跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巫興彥
研究生(外文):Hsing-Yen Wu
論文名稱:以全差動第二代電流傳輸器為基礎之新型管線式類比數位轉換器
論文名稱(外文):Design of New Fully Balanced Second-Generation Current Conveyor Based Pipelined A/D Converter
指導教授:黃育賢
指導教授(外文):Yuh-Shyan Hwang
口試委員:陳建中郭建宏宋國明
口試委員(外文):Jiann-Jong ChenChien-Hung KuoGuo-Ming Sung
口試日期:2006-06-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:類比數位轉換器管線式電流傳輸器相乘式數位類比轉換器
外文關鍵詞:A/D converterFlashPipelinedCurrent conveyorMDAC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在所有的架構中,快閃式類比數位轉換器 (Flash A/D Converter) 是目前最快的一種架構,然而在提高解析度時,整體面積與消耗功率卻呈現大幅度的增加。因此,管線式類比數位轉換器 (Pipelined A/D Converter) 相較於快閃式類比數位轉換器更適合發展快速與高解析度的架構。管線式類比數位轉換器的效能往往取決於所使用的運算放大器,所以運算放大器的設計常常為管線式類比數位轉換器的設計重點。有別於一般採用運算放大器為核心電路的設計方式,管線式類比數位轉換器的兩個主要電路:前端取樣保持電路(Sample/Hold Circuit)以及相乘式數位類比轉換器(Multiplying DAC),採用以第二代電流傳輸器(Second-Generation Current Conveyor,CCII)為架構的電路已經被設計出來了。而在訊號傳輸的架構中,採用全差動(Fully Differential)的架構有高雜訊免疫(Noise Rejection)以及兩倍的訊號擺幅(Signal Swing)等優點,因此被廣泛採用於類比數位轉換器中。因此,在此論文中,採用了全差動式電流傳輸器(Fully-Balanced CCII,FBCCII )來設計管線式類比數位轉換器,其中在MDAC的部份,提出了新的電路,來抵抗電荷注入(Charge Injection)的效應。整體電路採用台灣積體電路公司(TSMC)0.18um 1P6M製程來實現,解析度為7位元,取樣頻率為12.5MHz,INLMAX為1.3LSB,DNLMAX為0.7LSB,晶片面積為1.5×1.4mm2。
Among all the ADC architectures, the flash ADC is the fastest one. However, chip area and power consumption grow exponentially as the resolution increases. The pipelined architecture is more suitable for high speed and high resolution applications than the flash architecture. The accuracy of the pipelined ADC greatly depends on OP Amp’s performance. As the result, OP Amp is the most critical circuit when engineers design a pipelined ADC. Unlike the conventional design of pipelined ADC, the sample-and-hold(S/H) circuit and multiplying DAC(MDAC) based on the second-generation current conveyor have been developed instead of the OP Amp. Fully differential architecture is commonly adopted to develop signal process system because of its merits, such as highly noise rejection and double signal swing. Thus, a fully-balanced second -generation current conveyor is adopted to design the pipelined ADC. Besides, a new MDAC is designed to eliminate the effect of charge injection. The pipelined ADC is designed and implemented with TSMC 0.18um 1P6M process. The resolution of the ADC is 7 bits, sampling rate is 12.5Mhz, INLMAX is 1.3LSB, and DNLMAX is 0.7LSB, and chip area is 1.5×1.4mm2.
目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii

第一章 序論 1
1.1 相關研究發展近況 1
1.2 研究動機 2
1.3 論文架構 2

第二章 管線式類比數位轉換器原理 4
2.1簡介 4
2.2類比數位轉換器效能參數 4
2.2.1 解析度 4
2.2.2 訊號雜訊比 4
2.2.3 訊號對雜訊及失真比 6
2.2.4 動態範圍 6
2.2.5 非線性度 7
2.3類比數位轉換器架構介紹 9
2.3.1 快閃式類比數位轉換器 9
2.3.2 兩段快閃式類比數位轉換器 10
2.3.3 管線式類比數位轉換器 12
2.4管線式類比數位轉換器內部架構介紹 13
2.5數位錯誤校正技術 17
2.5.1 單級1.5位元架構 19

