跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇芯褕
研究生(外文):SU, SIN-YU
論文名稱:應用複合石墨烯之二氧化鈦光催化分解磺胺嘧啶研究
論文名稱(外文):Photocatalysis of Sulfadiazine by Graphene/TiO2 Composite Photocatalysts
指導教授:洪崇軒洪崇軒引用關係
指導教授(外文):HUNG, CHUNG-HSUANG
口試委員:賴俊吉林怡利洪崇軒
口試委員(外文):LAY, JIUNN-JYILIN, YI-LIHUNG, CHUNG-HSUANG
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:145
中文關鍵詞:二氧化鈦石墨烯光催化電泳沉積法磺胺嘧啶
外文關鍵詞:Titanium dioxidegraphenephotocatalysiselectrophoretic depositionsulfadiazine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用電泳沉積技術(Electrophoretic Deposition, EPD),製備單純TiO2光觸媒與系列摻雜不同比例(0.5 %、1.0 %、1.5 %)石墨烯(GR)之TiO2複合光觸媒薄膜,藉以進行水溶液中磺胺嘧啶(Sulfadiazine, SDZ)光催化分解研究。首先,進行觸媒製備參數對薄膜光觸媒活性之測試實驗,分別探討不同煅燒溫度(250至450 oC)及EPD鍍膜電壓(15至35V),藉以確認活性較佳之薄膜光觸媒製備參數。其後,再繼續針對較佳活性的光觸媒試片,測試它們在不同環境條件下(光源及pH值),對磺胺嘧啶有機物的分解速率之影響。此外,本研究除了進行污染物的分解實驗外,同時也藉由多種光觸媒表面特性的分析(如X光繞射分析儀、掃描式電子顯微鏡),確認觸媒本質特性與光觸媒活性的關係。
研究結果顯示:本研究所製備的光觸媒,對於SDZ的光催化分解反應,符合近一階反應動力關係;在250至450℃的煅燒溫度範圍內,以煅燒溫度450℃的光觸媒試片,具有最快的反應速率,其中,以TG0.5試片具有最高活性(SDZ分解速率k= 0.348 hr-1),較TiO2試片之反應速率高出13.7 %;另外,EPD製備電壓對於光催化分解速率影響的研究中,TiO2試片的光催化活性會隨著EPD製備電壓上升而增加,以製備電壓35 V時,具有最高活性;而TG系列光觸媒中,則會在某個EPD製備電壓下,具有最快反應速率,其分別依序為:TG0.5(25 V)、TG1.0(20 V)、TG1.5(20 V)。根據上述結果,可以發現在煅燒溫度為450℃具有最高活性,而不同系列光觸媒也具有最佳EPD製備電壓,可彙整出具有較高活性之光觸媒試片,試片編號依序為:450TiO2-35V、450TG0.5-25V、450TG1.0-20V、450TG1.5-20V。
最後,針對較佳活性的光觸媒試片進行不同光源與pH值,對光催化分解反應影響的研究。根據實驗結果發現,各系列觸媒均在pH= 3環境條件下,SDZ分解效率最快,且觸媒吸附污染物比例也最多;另外,由於TiO2光觸媒本身對於可見光吸收能力極差,實驗結果發現摻雜石墨烯的光觸媒試片,不僅可以增加原本TiO2光觸媒的活性之外,同時也可增加觸媒對可見光源的吸收,使得相關污染物在可見光光源下,進行光催化分解反應。最後,本研究所製備的光觸媒中,以摻雜0.5 %石墨烯之光觸媒,在UV光及LED光下具有最高活性。

This study investigated liquid-phase photocatalysis of sulfadiazine(SDZ) by both titanium dioxide (TiO2) and graphene doped TiO2 (GR/TiO2) thin-film. The thin-film photocatalysts were prepared with an electrophoretic deposition (EPD) technique by immobilizing P-25 TiO2, with various amount of GR, onto pure titanium (Ti) metal plates. This study explored the effects of preparation recipes on the photocatalytic activities of prepared samples, which were determined by the degradation rate of SDZ assisted by the prepared samples irradiated with a near-UV light. Several preparation parameters including applied DC biases (15~35 V), and terminal calcination temperatures (250~450℃) for the samples were evaluated. The study also used SEM and XRD to identify surface morphology, and crystal phase of prepared samples. Selected photocatalysts with better activities were further used for conducting SDZ photocatalytic degradation tests in variation pH levels and light sources.
