跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 06:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡松峰
研究生(外文):Tsai, Sung-Feng
論文名稱:外耳道佩戴耳塞之形狀變化與壓力評估
論文名稱(外文):The assessment of shape deformation and stress for the ear canal with earplug
指導教授:陳精一陳精一引用關係余仁方
指導教授(外文):Chen, Ching IYu, Ren-Fang
學位類別:碩士
校院名稱:中華大學
系所名稱:機械工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:106
中文關鍵詞:耳塞耳道舒適性有限元素法電腦斷層掃描
外文關鍵詞:EarplugEar CanalComfortableFinite Element MethodComputer Tomography
相關次數:
  • 被引用被引用:2
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
目前在工作環境噪音的部份雖然有法規,對於防音防護具也有正確佩戴方式,但國內並無針對國內勞工之耳道口大小而匹配出合適的耳塞,致使國內勞工常常因佩戴耳塞後,產生不舒適感,而造成不願意佩戴的情況層出不窮,使得在工作上有進一步的噪音聽損危險,因此,本研究將先從噪音較多工作場所進行受試者外耳道測量,進而建立國內外耳道計測資料庫,並進行一耳佩戴、一耳無佩戴耳塞的外耳道形狀變化量測,希望藉由耳塞佩戴及人耳資料的收集,透過主觀式之問卷調查,以及客觀式之量測佩戴耳塞後耳道壁的壓力,訂定佩戴防音耳塞舒適化性能指標,希望可以通過此調查,提升耳塞舒適性,提高勞工人口佩戴意願。
在有限元素模擬分析中,耳塞施加1.2 cm負載位移置入耳道內,檢視負載位移0.1 cm到1.2 cm時耳道內的壓力變化,模擬活體耳道壓力,並和公式計算值與壓力感測值相互比較驗證。
研究結果顯示: (1) 楊氏係數對耳塞材料性質並無太大影響,將耳塞置入耳道 1.2 cm時,揚氏係數為 32 MPa與1260 MPa,壓力結果相差13 %,證明揚氏係數比較小對於耳道內的壓力有趨緩的現象; (2)市面上的耳塞尺寸編號 A、B、C、D ,從壓力結果來看 D 的耳塞尺寸壓力最小,符合市場上的預期,編號 D 的負載位移從0.1 ~ 1.2 cm,壓力分別是 0 psi、0 psi、0 psi、0.01 psi、2.61 psi、4.93 psi、5.71 psi、8.05 psi、11.41 psi、23.2 psi,耳塞置入耳道口的位移為 0.65 cm ~ 0.8 cm區間,壓力為0.01 psi ~ 4.93 psi區間。耳道口通常是橢圓形,而越接近第一彎道耳道形狀漸漸呈現圓形,利用田口法判定耳塞尺寸設計趨勢上圍小,下圍大,耳塞全長越長,可改善耳道內的壓力情況。

For the occupational noise, there are laws and regulations, anti-noise protection with the right to wear, but not the size of the ear canal for domestic labor domestic and match the right earplug, resulting in domestic labor is often due to wear earplugs to produce comfort, but do not want to wear endless making further noise to hearing loss risk at work, Therefore, this study will start with the noise more workplace labor external ear canal measurement, thereby establishing a database of domestic labor external auditory canal measurement, and wear in one ear, one ear without wearing the ear external ear canal shape change measurement and data collection for the human ear by ear plugs to wear through a subjective questionnaire survey, as well as objective type of measurement to wear earplugs, canal wall pressure set to wear anti-noise earplugs comfort of performance indicators, and hope that through this survey to enhance the earplug comfort, wear a willingness to raise labor population..
In finite element analysis, the loading condition is the standard displacement level 1.2 cm. The analysis is performed loading-displacement 0.1 cm to 1.2 cm when the pressure inside the ear canal. Analog vivo canal pressure values and calculated pressure sensing value compared with each other authentication.
According to FEA results, conclusions the comments can be addressed as follows: (1) Young's modulus of the material properties on the ear is not much affected, the earplug into the ear canal, 1.2 cm, the Young's coefficient of 32 MPa and 1260 MPa, the pressure difference between the results of 13 % to prove Young's coefficient is relatively small for the ear canal pressure has slowed the phenomenon; (2) The market earbud size number A, B, C, D, results from the pressure of the ear size of minimum pressure D, in line with the expectations, the load displacement D number from 0.1 ~ 1.2 cm, respectively, pressure 0 psi, 0 psi, 0 psi, 0.01 psi, 2.61 psi, 4.93 psi, 5.71 psi, 8.05 psi, 11.41 psi, 23.2 psi, ear plugs into the ear canal displacement of 0.65 cm ~ 0.8 cm interval, the pressure is 0.01 psi ~ 4.93 psi range, the ear crossing is usually oval, but the closer the first curve, the shape of the ear canal gradually render round, thus determining the size of the earbuds design trends around a small, enclosed under a large, full-length is longer, the pressure inside the ear canal can improve the situation.

