跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林春霈
研究生(外文):Tsuen-Pei Lin
論文名稱:熱引發大白鼠α水晶體蛋白高分子量集結體之研究
論文名稱(外文):Characterization of Thermal-Induced High Molecular Weight Aggregate of Rat Lens α-Crystallin
指導教授:黃福永
指導教授(外文):Fu-Yung Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:94
中文關鍵詞:溫度α水晶體蛋白高分子量集結體
外文關鍵詞:temperaturehigh molecular weight aggregateα-crystallin
相關次數:
  • 被引用被引用:1
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
由年紀四週的大白鼠水晶體純化出α水晶體蛋白低分子量和高分子量集結體(HMWA),並於50-60℃下利用熱引發集結產生活體外之α水晶體蛋白HMWA作為活體內之對照。藉由許多的光譜測量來研究HMWA的結構和功能上的性質。根據Trp、non-Trp、ANS和MIANS螢光的增加以及far-UV和near-UV CD的增強,代表著天然的α水晶體蛋白與HMWA構形上的差異性。由這一些數據顯示天然的HMWA會比α水晶體蛋白更具疏水性,且有可能是因為α水晶體蛋白的部分展開所造成。由膠體過濾層析圖上顯示,將α水晶體蛋白於60℃下加熱1小時即可產生與活體內HMWA分子量相近之集結體。由Trp、ANS和MIANS螢光以及far-UV CD的結果顯示活體內與熱引發HMWA兩者具有非常相似的結構上性質,這或許也指出兩者可能具有相似的生成機制。利用DTT引發胰島素B鏈的集結之類似伴護活性測量顯示,α水晶體蛋白於50℃下預熱後具有比天然的α水晶體蛋白或HMWA更好的伴護功能。隨著溫度的升高會導致伴護活性的下降,且於60℃下所得到之HMWA具有低於活體內HMWA的伴護活性。ANS螢光和類似伴護活性的關連性顯示,表面疏水性並非決定α水晶體蛋白伴護功能的唯一決定因素。藉由10 mM和50 mM β-乙基硫醇修飾α水晶體蛋白上的半胱胺酸(Cysteine)殘基,反應24小時之後先於60℃下加熱1小時再進行膠體過濾層析和一維電泳。結果顯示在50 mM β-乙基硫醇的條件下依然具有熱引發HMWA的形成,但是卻沒有雙硫鍵的產生。代表著雙硫鍵的產生並非導致HMWA形成的(主要)因素,至少不是活體外熱引發HMWA形成的主要機制。我們的研究認為熱引發與活體內HMWA的形成是藉由部分地展開並且具有相似的機制,不過non-Trp螢光、near-UV CD及類似伴護活性的結果則指出兩著之間可能經由不一樣的展開過程。
α-Crystallin and high molecular weight aggregate (HMWA) were isolated from four weeks old Rat lenses. α-Crystallin was further heated at various temperatures (50-60℃) to induce thermal aggregation of HMWA, which was used to make a compare with in vivo HMWA. Spectroscopic measurement were performed to study the structure and functionality of both HMWA. Conformation differences of native HMWA were suggested based on the data of increased trytophan (Trp), non- tryptophan (non-Trp), 1-anilino- naphthalene-8-sulfonic acid (ANS), and 2-(4’-maleimidylanilino) naphthalene-6-sulfonic acid (MIANS) fluorescence intensity as well as the increased far-UV and near-UV circular dichroism (CD). These results indicated that native HMWA was more hydrophobic than α-crystallin, possibly resulting from the partial unfolding of native α-crystallin. Gel filtration chromatography showed that α-crystallin heat-induced HMWA prepared by preheating at 60℃ for an hour with the same molecular weight as that of in vivo HMWA. Trp, ANS, and MIANS fluorescence as well as far-UV CD measurements indicated that heat-induced HMWA and in vivo HMWA shared structural similarity, which further suggested the same aggregation mechanism. Chaperone-like activity was observed toward the aggregation of dithiothreitol (DTT)-induced insulin B-chain show that α-crystallin preheated at 50℃ has better activity than α-crystallin and native HMWA. With the increase of preheating temperature, the activity of α-crystallin decreased and it was observed that under 60℃, it was less active than native HMWA. The correlation between the ANS fluorescence and the chaperone-like activity suggests that surface hydrophobicity was not the sole determinant of the chaperone function of the α-crystallin. Cysteine modification of α-crystallin was carried out using 10 mM and 50 mM β-mercaptoethanol followed by heating at 60℃ for an hour, then was subjected to gel filtration and SDS-PAGE. Heat-induced HMWA remained formed from 50 mM modification of α-crystallin, whereas there was no disulfide bond was observed, indicated that disulfide bond formation was not the (main) factor leading to the formation of HMWA, at least in heat-induced HMWA formation. Our study suggests that heat-induced HMWA proceed similar mechanism as that of in vivo HMWA via partial unfolding, however, the unfolding process may differ as to show different non-Trp fluorescence, near-UV CD and chaperone-like activity as well.