The results showed the photocatalysis of SDZ following pseudo first-order reaction kinetics. A better photocatalytic activities of prepared samples were achieved when the they were prepared with calcined in a 450℃ oven. Among them, TG0.5 photocatalyst has the highest activity (k = 0.348 hr-1), which is 13.7 % higher than that of TiO2 photocatalyst. In addition, the effect of EPD of DC biases on the degradation rate of SDZ, the photocatalytic activity of TiO2 increases with the increase of EPD of DC biases, with the highest activity at 35 V. The TG series of photocatalyst, it will be in a EPD of DC biases, with the fastest response rate, which are: TG0.5 (25 V), TG1.0 (20 V), TG1.5 (20 V). Based on the above results, it can be found that the calcination temperature is 450 ℃ with the highest activity, and different series of photocatalyst also has the best EPD of DC biases, can be assembled with a high activity of the photocatalyst, in order: 450TiO2-35V, 450TG0.5-25V, 450TG1.0-20V, 450TG1.5-20V.
Finally, the effects of different light sources and pH values on degradation rate of SDZ were investigated. According to the experimental results, it was found that the degradation rate was the fastest and the proportion of pollutants adsorbed by the catalyst at pH= 3. In addition, the TiO2 photocatalyst itself is very poor for the visible light absorption capacity. The experimental results show that the photocatalyst doping of graphene can not only increase the activity of the original TiO2 photocatalyst, but also increase the absorption of the visible light source. Finally, the photocatalyst prepared in this study has the highest activity in UV light and LED light with photocatalyst doped with 0.5% graphene.

摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 磺醯胺類藥物(sulfonamides) 5
2.1.1 磺醯胺類藥物簡介 5
2.1.2 磺醯胺類藥物流佈現況及危害性 6
2.1.3 磺醯胺類藥物之處理技術 10
2.2 光催化反應程序原理 11
2.2.1 半導體材料性質 11
2.2.2 光催化反應程序 14
2.2.3 異相光催化反應動力模式 16
2.2.4 影響光催化反應速率之可能因子 19
2.3 二氧化鈦光觸媒 22
2.3.1 二氧化鈦之結構與特性 22
2.3.2 二氧化鈦光催化反應機制 24
2.3.3 二氧化鈦光觸媒之製備技術 25
2.3.3.1 電泳沉積(Electrophoretic deposition, EPD) 26
2.4 摻雜改質之二氧化鈦光觸媒 31
2.4.1 石墨烯之結構與特性 32
2.4.2 複合石墨烯之光觸媒於污染物去除應用 33
第三章 研究方法與材料 34
3.1 實驗內容與規畫 34
3.1.1 研究概要 34
3.1.2 研究流程 34
3.2 實驗材料與設備 36
3.2.1 實驗材料 36
3.2.2 實驗儀器與設備 36
3.3 實驗方法與分析 37
3.3.1 光觸媒薄膜之製備 37
3.3.2 異相光催化反應系統 40
3.3.4 磺胺嘧啶藥品濃度檢測 43
3.4 光觸媒表面特性分析儀器 44
3.4.1 掃描式電子顯微鏡(scanning electron microscope,SEM) 44
3.4.2 X光繞射分析儀(X-ray Diffractometer,XRD) 46
第四章 結果與討論 47
4.1光觸媒薄膜特性分析 47
4.1.1光觸媒薄膜之表面形貌分析(SEM) 47
(1)純鈦金屬板表面形貌 48
(2)單純二氧化鈦光觸媒表面形貌 49
(3)摻雜石墨烯二氧化鈦光觸媒表面形貌 52
4.1.2光觸媒表面化學組成成分分析(EDX) 56
4.1.3光觸媒晶相特徵分析(XRD) 59
4.2電泳沉積製備參數對觸媒活性影響 63
4.2.1電泳沉積-電壓影響 63
4.2.2煅燒溫度之影響 66
4.3磺胺嘧啶光催化分解實驗 69
4.3.1觸媒煅燒溫度的影響 69
4.3.2電泳沉積-沉積電壓的影響 82
4.3.3水溶液pH值之影響 85
4.3.3.1 pH值對SDZ光催化分解速率之影響 85
