跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/22 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳為仁
研究生(外文):Wei-Jen Chen
論文名稱:透過基因表現差異探討石蓮花調控肝癌中轉型生長因子β與脂質生合成路徑的作用機制
論文名稱(外文):To investigate the regulation of Graptopetalun paraguayense in TGF-β pathway and lipogenesis in HCC via gene expression signature
指導教授:黃奇英
指導教授(外文):Chi-Ying F. Huang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:86
中文關鍵詞:肝癌轉型生長因子β脂質新生
外文關鍵詞:Hepatocellular carcinoma (HCC)TGF-βlipogenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
肝細胞癌 (Hepatocellular carcinoma,簡稱HCC) 這個侵襲性癌症所伴隨的預後不良症是導致世界上大量癌症病患死亡的原因。然而目前FDA唯一核准用藥蕾莎瓦(Sorafenib) 只能短暫維持病人2-3個月的壽命,因此找出治療肝癌的用藥是迫切需要的。我們過去也發現中草藥GP以及其部分純化物 HH-F3被證明具有抗肝癌以及肝纖維化的能力,然而GP以及其純化物 HH-F3作用在肝癌的機制仍不明。在本篇,我發現了HH-F3參與轉型生長因子β(TGF-β) 以及AMPK的路徑。結果顯示HH-F3可以調控與腫瘤生成、血管新生以及脂肪生成相關的路徑TGF-β,並導致其相關蛋白包括: pSMAD2/3、p38、MEK以及ID 蛋白家族的下調。此外HH-F3可以通過磷酸化AMPK並調控其下游ACC,SREBP-1C,SREBP2,FASN和PGC-1α來抑制細胞的脂肪生合成。同時我們也發現TGF-β能夠抑制HH-F3降低Huh7及HepG2細胞脂肪堆積的能力。綜合上述,我們推斷HH-F3在肝癌中可以調控TGF-β路徑和AMPK路徑並且導致脂肪生成路徑的下調。
Hepatocellular carcinoma (HCC) is an aggressive tumor with a poor prognosis and most common cause of cancer deaths in the world. However, sorafenib is the only target therapy of HCC approved by the FDA and prolongs patient’s survival for 2-3 months. Therefore, it is urgent to identify new drug candidates for the treatment of HCC. To identify the therapeutic agents, we previously found that one of the herb medicine, GP and it partially purified fraction HH-F3 have anti-HCC and anti-fibrosis effects. However, the mechanism of HH-F3 was not clear yet. In this study, I demonstrated that GP and HH-F3 were involved in TGF-β and AMPK pathway. TGF-β signaling pathway is known to regulate tumor progression, angiogenesis, and lipognesis and ROS production in HCC. HH-F3 could down-regulate TGF-β signaling pathway through p-SMAD2/3, p-P38, p-MEK and ID protein family in Huh7 and HepG2 cell lines. Moreover, HH-F3 could inhibit lipogenesis via regulating AMPK and its downstream targets, including ACC, SREBP-1C, SREBP2 FASN and PGC-1α in Huh7 and HepG2 cell lines. In addition, TGF-β could inhibit HH-F3, reversing its reduction of lipid accumulation in Huh7 and HepG2 cell lines. In conclusion, HH-F3 could inhibit lipogenesis via TGF-β pathway and AMPK pathway, and might be a potential therapeutic drug in HCC.