中文摘要........................................................i
英文摘要.......................................................ii
目錄..........................................................iii
表目錄..........................................................v
圖目錄.........................................................vi
第一章 序論 1
一、水晶體的構造及功能..........................................1
二、水溶性和非水溶性水晶體蛋白..................................2
三、gamma (γ)水晶體蛋白.........................................4
四、beta (β)水晶體蛋白..........................................6
五、alpha (α)水晶體蛋白.........................................8
(一)、小熱休克性蛋白質家族(small heat shock protein family)..10
(二)、α水晶體蛋白的結構......................................12
(三)、α水晶體蛋白的功能......................................13
i.熱變性分析(heat denature assays).......................15
ii.雙硫鍵的還原分析(reduced disulfide bonds assays).......17
iii.紫外光輻射和氧化應力下蛋白質的變性分析(denature assay
of protein from UV irradiation and oxidative stress)...19
(四)、溫度對α水晶體蛋白伴護活性的影響........................22
六、alpha水晶體蛋白高分子量集結體(HMWA)........................23
七、研究動機...................................................25
第二章 實驗 31
一、材料.......................................................31
二、儀器設備...................................................33
三、實驗方法...................................................34
(一)、水晶體蛋白的純化.......................................34
(二)、一維與二維電泳分析.....................................36
(三)、螢光的測量.............................................36
(四)、圓二色光譜(Circular Dichroism spectra)的測量...........37
(五)、恰似伴護活性(chaperone-like activity)的測量............37
第三章 結果與討論 38
一、高分子量集結體(HMWA).......................................38
二、HMWA二維電泳...............................................40
三、圓二色光譜(Circular Dichroism spectra).....................42
四、螢光光譜...................................................43
五、類似伴護活性(chaperone-like activity)......................47
六、結論.......................................................48
參考文獻.......................................................68
1. Frank W. Newell 原著 林和鳴 譯著: 眼科學精華, 環球書社 1998
2. Bloemendal H.: Molecular and cellular biology of the eye lens. John Wiley and Sons, NewYork, pp 469, 1981
3. Brown, N. A. P., Sparrow, J. M. and Bron, A. J.: "Central compaction in the process of lens growth as indicated by lamellar cataract." British J Ophthalmol 72, pp 538-544; 1988
4. Taylor, V. L., Al-Ghoul, K. J., Lane, C. W., Davis, V. A., Kuszak, J. R. and Costello, M. J.: "Morphology of the normal human lens." Invest Ophthalmol Vis Sc 37,pp 1396-1410; 1996
5. Al-Ghoul, K. J. and Costello, M. J.: "Light microscopic variation of fiber cell size, shape and ordering in the equatorial plane of bovine and human lenses." Mol Vis 3, pp 2-6; 1997
6. Kalsi M., Heron G. and Charman WN.: Changes in the static accommodation response with age. Ophthalmic Physiol Opt 21, pp 77-84; 2001
7. Kusak, J. R., Brown H. G.: "Embryology and anatomy of the lens", Albert D.M., Jakobiec F. A., (Ed.) Principles and Practice of Ophthalmology: Basic Sciences, WB Saunders, Philadelphia, PA. pp 82, 1994
8. Delaye M and Tardieu A.: Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302, pp 415-417; 1983
9. van Kamp G.J. and Hoenders H.J.: The distribution of the soluble proteins in the calf lens. Exp Eye Res 17, pp 417-426; 1973
10. Fagerholm, P. P., Philipson, B. T., LindstrÖm, B.: Normal human lens-the distribution of proteins. Exp Eye Res 33, pp 615-620; 1981
11. Bassnett, S.: Fiber cell denucleation in the primate lens. Invest Ophthalmol Visual Sci 38, pp 1678-1687; 1997