中文摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 外耳道人體計測方法與文獻探討 3
1.2.2 耳塞配戴舒適性之文獻探討 5
1.3 研究動機與目的 10
1.4 研究方法 11
1.4.1 人體耳道計測方法建立 11
1.4.2 數值模擬簡介 12
1.4.3 田口方法 13
第二章 耳道計測分析 14
2.1 電腦斷層掃描 (COMPUTER TOMOGRAPHY SCAN) 14
2.2 耳道電腦斷層掃描影像重建作業流程 15
2.3 耳道幾何外型量測方法 19
2.3.1 耳道口長度與寬度之量測 19
2.3.2 Coronal View 投影量測法 20
2.3.3 Axial View 投影量測法 21
2.3.4 投影長度計算方法 22
2.4 78人次右耳計測資料統整 23
2.4.1 耳道口之長度與寬度 23
2.4.2 第一彎道長度 27
2.4.3 第二彎道長度 34
2.4.4 耳道全長 41
2.5 CT影像觀察 48
第三章 40人次佩戴耳塞之舒適性調查 50
3.1 實際佩戴耳塞之調查 50
3.1.1 耳塞鬆緊度 50
3.1.2 舒適感調查 51
3.2 調查過去佩戴耳塞之情形 52
3.3 40人次佩戴耳塞之外耳道壁壓力量測 53
3.3.1 耳塞佩戴方式 53
3.3.2 耳道壁壓力計算方法 54
3.3.3 佩戴耳塞之外耳道壁壓力計算 56
3.4 佩戴耳塞之外耳道壁壓力量測 60
3.4.1 量測系統介紹 60
3.4.2 壓力量測結果 62
第四章 以有限元素法分析耳塞形狀變化對耳道壁壓力之評估 67
4.1 影像處理 67
4.1.1 外耳道影像處理流程 69
4.1.2 耳塞尺寸的設計 74
4.2 有限元素分析流程 76
4.2.1 前處理 76
4.2.2 求解 78
4.2.3 後處理 79
4.3 結果與討論 80
4.4 以田口法分析耳塞形狀趨勢 90
4.5 結果與討論 93
第五章 結論 102
參考文獻 105

[1] E.A.G. Shaw, “Transformation of sound pressure level from the free field to the eardrum in the horizontal plane,” J. Acoust. Soc. Am. Vol56(6), pp. 1848-61, 1974.
[2] J.E. Shanks, and J.D. Lilly “An evaluation of tympanometric estimates of ear canal volume.” J. Speech. Hear. Res. Vol24(4), pp. 557-66, Dec, 1981.
[3] J. Zemplenyi, S. Gilman, and D. Dirks. “Optical method for measurement of ear canal length.” J. Acoust. Soc. Am. Vol78(6), pp. 2146-8, Dec, 1985.
[4] D.P. Egolf, D.K. Nelson, H.C. Howell, and V.D. Larson. “Quantifying ear-canal geometry with multiple computer-assisted tomographic scans.” J. Acoust. Soc. Am. Vol93(5), pp. 2809-19, May, 1993.
[5] N. Shahnaz, and D. Davies, “Standard and multifrequency tympanometric norms for Caucasian and Chinese young adults.” Ear Hear. Vol27(1), pp. 75-90, Feb, 2006.
[6] S.E. Voss, N.J. Horton, R.R. Woodbury, and K.N. Sheffield “Sources of variability in reflectance measurements on normal cadaver ears.” Ear Hear. Vol29(4), pp. 651-65, 2008.
[7] A. Al-Hussaini, D. Owens, and A. Tomkinson “Assessing the accuracy of tympanometric evaluation of external auditory canal volume: a scientific study using an ear canal model.” Eur Arch Otorhinolaryngol. Vol268(12), pp. 1721-5, 2011.
[8] W.A. Yost, “Fundamentals of Hearing,” Fourth edition, pp. 79, 2000.
[9] W.A. Yost “Fundamentals of Hearing,” Fourth edition, San Diego : Academic Press xiii, pp. 349, 2000.
[10] B.S. Liu, “Incorporating anthropometry into design of ear-related products,” Applied Ergonomics, pp. 115-121, 2008.
[11] CNS T2012 8454,防音防護具,1982。
[12] EN 352-1, “Hearing Protectors – General requirement – Part 1: Earmuffs.”, 1993
[13] EN 352-2, “Hearing Protectors – General requirement – Part 2: Earplugs.”, 1993.
[14] EN 13819-1, “Hearing Protectors – Testing – Part 1: Physical test methods.”, 1999.
[15] ANSI/ASA S12.6, “Methods for Measuring the Real-Ear Attenuation of Hearing Protectors.”, 2008.
[16] AS/NZS 1270, “Acoustic – Hearing protectors.”, 1999.
[17] JIS T8161, “Ear protectors.”, 1983.
[18] 「聽力防護具性能測試規範」,勞工安全衛生研究報告,行政院勞工委員會勞工安全衛生研究所,1994。
[19] 「防音防護具主觀性能測試研究」,勞工安全衛生研究報告,行政院勞工委員會勞工安全衛生研究所,1998。
[20] 游千宗,步態反應分析鞋墊與鞋底膠封足部組織的影響,國立成功大學,皮膚軟組織材料參數,頁74,2010。
[21] 陳精一,「ANSYS 7.0 電腦輔助工程實務分析」,全華科技圖書,1994。
[22] 王仁宏,「活體變異性外耳道內聲壓特性分析」,中華大學碩士論文,2010。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top