致謝 I
Content II
Chinese Abstract VI
Abstract VII
Introduction 1
Hepatocellular Carcinoma (HCC) 1
Graptopetalun paraguayense (GP) / HH-F3 2
Transforming growth factor beta (TGF-β) pathway 2
Lipogenesis 3
ConsensusPathDB (CPDB) 4
Connectivity Map (Cmap) 5
L1000 profiling 5
Objective 7
Materials and Methods 8
Cell lines and cell culture 8
Culture medium concentrates 8
Oil red O assay 9
SRB assay 9
Protein extraction and concentration measurement 9
Western blotting analysis 10
Antibody 10
Q-RT-PCR 11
Results 13
HH-F3 regulates energy metabolism and TGF-β pathway gene expression signatures in HCC cell lines. 13
HH-F3 suppresses extracellular TGF-β protein level and increases expression level of TGF-β receptor in HCC cell lines. 14
HH-F3 increases TGF-β receptor and suppresses SMAD-dependent and -independent pathway in HCC cell lines. 14
HH-F3 decreases lipid accumulation and fatty acid synthesis in HCC cell lines. 15
TGF-β increases oleic acid (OA) and palmitic acid (PA)-induced lipid accumulation in HCC cell lines. 16
To search for GP/HH-F3 similar drugs via gene expression signatures and Connectivity Map. 17
GP/HH-F3 similar drugs inhibit cell line growth and reduce lipid accumulation in Huh7 cell line 17
Discussion 19
Reference 25
Figures 32
Figure 1. The schematic illustration of using gene expression signatures reveals HH-F3 modulated pathways. 32
Figure 2. Treatment of HH-F3 suppresses extracellular TGF-β level in HCC cell lines. 34
Figure 3. Treatment of HH-F3 increases the level of TGF-β receptor in HCC cell lines. 36
Figure 4. HH-F3 suppresses SMAD-dependent pathway in HCC cell lines. 38
Figure 5. HH-F3 suppresses SMAD-independent pathway in HCC cell lines. 40
Figure 6. HH-F3 suppresses the expression of ID protein family (ID1, ID2, and ID3) in Huh7 and HepG2. 41
Figure 7. HH-F3 reduces oleic acid (OA) and palmitic acid (PA)-induced lipid accumulation in HCC cell lines. 42
Figure 8. GP and HH-F3 suppress fatty acid synthesis pathway in HCC cell lines. 43
Figure 9. HH-F3 decreases the expression of PGC-1α in HCC cell lines. 44
Figure 10. TGF-β increases oleic acid (OA) and palmitic acid (PA)-induced lipid accumulation and inhibits HH-F3-reduced lipid accumulation in HCC cell lines. 46
Figure 11. Search for GP/HH-F3 similar drugs via expression signatures. 47
Figure 12. GP/HH-F3 similar drugs inhibit Huh7 and HepG2 cell lines growth. 48
Tables 51
Table 1. Affymetrix microarray U133plus_2 and L1000 used in this study. 51
Table 2. L1000 expression signatures in HepG2 cells reveal up-regulated pathways. 52
Table 3. L1000 expression signatures in HepG2 cells reveal down-regulated pathways. 55
Table 4. Affymetrix microarray U133 plus_2 expression signatures in HepG2 cells reveal up-regulated pathways. 56
Table 5. Affymetrix microarray U133 plus_2 expression signatures in Huh7 cells reveal down-regulated pathways. 58
Table 6. Affymetrix microarray U133 plus_2 expression signatures in HepG2 cells reveal up-regulated pathways. 61
Table 7. Affymetrix microarray U133 plus_2 expression signatures in HepG2 cells reveal down-regulated pathways. 65
Table 8. Affymetrix microarray U133 plus_2 expression signatures in Mahlavu cells reveal up-regulated pathways. 70
Table 9. Affymetrix microarray U133 plus_2 expression signatures in Mahlavu cells reveal down-regulated pathways. 75
Table 10. TGF-β pathway genes are regulated under HH-F3 treatment in HCC cell lines. *LM: Landmark genes. INF: Inferred genes 78
Table 11. GP/HH-F3 from different sources used in this study. 79
Table 12. GP/HH-F3 similar drugs predicated by L1000 gene signatures and Affymetrix microarray. 80
Table 13. HH-F3 modulates TGF-β related pathway via different kinetics in Huh7 cells. 81
Table 14. HH-F3 modulates TGF-β related pathway via different kinetics in HepG2 cells. 82
Supplementary figure 1. GP/HH-F3 recovers lipid accumulation induced by oleic acid (OA) and palmitic acid (PA) in Huh7. 83
Supplementary figure 2. TGF-β induces TGF-β signaling pathway in HepG2 cell line. 84
Supplementary figure 3. HH-F3 suppresses fatty acid synthesis pathway in Huh7 cell line. 85
Supplementary figure 4. HH-F3 suppresses PGC-1α and p-SMAD3 in HepG2 cell line. 86

Chen, C.H. and D.S. Chen, [Hepatocellular carcinoma: 30 years' experience in Taiwan]. J Formos Med Assoc, 1992. 91 Suppl 3: p. S187-202.
2. Parkin, D.M., et al., Estimating the world cancer burden: Globocan 2000. Int J Cancer, 2001. 94(2): p. 153-6.
3. Chen, D.S., Hepatocellular carcinoma in Taiwan. Hepatol Res, 2007. 37 Suppl 2: p. S101-5.
4. Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006. 6(9): p. 674-87.
5. Michielsen, P.P., S.M. Francque, and J.L. van Dongen, Viral hepatitis and hepatocellular carcinoma. World J Surg Oncol, 2005. 3: p. 27.