12. Bassnett, S. and Mataic, D.: Chromatin degradation in differentiating fiber cells of the eye lens. J Cell Biol 137, pp 37-49; 1997
13. Spector, A., Roy, D. and Stauffer, J.: Isolation and characterization of an age- dependent polypeptide from human lens with non-fluorescence. Exp Eye Res 21, pp 9-24; 1975
14. Harding, J. J. and Crabbe, M. J. C.: The lens: development, proteins, metabolism and cataract. In The Eye. (Davson, H., ED.) Academic Press: Orlando, FL. pp 207-492, 1984
15. Harding, J. J. In: Cataract: Biochemistry, Epidemiology and Pharmacology. Chapman & Hall, London, pp 30-63, 1991
16. Bettelheim, F.A., Ali A.: Light scattering of normal human lens III. Relationship between forward and back scatter of whole excised lenses. Exp Eye Res 41, pp 1-9; 1985
17. Zigler J.S. Jr: "Lens proteins", Alberts E.M., Jacobiec F.A., (Ed.) Principles and Practice of Ophthalmology, WB Saunders, Philadelphia. 12, pp 97-113, 1994
18. Benedek G.B.: Theory of transparency of the eye. Appl Optics 10, pp 459-473; 1971
19. Benedek G.B.: Cataract as a protein condensation disease. Invest Ophthalmol Vis Sci 38, pp 1911-1921; 1997
20. Hanson, Stacy R. A., Hasan, Azeem, Smith, David L., Smith, Jean B.: The Major in vivo Modifications of the Human Water-insoluble Lens Crystallins are Disulfide Bonds, Deamidation, Methionine Oxidation and Backbone Cleavage. Exp Eye Res 71, pp 195-207; 2000
21. Ueda Yoji, Melinda K. Duncan and Larry L. David: Lens Proteomics: The Accumulation of Crystallin Modifications in the Mouse Lens with Age. Invest Ophthalmol Vis Sci 43, pp 205-215; 2002
22. Roy, D. and Spector, A.: Human insoluble lens protein. I. Separation and partial characterization of polypeptides. Exp Eye Res 26, pp 429-443; 1978
23. Ortwerth, B. J. and Olesen, P. R.: Studies on the solubilization of the water-insoluble fraction from human lens and cataract. Exp Eye Res 55, pp 777-783; 1992
24. Lund A.L., Smith J.B., Smith D.L.: Modification of water-insoluble human lens α-crystallin. Exp Eye Res 63, pp 662-672; 1996
25. Wistow GJ and Piatigorsky J.: Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57, pp 479-504; 1988
26. Bloemendal H., Piategorsky J., Spector A.: Recommendations for crystallin nomenclature. Exp Eye Res 48, pp 465-466; 1989
27. Horwitz J.: Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. U.S.A. 89, pp 10449-10453; 1992
28. Goring, DR, Rossant, J, Clapoff, S, Breitman, ML, Tsui, L-C: In situ detection of ß-galactosidase in lenses of transgenic mice with a γ-crystallin/lacZ gene. Science 235, pp 456-458; 1987
29. Smolich, BD, Tarkington, SK, Saha, MS, Grainger, RM: Xenopus γ-crystallin gene expression: evidence that the γ-crystallin gene family is transcribed in lens and nonlens tissues. Mol Cell Biol 14, pp 1355-1363; 1994
30. Brunekreef, GA, van Genesen, ST, Destrée, OHJ, Lubsen, NH: Extralenticular expression of Xenopus laevis α-, β-, and γ-crystallin genes. Invest Ophthalmol Vis Sci 38, pp 2764-2771; 1997
31. Sinha D, Esumi N, Jaworski C, Kozak CA, Pierce E, Wistow G.: Cloning and mapping the mouse Crygs gene and non-lens expression of [gamma]S-crystallin. Mol Vis 4, pp 8-15; 1998
32. Shiloh Y., Donion T., Bruns G., Breitman M.L. and Tsui L.C.: Assignment of the human gamma-crystallin gene cluster (CRYG) to the long arm of chromosome 2, region q33-36. Human Genet 73, pp 17-19; 1986
33. Meakin S.O., Du R.P., Tsui L.C. and Breitman M.L.: Gamma-crystallins of the human eye lens: expression analysis of five members of the gene family. Mol Cell Biol 7, pp 2671-2679; 1987