4.3.3.2 pH值對光觸媒暗吸附SDZ之影響 90
4.3.4光源之影響 93
4.3.5石墨烯摻雜比例之影響 97
4.4光催化反應機制探討 101
第五章 結論與建議 103
5.1結論 103
5.2建議事項 104
參考文獻 104
附錄A. 磺醯胺類化合物光催化分解反應濃度隨時間變化一覽表 A-1


Aleksandrzak M.; Adamski P.; Kukułka W.; Zielinska B.; Mijowska E., “Effect of graphene thickness on photocatalytic activity of TiO2-graphene nanocomposites”, Applied Surface Science, 331: 193-199(2015).
Artero V.; Fontecave M.; Tran P.D., “Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems”, Energy & Environmental Science, 3: 727-747(2010).
Avisar D.; Lester Y.; Ronen D., “Sulfamethoxazole contamination of a deep phreatic aquifer”, Science of the Total Environment, 407: 4278–4282(2009).
Bahnemann W.; Muneer M.; Haque M.M., “Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions”, Catalysis Today, 124: 133-148(2007).
Bai H.; Zhou J.; Zhang H.; Tang G., “Enhanced adsorbability and photocatalytic activity of TiO2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase”, Colloids and Surfaces B: Biointerfaces, 150: 68-77(2017).
Basu R.N.; Randall C.A.; Mayo M.J., “Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition”, Journal of the American Ceramic Society, 84(1): 33-40(2001).
Beltrán F.J.; Aguinaco A.; García-Araya J.F.; Oropesa A., “Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water”, Water Research, 42(14): 3799-3808(2008).
Besra, L.;Liu, M.;“A review on fundamentals and applications of electrophoretic deposition (EPD)”, Progress in Materials Science , 52(1): 1-61(2007).
Bhatkhande, D.S.﹔Kamble, S.P.﹔Sawant, S.B.﹔Pangarkar, V.G., “Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light”, Chemical Engineering Journal, 102(3): 283-290(2004).
Boccaccini A.R.; Cabanas-Polo S., “Electrophoretic deposition of nanoscale TiO2: technology and applications”, Journal of the European Ceramic Society, 36: 265-283(2016).
Boreen, A.﹔Arnold, X.﹔Mcneill, K., “Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-Membered heterocyclic groups”, Environmental Science & Technology, 38(14): 3933-3940 (2004).
Brown G.T.; Darwent J.R., “Photoreduction of methyl orange sensitized by colloidal titanium dioxide”, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 80: 1631-1643(1984).
Bu Q.; Wang B.; Huang J.; Deng S.; Yu G., “Pharmaceuticals and personal care products in the aquatic environment in China: a review”, Journal of Hazardous Materials, 262: 189–211(2013).
Cao K.N.; Nguyen V.M.; In-Sang Y., “Synthesis and characterization of the N-doped TiO2 photocatalyst for the photodegradation of methylene blue and phenol”, Journal of Nanoscience and Nanotechnology, 11: 6494-6498(2011).
Chen M.; Chu W., “Efficient degradation of an antibiotic norfloxacin in aqueous solution via a simulated solar-Light-mediated Bi2WO6 process”, Industrial & Engineering Chemistry Research, 51: 4887–4893(2012).
