[1] R. V. D. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd edition, Kluwer Academic Publishers, 2003.
[2] D.A Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
[3] C.R. Grace, P. J. Hurst, S.H. Lewis, “A 12-bit 80-MSample/s pipelined ADC with bootstrapped digital calibration,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 5, May 2005, pp. 1038 – 1046.
[4] H. C. Kim, D. K. Jeong, W. Kim, “A partially switched-opamp technique for high-speed low-power pipelined analog-to-digital converters,” IEEE Transactions on Circuits and Systems I, Vol. 53, No. 4, April 2006, pp. 795 – 801.
[5] J. P. Li, G. C. Ahn, D. Y. Chang, U. K. Moon, “A 0.9-V 12-mW 5-MSPS algorithmic ADC with 77-dB SFDR,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 4, April 2005, pp. 960 – 969.
[6] D. Y. Chang, G. C. Ahn, U. K. Moon, “Sub-1-V design techniques for high-linearity Multistage pipelined analog-to-digital converters,” IEEE Transactions on Circuits and Systems I, Vol. 52, No. 1, Jan. 2005, pp. 1 – 12.
[7] S. H. Lewis, “Optimizing the stage resolution in pipelined, multistage, analog- to-digital converters for video-rate applications,” IEEE Transactions on Circuits and Systems II, Vol. 39, No. 8, Aug. 1992, pp. 516 – 523.
[8] S. H. Lewis, H.S. Fetterman, G. F. Jr. Gross, R. Ramachandran, T.R. Viswanathan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 3, March 1992, pp. 351 – 358.
[9] B. Razavi, Principles of Data Conversion System Design, IEEE PRESS, 1995
[10] Y. S. Hwang; L. P. Liao, C. C. Tsai, W. T. Lee, T.Y. Lee, J. J. Chen, “A new CCII-based pipelined analog to digital converter,” IEEE Int. Symp. on Circuits and Systems, Vol. 6, May 2005, pp. 6170 – 6173.
[11] H. A. Alzaher, M. Ismail, “A CMOS fully balanced differential difference amplifier and its applications,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 48, No.6, June 2001 pp. 614 – 620.
[12] H. A. Alzaher, H. Elwan, M. Ismail, “A CMOS fully balanced second-generation current conveyor,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 50, No. 6, June 2003, pp. 278 – 287.
[13] H. A. Alzaher, “CMOS highly linear fully differential current conveyor” Electronics Letters, Vol. 40, No. 4, Feb. 2004, pp. 214 – 216.
[14] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000.
[15] J.S Lee, P. Roux, U.V. Koc, T. Link, Y. Baeyens, Y. K. Chen; “A 5-b 10-GSample/s A/D converter for 10-gb/s optical receivers,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 10, Oct. 2004, pp. 1671 – 1679.
[16] B. Razavi, B. A. Wooley, “A 12-b 5-Msample/s two-step CMOS A/D converter,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 12, Dec. 1992, pp. 1667 – 1678.
[17] H. V. D. Ploeg, R. Remmers, “A 3.3-V, 10-b, 25-MSample/s two-step ADC in 0.35-μm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 12, Dec. 1999, pp. 1803 – 1811.
[18] A. M. Abo, P.R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 5, May 1999, pp. 599 – 606.
[19] 鄭光偉,一伏十位元導管式類比數位轉換器, 碩士論文, 國立台灣大學電機 工程學研究所, 2002.[20] L. Lin, Design Techniques for Parallel Pipelined ADC, MS Thesis, University of California, Berkeley, May 1996.
[21] A. Abo, Design for Reliability of Low-Voltage, Switch-Capacitor Circuits, PhD Thesis, University of California, Berkeley, May 1999.
[22] A. Sedra, K. Smith, “A second-generation current conveyor and its applications,” IEEE Transactions on Circuits and Systems, Vol.17, No. 1, Feb. 1970, pp. 132 – 134.
[23] F. Sequin, A. Fabre, “New second generation current conveyor with reduced parasitic resistance and bandpass filter application,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 48, No.6, June 2001, pp. 781 – 785.
[24] C. A. Karybakas, A. Papazoglou, “Low-sensitive CCII-based biquadratic filters offering electronic frequency shifting” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 46, No. 5, May 1999, pp. 527 – 539.
[25] T. Cho, Low-Power Low-Voltage Analog-to-Digital Converter Techniques Using Pipelined Architecture, PhD Thesis, University of California, Berkeley, 1995.
[26] H. Klimach, A. Arnaud, C. G. Montoro, M. C. Schneider, “MOSFET mismatch modeling: a new approach,” IEEE Design & Test of Computers, Vol. 23, No. 1, Jan.-Feb. 2006 , pp. 20 – 29.
[27] B. Razavi, B. A. Wooley, “Design techniques for high-speed, high-resolution comparators,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 12, Dec. 1992, Page(s):1916 – 1926.
[28] L. Sumanen,; M. Waltari, K. A. I. Halonen, “A 10-bit 200-MS/s CMOS parallel pipeline A/D converter,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 7, July 2001, pp. 1048 – 1055.
[29] M. Dessouky, A. Kaiser, “Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 3, March 2001, pp. 349 – 355.
[30] M. Dessouky, A. Kaiser, “Rail-to-rail operation of very low voltage CMOS switched-capacitor circuits,” Proc. IEEE Int. Symp. Circuits and Systems, Vol. 2, May 1999, pp. 144 – 147.
[31] J. Steensgaard, “Bootstrapped low-voltage analog switches,” Proc. IEEE Int. Symp. Circuits and Systems, Vol. 2, May 1999, pp. 29 – 32.
[32] A. A. Tutyshkin,; A. S. Korotkov, “Current conveyor based switched-capacitor integrator with reduced parasitic sensitivity,” Proc. IEEE Int. Conf. on Circuits and Systems for Communications, June 2002, pp. 78 – 81.