34. Johnson M.S., Sutcliffe M.J. and Blundell T.L.: Molecular anatomy: phyletic relationships derived from three-dimensional structures of proteins. J Mol Evol 30, pp 43-59; 1990
35. Richardson, J. S.: β-Sheet topology and the relatedness of proteins. Nature 268, pp 495-500; 1977
36. Aarts H.J., den Dunnen J.T., Leunissen J., Lubsen N.H. and Schoenmakers J.G.: The gamma-crystallin gene families: sequence and evolutionary patterns. J Mol Evol 27, pp 163-172; 1988
37. Sen A.C., Walsh M.T., Chakrabarti B.: An insight into domain structures and thermal stability of gamma-crystallins. J Biol Chem 267, pp 11898- 11907; 1992
38. Mandal K., Kono M., Bose S.K., Thomson J., Chakrabarti B.: Structure and stability of gamma-crystallins--IV. Aggregation and structural destabilization in photosensitized reactions. Photochem Photobiol 47, pp 583-591; 1988
39. Talmadge D.H., Borkman R.F.: The rates of photolysis of the four individual tryptophan residues in UV exposed calf gamma-II crystallin. Photochem Photobiol 51, pp 363-368; 1990
40. Rudolph R., Siebendritt R., Nesslauer G., Sharma K., Jaenicke R.: Folding of an all-beta protein: independent domain folding in gamma II-crystallin from calf eye lens. Proc Natl Acad Sci, USA 87, pp 4625-4629; 1990
41. Raman B., Ramakrishna T., Rao C.M.: Rapid refolding studies on the chaperone-like alpha-crystallin. Effect of alpha-crystallin on refolding of beta- and gamma-crystallins. J Biol Chem 270, pp 19888- 19892; 1995
42. Delaye M., Clarke J.I., Benedek G.B.: Identification of the scattering elements responsible for lens opacification in cold cataracts. Biophys J 37, pp 647-656; 1982
43. Bishwajit Kundu, Anshuman Shukla and Purnananda Guptasarma: Peptide scanning-based identification of regions of γ-II crystallin involved in thermal aggregation: Evidence of the involvement of structurally analogous, helix-containing loops from the two double Greek key domains of the molecule. Arch Biochem Biophys 410, pp 69-75; 2003
44. Hejtmancik J.F.: The genetics of cataract: our vision becomes clearer. Am J Genet 62, pp 520-525; 1998
45. Santhiya S.T., Shyam Manohar M., Rawlley D., Vijayalakshmi P., Namperumalsamy P., Gopinath P.M., et al.: Novel mutations in the γ-crystallin genes cause autosomal dominant congenital cataracts. J Med Genet 39, pp 352-358; 2002
46. Pande A., Pande J., Asherie N., Lomakin A., Ogun O., King J., Benedek G.B.: Crystal cataracts: human genetic cataract caused by protein crystallization. Proc Natl Acad Sci, USA 98, pp 6116-6120; 2001
47. H’eon, E., Priston, M., Schorderet, D.F., Billingsley, G.D., Girard, P.O., Lubsen, N. and Munier, F.L.: The γ-crystallins and human cataracts: a puzzle made clearer. Am J Hum Genet 65, pp 1261-1267; 1999
48. Kmoch, S., Brynda, J., Asfaw, B., BezouŠka, K., Nová, P., Rezácová. P, et al.: Link between a novel human γD-crystallin allele and a unique cataract phenotype explained by protein crystallography. Hum Mol Genet 9, pp 1779-1786; 2000
49. Francis P.J., Berry V., Moore A.T., Bhattacharya S.: Lens biology: development and human cataractogenesis. Trends Genet 15, pp 191-196; 1999
50. Meakin S.O., Breitman M.L., Tsui L.-C.: Structural and evolutionary relationships among five members of the human γ-crystallin gene family. Mol Cell Biol 5, pp 1408-1414;1985
51. Schoenmakers J.G.G., den Dunnen J.T., Moormann R.J.M., Jongbloed R., van Leen R.W., Lubsen N.H.: The crystallin gene families. Ciba Found Symp 106, pp 208-218; 1984
52. Summers L.J., Slingsby C., Blundell T.L., den Dunnen J.T., Moormann R.J.M., Schoenmakers J.G.G.: Structural variation in mammalian γ-crystallins based on computer graphics analyses of human, rat and calf sequences. 1. Core packing and surface properties. Exp Eye Res 43, pp 77-92; 1986
