lung inflammation and airway remodeling in a rat model of chronic asthma. Exp Ther Med 6:1251-1258.
75. Ye YL, Wu HT, Lin CF, Hsieh CY, Wang JY, Liu FH, Ma CT, Bei CH, Cheng YL, Chen CC, Chiang BL, Tsao CW (2011) Dermatophagoides pteronyssinus 2 regulates nerve growth factor release to induce airway inflammation via a reactive oxygen species-dependent pathway. Am J Physiol Lung Cell Mol Physiol 300:L216-224.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top