Chen M.L.; Oh W.C., “Synthesis and characterization of CNT/TiO2 composites thermally derived from MWCNT and Titanium(IV) n-Butoxide”, Bulletin- Korean Chemical Society, 29(1): 159-164(2008).
Cheng P.; Wang Y.; Xu L.; Sun P.; Su Z.; Jin F.; Liu F.; Sun Y.; Lu G., “High specific surface area urchin-like hierarchical ZnO TiO2 architectures: Hydrothermal synthesis and photocatalytic properties”, Materials Letters, 175: 52-55(2016).
Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C., “Recent developments in photocatalytic water treatment technology: A review”, Water Research, 44(10): 2997-3027(2010).
Cornu C.J.G.; Colussi A.J.; Hoffmann M.R., “Time scales and pH dependences of the redox processes determining the photocatalytic efficiency of TiO2 nanoparticles from periodic illumination experiments in the stochastic regime”, Journal of Physical Chemistry B, 107: 3156-3160(2003).
Diebold U., “The surface science of titanium dioxide”, Surface Science Reports, 48(5-8): 53-229(2003).
European Commission, “Regulation (EU) No 37/2010 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin”, J. Eur. Union, 15: 1-72(2009).
Fakhouri H.; Pulpytel J.; Smith W.; Zolfaghari A.; Mortaheb H.R.; Meshkini F.; Jafari R.; Sutter E.; Arefi-Khonsari F., “Control of the visible and UV light water splitting and photocatalysis of nitrogen doped TiO2 thin films deposited by reactive magnetron sputtering”, Applied Catalysis B: Environmental, 144: 12-21(2014).
Ferrari B.; Mons R.; Vollat B.; Fraysse B.; Paxeus N.; Lo Giudice R.; Pollio A.; Garric J., “Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment?”, Environment Toxicology and Chemistry, 23: 1344-1354(2004).
Frank S.N.; Bard A.J., “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders”, Journal of Physical Chemistry, 81(15): 1484-1488(1977).
Fujishima A.; Zhang X.; Tryk D.A., “TiO2 photocatalysis and related surface phenomena”, Surface Science Reports, 63: 515-582(2008).
Fukahori S.; Fujiwara T., “Photocatalytic decomposition behavior and reaction pathway of sulfamethazine antibiotic using TiO2”, Journal of Environmental Management, 157: 103-110(2015).
Garcia-Galan M. J.; Diaz-Cruz M. S.; Bercelo D., “Identification and determination of metabolites and degradation products of sulfonamide antibiotics”, Trends in Analytical Chemistry, 27: 1008-1022(2008).
Garoma T.; Umamaheshwar S.K.; Mumper A., “Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation”, Chemosphere, 79: 814–820(2010).
Gaya U.I.; Abdullah A.H., “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1): 1-12(2008).
Göbel A.; Thomsen A.; McArdell C.S.; Joss A.; Giger W., “Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment”, Environmental Science and Technology, 39(11): 3981-3989(2005).
Grätzel M., “Photoelectrochemical cells”, Nature, 414: 338-344(2001).
Guettaï N.; Amar H.A., “Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study”, Desalination, 185: 427-437(2005).
Guo W.; Shi Y.; Wang H.; Yang H.; Zhang G., “Intensification of sonochemical degradation of antibiotics levofloxacin using carbon tetrachloride”, Ultrason. Sonochem, 17: 680-684 (2010).
He C.; Xiong Y.; Zhu X., “A novel method for improving photocatalytic activity of TiO2 film: the combination of Ag deposition with application of external electric field”, Thin Solid Films, 422: 235-238(2002).
Herrmann J.M., “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants”, Catalysis Today, 53(1): 115-129(1999).
Hoffmann M.R.; Martin. S.T.; Choi W.; Bahnemann D.W., “Environmental applications of semiconductor photocatalysis”, Chemical Reviews, 95(1): 69-96(1995).
Hu L.; Flanders P.M.; Miller P.L.; Strathmann T.J., “Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis”, Water Research, 41: 2612-2626(2007).