53. Chirgadze Y.N., Driessen H.P.C., Wright G., Slingsby C., Hay R.E., Lindley P.F.: Structure of the bovine eye lens γD (γIIIb)-crystallin at 1.95 Å. Acta Crystallogr D 52, pp 712-721; 1996
54. Norledge B.V., Hay E., Bateman O.A., Slingsby C., Driessen H.P.C.: Towards a molecular understanding of phase separation in the lens: a comparison of the X-ray structures of two high Tc γ-crystallins, γE and γF, with two low Tc γ-crystallins, γB and γD. Exp Eye Res 65, pp 609-630; 1997
55. Basak, Ajit; Bateman, Orval; Slingsby, Christine; Pande, Ajay; Asherie, Neer; Ogun, Olutayo; Benedek, George B.; Pande, Jayanti: High-resolution X-ray Crystal Structures of Human γD Crystallin (1.25 Å) and the R58H Mutant (1.15 Å) Associated with Aculeiform Cataract. J Mol Biol 328, pp 1137-1147; 2003
56. Berbers, G. A., Hoekman WA, Bloemendal H, de Jong WW, Kleinschmidt T, Braunitzer G. Homology between the primary structures of the major bovine beta-crystallin chains. Eur J Biochem 139, pp 467-479; 1984
57. Slingsby C, Bateman OA.: Quaternary interactions in eye lens beta- crystallins: basic and acidic subunits of beta-crystallins favor heterologous association. Biochemistry 29, pp 6592-6599; 1990
58. Blundell T, Lindley P, Miller L, Moss D, Slingsby C, Tickle I, Turnell B, Wistow G.: The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin II. Nature 289, pp 771-777; 1981
59. Chirgadze YN, Nikonov SV, Garber MB, Reshetnikova LS.: Crystallographic study of gamma-crystallins from calf lens. J Mol Biol 110, pp 619-624; 1977
60. Slingsby C, Miller LR.: Purification and crystallization of mammalian lens gamma-crystallins. Exp Eye Res 37, pp 517-530; 1983
61. Basak, A. K., Kroone, R. C., Lubsen, N. H., Naylor, C. E., Jaenicke, R., Slingsby, C.: The C-terminal domains of γS-crystallin pair about a distorted twofold axis. Protein Eng 11, pp 337-344; 1998
62. Clout, Naomi J.; Basak, Ajit; Wieligmann, Karin; Bateman, Orval A.; Jaenicke, Rainer; Slingsby, Christine: The N-terminal Domain of βB2-crystallin Resembles the Putative Ancestral Homodimer J Mol Biol 3, pp 253-257; 2000
63. Nalini V, Bax B, Driessen H, Moss DS, Lindley PF, Slingsby C.: Close packing of an oligomeric eye lens beta-crystallin induces loss of symmetry and ordering of sequence extensions. J Mol Biol 236, pp 1250-1258; 1994
64. Zigler, J. S., Jr., Horwitz, J., and Kinoshita, J. H.: Human beta- crystallin. I. Comparative studies on the beta 1, beta 2 and beta 3-crystallins. Exp Eye Res 31, pp 41-55; 1980
65. Alcala, J., Katar, M., Rudner, G., and Maisel, H.: Human beta- crystallins: regional and age related changes. Curr Eye Res 7, pp 353-359; 1988
66. Miesbauer, L. R., Zhou, X., Yang, Z., Yang, Z., Sun, Y., Smith, D. L., and Smith, J. B.: Post-translational modifications of water-soluble human lens crystallins from young adults. J Biol Chem 269, pp 12494-12502; 1994
67. Ajaz, M. S., Ma, Z., Smith, D. L., and Smith, J. B.: Size of Human Lens β-Crystallin Aggregates Are Distinguished by N-terminal Truncation of βB1. J Biol Chem 272, pp 11250-11255; 1997
68. Lubsen, N. H., Aarts, H. J. M. and Schoenmakers, J. G. G.: The evolution of lenticular proteins: the β- and γ-crystallin super gene family. Prog Biophys Molec Biol 51, pp 47-76; 1988
69. Bax, B., Lapatto, R., Nalini, V., Driessen, H., Lindley, P. F., Mahadevan, D., Blundell, T. L., and Slingsby, C.: X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins. Nature 347, pp 776-780; 1990