第三章 以電流傳輸器為基礎之管線式類比數位轉換器 22
3.1簡介 22
3.2交換電容技術 22
3.2.1 靴帶式開關 25
3.3第二代電流傳輸器 26
3.4以電流傳輸器為基礎之取樣保持電路 27
3.5以電流傳輸器為基礎之相乘式數位類比轉換器 29
3.5.1 以電流傳輸器為基礎之新型相乘式數位類比轉換器 30
3.6性能比較 32
3.6.1 前端取樣保持電路 32
3.6.2 相乘式數位類比轉換器 34

第四章 以全差動電流傳輸器為基礎之管線式類比數位轉換器 38
4.1簡介 38
4.2全差動第二代電流傳輸器 38
4.2.1 模擬結果 45
4.3比較器 48
4.3.1 單級1.5位元子類比數位轉換器 50
4.3.2 單級2位元子類比數位轉換器 53
4.4前端取樣保持電路 55
4.5相乘式數位類比轉換器 58
4.6單級1.5位元架構 59
4.7時脈產生電路 60
4.8延遲電路與數位錯誤更正電路 61
4.9以全差動電流傳輸器為基礎之管線式類比數位轉換器 63
4.9.1 模擬結果 64

第五章 佈局與測試考量 66
5.1佈局考量 66
5.2測試方法 67
5.2.1 雜訊隔離電路 68
5.2.2 電壓穩壓器 69
5.2.3 差動訊號產生電路 69