6. Wogan, G.N., Impacts of chemicals on liver cancer risk. Semin Cancer Biol, 2000. 10(3): p. 201-10.
7. Kanwal, F., et al., Potentially curative treatment in patients with hepatocellular cancer--results from the liver cancer research network. Aliment Pharmacol Ther, 2012. 36(3): p. 257-65.
8. Liu, L., et al., Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res, 2006. 66(24): p. 11851-8.
9. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.
10. Kaplowitz, N., Hepatotoxicity of herbal remedies: insights into the intricacies of plant-animal warfare and cell death. Gastroenterology, 1997. 113(4): p. 1408-12.
11. Chen, S.J., et al., In vitro antioxidant and antiproliferative activity of the stem extracts from Graptopetalum paraguayense. Am J Chin Med, 2008. 36(2): p. 369-83.
12. Chung, Y.C., et al., In vitro and in vivo safety of aqueous extracts of Graptopetalum paraguayense E. Walther. J Ethnopharmacol, 2012. 140(1): p. 91-7.
13. Duh, P.D., S.L. Lin, and S.C. Wu, Hepatoprotection of Graptopetalum paraguayense E. Walther on CCl(4)-induced liver damage and inflammation. J Ethnopharmacol, 2011. 134(2): p. 379-85.
14. Su, L.J., et al., Evaluation of the Chinese Medicinal Herb, Graptopetalum paraguayense, as a Therapeutic Treatment for Liver Damage in Rat Models. Evid Based Complement Alternat Med, 2012. 2012: p. 256561.
15. Massague, J., L. Attisano, and J.L. Wrana, The TGF-beta family and its composite receptors. Trends Cell Biol, 1994. 4(5): p. 172-8.
16. Friedman, S.L., Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008. 134(6): p. 1655-69.
17. Branton, M.H. and J.B. Kopp, TGF-beta and fibrosis. Microbes Infect, 1999. 1(15): p. 1349-65.
18. Massague, J., TGFbeta in Cancer. Cell, 2008. 134(2): p. 215-30.
19. Shirai, Y., et al., Plasma transforming growth factor-beta 1 in patients with hepatocellular carcinoma. Comparison with chronic liver diseases. Cancer, 1994. 73(9): p. 2275-9.
20. Zhang, Y.E., Non-Smad pathways in TGF-beta signaling. Cell Res, 2009. 19(1): p. 128-39.
21. El-Serag, H.B. and K.L. Rudolph, Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007. 132(7): p. 2557-76.
22. Yamazaki, K., Y. Masugi, and M. Sakamoto, Molecular pathogenesis of hepatocellular carcinoma: altering transforming growth factor-beta signaling in hepatocarcinogenesis. Dig Dis, 2011. 29(3): p. 284-8.
23. Lee, D., et al., Transforming growth factor beta 1 overexpression is closely related to invasiveness of hepatocellular carcinoma. Oncology, 2012. 82(1): p. 11-8.
24. Matsuda, Y., et al., Valproic acid overcomes transforming growth factor-beta-mediated sorafenib resistance in hepatocellular carcinoma. Int J Clin Exp Pathol, 2014. 7(4): p. 1299-313.
25. Yang, L., et al., TGF-beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism. Hepatology, 2013.
26. Anido, J., et al., TGF-beta Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell, 2010. 18(6): p. 655-68.
27. Cheung, H.W., et al., Id-1-induced Raf/MEK pathway activation is essential for its protective role against taxol-induced apoptosis in nasopharyngeal carcinoma cells. Carcinogenesis, 2004. 25(6): p. 881-7.
28. Satyanarayana, A., et al., Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis. FASEB J, 2012. 26(1): p. 309-23.
29. Ao, J., et al., Activation of androgen receptor induces ID1 and promotes hepatocellular carcinoma cell migration and invasion. Mol Oncol, 2012. 6(5): p. 507-15.
30. Kersten, S., Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep, 2001. 2(4): p. 282-6.
31. Day, C.P., Non-alcoholic fatty liver disease: a massive problem. Clin Med, 2011. 11(2): p. 176-8.
32. Kneeman, J.M., J. Misdraji, and K.E. Corey, Secondary causes of nonalcoholic fatty liver disease. Therap Adv Gastroenterol, 2012. 5(3): p. 199-207.
33. Ratziu, V., et al., A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol, 2010. 53(2): p. 372-84.
34. Sanyal, A.J., et al., Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology, 2011. 54(1): p. 344-53.
35. Park, K.G., et al., Alpha-lipoic acid decreases hepatic lipogenesis through adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. Hepatology, 2008. 48(5): p. 1477-86.