70. Chirgadze, Y., Nevskaya, N., Vernoslova, E., Nikonov, S., Sergeev, Y., Brazhnikov, E., Fomenkova, N., Lunin, V., and Urzhumtsev, A.: Crystal structure of calf eye lens gamma-crystallin IIIb at 2.5 A resolution: its relation to function. Exp Eye Res 53, pp 295-304; 1991
71. Lapatto, R., Nalini, B., Bax, B., Driessen, H., Lindley, P. F., Blundell, T. L., and Slingsby, C.: High resolution structure of an oligomeric eye lens beta-crystallin. Loops, arches, linkers and interfaces in beta B2 dimer compared to a monomeric gamma-crystallin. J Mol Biol 222, pp 1067-1083; 1991
72. Graw J.: The crystallins: genes, proteins, and diseases. Biol Chem 378, pp 1331-1348; 1997
73. Slingsby C, Clout NJ: Structure of the crystallins. Eye 13, pp 395-402; 1999
74. Kroone, R. C., Elliott, G. S., Ferszt, A., Slingsby, C., Lubsen, N. H., and Schoenmakers, J. G. G.: The role of the sequence extensions in beta-crystallin assembly. Protein Eng 7, pp 1395-1399; 1994
75. Trinkl, S., Glockshuber, R., and Jaenicke, R.: Dimerization of βB2- crystallin: The role of the linker peptide and the N- and C-terminal extensions. Protein Sci 3, pp 1392-1400; 1994
76. Berbers, G. A. M., Boerman, O. C., Bloemendal, H., and de Jong, W. W.: Primary gene products of bovine beta-crystallin and reassociation behavior of its aggregates. Eur J Biochem 128, pp 495-502; 1982
77. Siezen, R. J., Anello, R. D., and Thomson, J. A.: Interactions of lens proteins. Concentration dependence of beta-crystallin aggregation. Exp Eye Res 43, pp 293-303; 1986
78. Ling Fu, Jack J.-N. Liang: Unfolding of human lens recombinant βB2- and γC-crystallins. J Struct Biol 139, pp 191-198; 2002
79. Zhang, Zhongli; David, Larry L.; Smith, David L.; Smith, Jean B. Resistance of Human βB2-crystallin to in vivo Modification. Exp Eye Res 73, pp 203-211; 2001
80. Srivastava O.P. and Srivastava K.: βB2-crystallin undergoes extensive truncation during aging in human lenses. Biochem Biophys Res Commun 301, pp 44-49; 2003
81. Jong WW de, Caspers GJ, Leunissen JA: Genealogy of the alpha- crystallin small heat-shock protein superfamily. Int J Biol Macromol 22, pp 151-162; 1998
82. Hawkins JW, Van Keuren ML, Piatigorsky J, Law ML, Patterson D, Kao FT.: Confirmation of assignment of the human alpha A-crystallin gene (CRYA1) to chromosome 21 with regional localization to q22.3. Hum Genet 76, pp 375-380; 1987
83. Ngo JT, Klisak I, Dubin RA, Piatigorsky J, Mohandas T, Sparkes RS, Bateman JB.: Assignment of the alpha B-crystallin gene to human chromosome 11. Genomics 5, pp 665-669; 1989
84. Bhat, S.P., Nagineni C.N.: Alpha B subunit of lens specific protein alpha-crystallin is present in other occular and non-occular tissues. Biochem Biophys Res Commun 158, pp 319-325; 1989
85. Dubin, R.A., Wawrousek E.F., Piatigorsky J.: Expression of the murine alpha B-crystallin is not restricted to the lens. Mol Cell Biol 9, pp 1083-1091; 1989
86. Iwaki, T., Kume-Iwaki A., Goldman J.E.: Cellular distribution of alpha B-crystallin in non-lenticular tissues. J Histochem Cytochem 38, pp 31-39; 1990
87. Klemenz, R., Frohli E., Steiger R.H., Schafer R., Aoyama A.: Alpha B-crystallin is a small heat-shock protein. Proc Nat Acad Sci, USA 88, pp 3652-3656; 1991
88. Jakob, U., Gaestel M., Engel K., Buchner J.: Small heat-shock proteins are molecular chaperones. J Biol Chem 268, pp 1517- 1520; 1993
89. Roy D. and Spector A.: Absence of low-molecular-weight alpha- crystallin in the nuclear region of old human lenses. Proc Nat Acad Sci , USA 76, pp 3484-3487; 1976
90. McFall-Ngai, M.J., Ding L.L., Takemoto L.J., Horwitz J.: Spatial and temporal mapping of the age-related changes in human lens crystallins. Exp Eye Res 41, pp 745-758; 1985