Jiang G.; Zheng X.; Wang Y.; Li T.; Sun X., “Photo-degradation of methylene blue by multi-walled carbon nanotubes/TiO2 composites”, Powder Technology, 207: 465–469(2011).
Jiang L.; Hu X.; Xu T.; Zhang H.; Sheng D.; Yin D., “Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai”, Science of the Total Environment, 458-460: 267–272 (2013).
Jianlong W.; Libing C., “Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview”, Radiation Physics and Chemistry, 125: 52-64(2016).
Kaneco S.; Rahman M.A.; Suzuki T.; Katsumata H.; Ohta K., “Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide”, Journal of Photochemistry and Photobiology A: Chemistry, 163(3): 419-424(2004).
Kim, T.H.; Kim, S. D., Kim, H. Y., Lim, S. J.; Lee, M.; Yu,S., “Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV”, Journal of Hazardous Materials, 227-228: 237-242 (2012).
Klavarioti M.; Mantzavinos D.; Kassinos D., “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes”, Environment International, 35: 402-417(2009).
Koelsch M..; Cassaignon S.; Guillemoles J.F.; Jolivet J.P., “Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol-gel method”, Thin Solid Films, 403-404: 312–319(2002).
Koli V.B.; Dhodamani A.G.; Delekar S.D.; Pawar S.H., “In situ sol-gel synthesis of anatase TiO2-MWCNTs nanocomposites and their photocatalytic applications”, Journal of Photochemistry and Photobiology A: Chemistry, 333: 40-48(2017).
Kudo A.; Miseki Y., “Heterogeneous photocatalyst materials for water splitting”, Chemical Society Reviews, 38(1): 253-278(2009).
Kumar K.V.; Porkodi K.; Rocha F., “Langmuir–Hinshelwood kinetics – A theoretical study”, Catalysis Communications, 9: 82-84(2008).
Leary R.; Westwood A., “Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis”, Carbon, 49: 741-772(2011).
Lei L.; Su Y.; Zhang X.; Han S.; Chen X., “F-B-codoping of anodized TiO2 nanotubes using chemical vapor deposition”, Electrochemistry Commuications, 9(9): 2291-2298(2007).
Lelario F.; Brienza M.; Bufo S.A.; Scrano L., “Effectiveness of different advanced oxidation processes (AOPs) on the abatement of the model compound mepanipyrim in water”, Journal of Photochemistry and Photobiology A: Chemistry, 321: 187–201(2016).
Lewis J.A., “Colloidal processing of ceramics”, Journal of the American Ceramic Society, 83(10): 2341-2359(2000).
Li H.; Sang Y.; Chang S.; Huang X.; Zhang Y.; Yang R.; Jiang H.; Liu H.; Wang Z.L., “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic Effect”, Nano Lett., 15 (4): 2372–2379(2015).
Liang R.; Luo S.; Jing F.; Shen L.; Qin N.; Wu L., “A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs)”, Applied Catalysis B: Environmental, 176-177: 240-248(2015).
Linsebigler A.L.; Lu G.; Yates Jr J.T., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chemical Reviews, 95(3): 735-758(1995).
Liu J.; Bai H.; Wang Y.; Liu Z.; Zhang X.; Sun D.D., “Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications”,  Advanced Functional Materials, 20(23):4175 – 4181(2010).
Liu Y.; Shi Y.; Liu X.; Li H., “A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue”, Applied Surface Science, 396: 58–66(2017).
Machado B.F.; Serp P., “Graphene-based materials for catalysis”, Catalysis Science & Technology, 2: 54-75(2012).
Malato S.; Fernández-Ibáñez P.; Maldonado M.I.; Blanco J.; Gernjak W., “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends”, Catalysis Today, 147(1): 1-59(2009).
Marotta R.; Spasiano D.; Malato S.; Pilar F.-L.; Somma I.D., “Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach”, Applied Catalysis B: Environmental, 170-171: 90-123(2015).