36. Kuhajda, F.P., Fatty acid synthase and cancer: new application of an old pathway. Cancer Res, 2006. 66(12): p. 5977-80.
37. Yamashita, T., et al., Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol, 2009. 50(1): p. 100-10.
38. Calvisi, D.F., et al., Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology, 2011. 140(3): p. 1071-83.
39. Kamburov, A., et al., ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res, 2011. 39(Database issue): p. D712-7.
40. Lamb, J., The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer, 2007. 7(1): p. 54-60.
41. Lamb, J., et al., The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006. 313(5795): p. 1929-35.
42. Duan, Q., et al., LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res, 2014. 42(Web Server issue): p. W449-60.
43. Giannelli, G., et al., Inhibiting TGF-beta signaling in hepatocellular carcinoma. Biochim Biophys Acta, 2011. 1815(2): p. 214-23.
44. Yang, L., et al., Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology, 2014. 59(2): p. 483-95.
45. Miyazono, K., Positive and negative regulation of TGF-beta signaling. J Cell Sci, 2000. 113 ( Pt 7): p. 1101-9.
46. Bissell, D.M., Chronic liver injury, TGF-beta, and cancer. Exp Mol Med, 2001. 33(4): p. 179-90.
47. Dituri, F., et al., Differential Inhibition of the TGF-beta Signaling Pathway in HCC Cells Using the Small Molecule Inhibitor LY2157299 and the D10 Monoclonal Antibody against TGF-beta Receptor Type II. PLoS One, 2013. 8(6): p. e67109.
48. Morris, J.C., et al., Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One, 2014. 9(3): p. e90353.
49. Izzi, L. and L. Attisano, Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene, 2004. 23(11): p. 2071-8.
50. Matsuzaki, K., et al., Regulatory mechanisms for transforming growth factor beta as an autocrine inhibitor in human hepatocellular carcinoma: implications for roles of smads in its growth. Hepatology, 2000. 32(2): p. 218-27.
51. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003. 425(6958): p. 577-84.
52. Chapnick, D.A., et al., Partners in crime: the TGFbeta and MAPK pathways in cancer progression. Cell Biosci, 2011. 1: p. 42.
53. Veerasamy, M., M. Phanish, and M.E. Dockrell, Smad mediated regulation of inhibitor of DNA binding 2 and its role in phenotypic maintenance of human renal proximal tubule epithelial cells. PLoS One, 2013. 8(1): p. e51842.
54. Liang, Y.Y., F.C. Brunicardi, and X. Lin, Smad3 mediates immediate early induction of Id1 by TGF-beta. Cell Res, 2009. 19(1): p. 140-8.
55. Wilson, J.W., et al., Expression of Id helix-loop-helix proteins in colorectal adenocarcinoma correlates with p53 expression and mitotic index. Cancer Res, 2001. 61(24): p. 8803-10.
56. Perk, J., A. Iavarone, and R. Benezra, Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer, 2005. 5(8): p. 603-14.
57. Benezra, R., S. Rafii, and D. Lyden, The Id proteins and angiogenesis. Oncogene, 2001. 20(58): p. 8334-41.
58. Bhalla, K., et al., Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev Res (Phila), 2012. 5(4): p. 544-52.
59. Chung, F.H., et al., Functional Module Connectivity Map (FMCM): a framework for searching repurposed drug compounds for systems treatment of cancer and an application to colorectal adenocarcinoma. PLoS One, 2014. 9(1): p. e86299.
60. Brambilla, G. and A. Martelli, Genotoxicity and carcinogenicity studies of antihypertensive agents. Mutat Res, 2006. 612(2): p. 115-49.
61. Vaidyanathan, S., et al., Chronic lymphocytic leukaemia, synchronous small cell carcinoma and squamous neoplasia of the urinary bladder in a paraplegic man following long-term phenoxybenzamine therapy. Spinal Cord, 2006. 44(3): p. 188-91.
62. Hahm, E.R. and S.V. Singh, Withaferin A-induced apoptosis in human breast cancer cells is associated with suppression of inhibitor of apoptosis family protein expression. Cancer Lett, 2012.
63. Mayola, E., et al., Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis, 2011. 16(10): p. 1014-27.
64. Yi-Chen Chen, Characterization of Active molecules extracted from Graptopetalum paraguayense with Anti-Cancer Activity in Hepatocellular Carcinoma. 2010

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top