第六章 結論 66
6.1結論 66
6.2測試考量 67

參考文獻 72

附錄A
The 2006 VLSI Design/CAD Symposium 投稿論文
『A NEW FBCCII-BASED PIPELINED ANALOG TO DIGITAL
CONVERTER』 76
[1] R. V. D. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd edition, Kluwer Academic Publishers, 2003.
[2] D.A Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
[3] C.R. Grace, P. J. Hurst, S.H. Lewis, “A 12-bit 80-MSample/s pipelined ADC with bootstrapped digital calibration,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 5, May 2005, pp. 1038 – 1046.
[4] H. C. Kim, D. K. Jeong, W. Kim, “A partially switched-opamp technique for high-speed low-power pipelined analog-to-digital converters,” IEEE Transactions on Circuits and Systems I, Vol. 53, No. 4, April 2006, pp. 795 – 801.
[5] J. P. Li, G. C. Ahn, D. Y. Chang, U. K. Moon, “A 0.9-V 12-mW 5-MSPS algorithmic ADC with 77-dB SFDR,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 4, April 2005, pp. 960 – 969.
[6] D. Y. Chang, G. C. Ahn, U. K. Moon, “Sub-1-V design techniques for high-linearity Multistage pipelined analog-to-digital converters,” IEEE Transactions on Circuits and Systems I, Vol. 52, No. 1, Jan. 2005, pp. 1 – 12.
[7] S. H. Lewis, “Optimizing the stage resolution in pipelined, multistage, analog- to-digital converters for video-rate applications,” IEEE Transactions on Circuits and Systems II, Vol. 39, No. 8, Aug. 1992, pp. 516 – 523.
[8] S. H. Lewis, H.S. Fetterman, G. F. Jr. Gross, R. Ramachandran, T.R. Viswanathan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 3, March 1992, pp. 351 – 358.
[9] B. Razavi, Principles of Data Conversion System Design, IEEE PRESS, 1995
[10] Y. S. Hwang; L. P. Liao, C. C. Tsai, W. T. Lee, T.Y. Lee, J. J. Chen, “A new CCII-based pipelined analog to digital converter,” IEEE Int. Symp. on Circuits and Systems, Vol. 6, May 2005, pp. 6170 – 6173.
[11] H. A. Alzaher, M. Ismail, “A CMOS fully balanced differential difference amplifier and its applications,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 48, No.6, June 2001 pp. 614 – 620.
[12] H. A. Alzaher, H. Elwan, M. Ismail, “A CMOS fully balanced second-generation current conveyor,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 50, No. 6, June 2003, pp. 278 – 287.
[13] H. A. Alzaher, “CMOS highly linear fully differential current conveyor” Electronics Letters, Vol. 40, No. 4, Feb. 2004, pp. 214 – 216.
[14] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000.
[15] J.S Lee, P. Roux, U.V. Koc, T. Link, Y. Baeyens, Y. K. Chen; “A 5-b 10-GSample/s A/D converter for 10-gb/s optical receivers,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 10, Oct. 2004, pp. 1671 – 1679.
[16] B. Razavi, B. A. Wooley, “A 12-b 5-Msample/s two-step CMOS A/D converter,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 12, Dec. 1992, pp. 1667 – 1678.
[17] H. V. D. Ploeg, R. Remmers, “A 3.3-V, 10-b, 25-MSample/s two-step ADC in 0.35-μm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 12, Dec. 1999, pp. 1803 – 1811.
[18] A. M. Abo, P.R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 5, May 1999, pp. 599 – 606.
[19] 鄭光偉,一伏十位元導管式類比數位轉換器, 碩士論文, 國立台灣大學電機 工程學研究所, 2002.
[20] L. Lin, Design Techniques for Parallel Pipelined ADC, MS Thesis, University of California, Berkeley, May 1996.
[21] A. Abo, Design for Reliability of Low-Voltage, Switch-Capacitor Circuits, PhD Thesis, University of California, Berkeley, May 1999.
[22] A. Sedra, K. Smith, “A second-generation current conveyor and its applications,” IEEE Transactions on Circuits and Systems, Vol.17, No. 1, Feb. 1970, pp. 132 – 134.
[23] F. Sequin, A. Fabre, “New second generation current conveyor with reduced parasitic resistance and bandpass filter application,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 48, No.6, June 2001, pp. 781 – 785.
[24] C. A. Karybakas, A. Papazoglou, “Low-sensitive CCII-based biquadratic filters offering electronic frequency shifting” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 46, No. 5, May 1999, pp. 527 – 539.
[25] T. Cho, Low-Power Low-Voltage Analog-to-Digital Converter Techniques Using Pipelined Architecture, PhD Thesis, University of California, Berkeley, 1995.
[26] H. Klimach, A. Arnaud, C. G. Montoro, M. C. Schneider, “MOSFET mismatch modeling: a new approach,” IEEE Design & Test of Computers, Vol. 23, No. 1, Jan.-Feb. 2006 , pp. 20 – 29.
[27] B. Razavi, B. A. Wooley, “Design techniques for high-speed, high-resolution comparators,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 12, Dec. 1992, Page(s):1916 – 1926.
[28] L. Sumanen,; M. Waltari, K. A. I. Halonen, “A 10-bit 200-MS/s CMOS parallel pipeline A/D converter,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 7, July 2001, pp. 1048 – 1055.

[29] M. Dessouky, A. Kaiser, “Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 3, March 2001, pp. 349 – 355.
[30] M. Dessouky, A. Kaiser, “Rail-to-rail operation of very low voltage CMOS switched-capacitor circuits,” Proc. IEEE Int. Symp. Circuits and Systems, Vol. 2, May 1999, pp. 144 – 147.
[31] J. Steensgaard, “Bootstrapped low-voltage analog switches,” Proc. IEEE Int. Symp. Circuits and Systems, Vol. 2, May 1999, pp. 29 – 32.
[32] A. A. Tutyshkin,; A. S. Korotkov, “Current conveyor based switched-capacitor integrator with reduced parasitic sensitivity,” Proc. IEEE Int. Conf. on Circuits and Systems for Communications, June 2002, pp. 78 – 81.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