Mie`ge C.; Choubert J.M.; Ribeiro L.; Euse`be M.; Coquery M., “Fate of pharmaceuticals and personal care products in wastewater treatment plants – conception of a database and first results”, Environmental Pollution, 157: 1721-1726(2009).
Mizukoshi Y.; Masahashi N., “Fabrication of a TiO2 photocatalyst by anodic oxidation of Ti in an acetic acid electrolyte”, Surface and Coatingd Technology, 240: 226-232(2014).
Molinari R.; Caruso A.; Palmisano L., “Photocatalytic processes in membrane reactors”, Comprehensive Membrane Science and Engineering, 3: 165–193 (2010).
Moreira F.C.; Boaventura R.A.R.; Brillas E.; Vilar V.J.P., “Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters”, Applied Catalysis B: Environmental, 202: 217-261(2017).
Mozia S., “Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review”, Separation and Purification Technology, 73(2): 71-91(2010).
Nguyen K.C.; Ngoc M.P.; Nguyen M.V., “Enhanced photocatalytic activity of nanohybrids TiO2/CNTs materials”, Materials Letters, 165: 247–251(2016).
Noberi C.; Kaya F.; Kaya C., “Synthesis, structure and characterization of hydrothermally synthesized Ag-TiO2 nano-structures onto Ni filters using electrophoretic deposition”, Ceramics International, 42: 17202-17209(2016).
Peng C.; Wang W.; Zhang W.; Liang Y.; Zhuo L., “Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination”, Applied Surface Science, 420: 286-295(2017).
Porkodi K.; Kumar K.V.; Selvaganapathi A., “Constrain in solving Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of auramine O aqueous solutions by ZnO catalyst”, Dyes and Pigments, 75: 246-249(2007).
Qinghua C.; Yanjun X.; Xiangwei Z., “Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution”, Electrochimica Acta, 186: 34-42(2015).
Rivera-Utrilla J.; Sanchez-Polo M.; Ferro-Garcia M.A.; Prados-Joya G.; Ocampo-Perez R., “Pharmaceuticals as emerging contaminants and their removal from water. A review”, Chemosphere, 93(7): 1268–1287(2013).
Saquib M.; Muneer M., “TiO2/mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions”, Dyes and Pigments, 56: 37–49(2003).
Saquib M.; Tariq M.A.; Haque M.M.; Muneer M., “Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process”, Journal of Environmental Management, 88(2): 300-306(2008).
Sarkar P.; Nicholson P.S., “Electrophoretic deposition (EPD): mechanisms, kinetics,and application to ceramics”, Journal of the American Ceramic Society, 79: 1987-2002 (1996).
Sarmah A.K.; Meyer M.T.; Boxall A.B.A., “A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment”, Chemosphere, 65: 725-759(2006).
Sato N.; Kawachi M.; Noto K.; Yoshimoto N.; Yoshizawa M., “Effect of particle size reduction on crack formation in electrophoretically deposited YBCO films”, Physica C: Superconductivity, 357-360: 1019-1022(2001).
Shahini P.; Ashkarran A.A., “TiO2 nanofibers assembled on graphene-silver platform as a visible-light photo and bio-active nanostructure”, Ceramics International, 43: 8655-8663(2017).
Shen M.; Wu Z.; Huang H.; Du Y.; Zou Z.; Yang P., “Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation”, Materials Letters, 60(5): 693-676(2006).
Shu X.; An Z.; Wang L.; He J., “Metal oxide-sensitized TiO2 and TiO2−xNx with efficient charge transport conduits”, Chemical Communications, 39: 5901-5903(2009).
Song J.; Fan Q.; Zhu W.; Wang R.; Dong Z., “Preparation of BiOCl with high specific surface area and excellent visible light photocatalytic activity”, Materials Letters, 165: 14-18(2016).
Souzanchi S.; Vahabzadeh F.; Fazel S.; Hosseini S.N., “Performance of an annular sieve-plate column photoreactor using immobilized TiO2 on stainless steel support for phenol degradation”, Chemical Engineering Journal, 223: 268-276(2013).
Štengl V.; Popelková D.; Vláčil P., “TiO2-graphene nanocomposite as high performace photocatalysts”, Journal of Physical Chemistry C, 115(51): 25209-25218(2011).
Sukul P.; Spiteller M., “Sulfonamides in the environment as veterinary drugs”, Reviews of Environmental Contamination and Toxicology, 187: 67-101(2006).
Sun J.; Song M.; Feng J.; Pi Y., “Highly efficient degradation of ofloxacin by UV/Oxone/Co2+ oxidation process”, Environmental Science and Pollution Research, 19: 1536–1543(2012).
Swaminathan M.; Muruganandham M., “TiO2-UV photocatalytic oxidation of Reactive Yellow 14: Effect of operational parameters”, Journal of Hazardous Materials B, 135: 78-86(2006).
Tan F.; Dou P.; Wang W.; Sarreshteh A.; Qiao X.; Qiu X.; Chen J., “One-step microwave-assisted synthesis of Ag/ZnO/Graphene nanocomposites with enhanced photocatalytic activity”, Journal of Photochemistry and Photobiology A: Chemistry, 302: 17-22(2015).
Tang G.; Li J.; Sun M.; Ma X., “Fabrication of nitrogen-doped TiO2 layer on titanium substrate “, Applied Surface Science, 255(22): 9224-9229(2009).
Vandeperre L.; Van der Biest O.; Clegg W.J., “Silicon carbide laminates with carbon interlayers by electrophoretic deposition”, Key Engineering Materials, 127-131: 567-574(1996).
Wammer K.H.; Korte A.R.; Lundeen R.A.; Sundberg J.E.; McNeill K.; Arnold W.A., “Direct photochemistry of three fluoroquinolone antibacterials: norfloxacin, ofloxacin, and enrofloxacin”, Water Research, 47:439-448(2013).
Wang J.; Wang S., “Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review”, Journal of Environmental Management, 182: 620-640(2016).
Wang Y.C.; Leu I.C.; Hon M.H., “Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings”, Journal of the American Ceramic Society, 87(1): 84-88(2004).
Wong, C.C.﹔Chu, W., “The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV source”, Chemosphere, 50(8): 981-987(2003).
Xia Z.; Li H.; Chen J.; Lei L.; Xing J., “Constructing ternary CdS/reduced graphene oxide/TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity”, Applied Catalysis B: Environmental, 168-169: 105-113(2015).
Xiong Z.; Ma J.; Ng W.J.; Waite T.D.; Zhao X.S., “Silver-modified mesoporous TiO2 photocatalyst for water purification”, Water Research, 45(5): 2095-2103(2011).
Yadav H.M.; Kim J.S., “Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance”, Journal of Alloys and Compounds, 688: 123-129(2016).
Yan L.; Zheng Y.B.; Zhao F.; Li S.; Gao X.; Xu B.; Weiss P.S.; Zhao Y., “Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials”, Chemical Society Reviews, 41: 97(2012).
Yang Y.; Ok Y.S.; Kim K.H.; Kwon E.E.; Tsang Y.F., “Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review”, Science of the Total Environment, 596-597: 303-320(2017).
Yang Y.; Xu L.; Wang H.; Wang W.; Zhang L., “TiO2/graphene porous composite and its photocatalytic degradation of methylene blue”, Materials and Design, 108: 632-639(2016).
Yanjun X.; Qinghua C.; Shuna W., “Synthesis of Au–CuS–TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline”, Chemical Engineering Journal, 302: 377-387(2016).
Yoneyama H.; Torimoto T., “Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations”, Catalysis Today, 58(2-3): 133-140(2000).
Yu J.; Zhou M.; Cheng B.; Zhao X., “Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders”, Journal of Molecular Catalysis A: Chemical, 246: 176–184(2006).
Yu J.G.; Zhang L.J.; Cheng B.; Su Y.R., “Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro/mesoporous titania”, Journal of Physical Chemistry B, 111:10582(2007).
Zhang D.; Gersberg R.M.; Ng W.J.; Tan S.K., “Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review”, Environmental Pollution, 184: 620–639(2014).
Zhang H.; Bai H.; Zhou J.; Tang G., “Enhanced adsorbability and photocatalytic activity of TiO2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase”, Colloids and Surfaces B: Biointerfaces, 150: 68-77(2017).
Zhang Z.﹔Wang C.C.﹔Zakaria R.; Ying J.Y. “Role of particle size in nanocrystalline TiO2-based photocatalysts”, Journal of Physical Chemistry B, 102: 10871-10878 (1998).
Zhang, Q.﹔Gao, L.﹔Guo, J., “Effects of calcinations on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis”, Applied Catalysis B: Environmental, 26(3): 207-215(2000).
Zhitomirsky I.; Gal-or L., “Electrophoretic deposition of hydroxyapatite”, Journal of Materials Science: Materials in Medicine, 8(4): 213-219(1997).
Zhou M.; Yu J.; Liu S.; Zhai P.; Jiang L., “Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method”, Journal of Hazardous Materials, 154: 1141–1148(2008).
Zou S.; Xu W.; Zhang R.; Tang J.; Chen Y.; Zhang G., “Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities”, Environmental Pollution, 159: 2913–2920(2011).
王瑜鈞,應用複合奈米碳材料改質之二氧化鈦薄膜瑜光電催化分解磺胺嘧啶研究,國立高雄第一科技大學環境與安全衛生工程系,碩士論文,2015。
卡田博史,光觸媒圖解,商周出版,2003。
朱純燕,林志勳,周濟眾,張文發,張紹光,張聰洲,陳啟銘,劉朝鑫,“反芻動物常用動物用藥品使用手冊”, 行政院農業委員會動植物防疫檢疫局,2010。
周冠魁,應用摻雜奈米碳管/石墨烯之二氧化鈦薄膜光電催化分解苯蒸氣研究,國立高雄第一科技大學環境與安全衛生工程系,碩士論文,2016。
林正芳,林郁真,康佩群,胡景堯,特定污染源廢(污)水中新興污染物管制研究專案計畫,期末報告,2008。
林郁真, “論環境中之新興污染物”,環境工程會刊,第十八卷,第1期,第39-55頁,2007。
高濂,鄭珊,張青紅,“奈米光觸媒”,五南圖書出版股份有限公司,2004。
陳昶佑,以水熱法製備氮與鎢共摻雜鈦酸管合成及其可見光觸媒之應用,國立中山大學材料與光電科學學系,碩士論文,2014。
陳郁雯,應用碳摻雜改質二氧化鈦於磺胺嘧啶光電催化分解特性研究,國立高雄第一科技大學環境與安全衛生工程系,碩士論文,2013。
陳寬珉,高屏溪流域磺胺類抗生素分布之研究,國立中山大學海洋生物科技暨資源研究所,碩士論文,2014。
曾郁婷,以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究,國立中央大學,環境工程研究所,碩士論文,2013。
楊金鐘,王智龍,邱鈺涵,2012,藥物及鄰苯二甲酸酯類於典寶溪之流布調查,中華民國環境工程學會2012 廢水處理技術研討會。
潘叔憶,電泳沉積法製作光觸媒濾網與應用於降解甲醛氣體污染物之研究,國立臺灣師範大學工業教育學系,碩士論文,2011。
衛生福利部食品藥物管理署,修正動物用藥殘留標準,104.10.16部授食字第1041303515號令,2015。
鄭佳倩,以自由基捕捉/螢光法量測光催化反應中氫氧自由基之生成,國立高雄第一科技大學環境與安全衛生工程系,碩士論文,2007。
盧建鳴,應用電泳沉積程序加速水中碳酸鹽結晶沉積之可行性研究,國立高雄第一科技大學環境與安全衛生工程系,碩士論文,2014。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top