91. Rao, P.V., Huang Q.L., Horwitz J., Zigler S.J.: Evidence that alpha-crystallin presents non-specific protein aggregation in the intact eye lens. Biochem Biophys Acta 1245, pp 439-447; 1995
92. Srivastava OP, Ortwerth BJ.: The effects of aging and cataract formation on the trypsin inhibitor activity of human lens. Exp Eye Res 48, pp 25-36; 1989
93. Wang, K., Spector A.: The chaperone acitivity of bovine alpha crystalline. Interaction with other lens crystallins in native and denatured states. J Biol Chem 269, pp 13601-13608; 1994
94. Boyle, D., Takemoto L.: Characterization of the alpha-gamma and alpha-beta complex: evidence for an in vivo functional role of alpha-crystallin as a molecular chaperone. Exp Eye Res 58, pp 9-16; 1994
95. Carver, J.A., Nicholls K.A., Aquilina J.A., Truscott R.J.W.: Age-related changes in bovine alpha-crystallin and high molecular- weight protein. Exp Eye Res 63, pp 639-647; 1996
96. Trent JD, Gabrielsen M, Jensen B, Neuhard J, Olsen J: Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J Bacteriol 176, pp 6148-6152; 1994
97. Hightower LE: Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66, pp 191-197; 1991
98. Lindquist S: Heat-shock proteins and stress tolerance in microorganisms. Curr Opin Genet Dev 2, pp 748-755; 1992
99. Derham, Barry K. and Harding, John J.: α-Crystallin as a molecular chaperone. Prog Retin Eye Res 18, pp 463-509; 1999
100. Joseph Horwitz: Alpha-crystallin. Exp Eye Res 76, pp 145-153; 2003
101. Ingolia, T. D. and Craig, E. A.: Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc Natl Acad Sci, USA 79, pp 2360-2364; 1982
102. Wistow, G.: Domain structure and evolution in alpha-crystallins and small heat-shock proteins. FEBS Lett 181, pp 1-6; 1985
103. Caspers, G. J., Leunissen, J. A. and de Jong, W. W. The expanding small heat-shock protein family, and structure predictions of the conserved “alpha-crystallin domain”. J Mol Evol 40, pp 238-248; 1995
104. de Jong, W. W., Leunissen, J. A., Leenen, P. J., Zweers, A. and Versteeg, M.: Dogfish alpha-crystallin sequences. Comparison with small heat shock proteins and Schistosoma egg antigen. J Biol Chem 263, pp 5141-5149; 1988
105. Frank, J.: Cryo-electron microscopy as an investigative tool: the ribosome as an example. Bioessays 23, pp 725-732; 2001
106. Saibil, H.R., Horwich A.L., Fenton W.A.: Allostery and protein substrate conformational change during GroEL/GroES-mediated protein folding. Adv Protein Chem 59, pp 45-72; 2001
107. Siezen, R. J., Bindels, J. G. and Hoenders, H. J.: The quaternary structure of bovine alpha-crystallin. Effects of variation in alkaline pH, ionic strength, temperature and calcium ion concentration. Eur J Biochem 111, pp 435-444; 1980
108. Deretic, D., Aebersold, R. H., Morrison, H. D. and Papermaster, D. S.: αA- and αB-crystallin in the retina. Association with the post-Golgi compartment of frog retinal photoreceptors. J Biol Chem 269, pp 16853- 16861; 1994
109. Haley, D.A., Horwitz J., Stewart P.L.: The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J Mol Biol 277, pp 27-35; 1998
110. Siezen, R. J., Owen, E. A., Kubota, Y. and Ooi, T.: Structural homology of lens crystallins. II. Homology expressed by correlation coefficients and hydropathy profiles. Biochim Biophys Acta 748, pp 48-55; 1983
111. Liang, J. N. and Chakrabarti, B.: Spectroscopic investigations of bovine lens crystallins. I. Circular dichroism and intrinsic fluorescence. Biochemistry 21, pp 1847-1852; 1982
112. Li, L. K. and Spector, A.: Circular dichroism and optical rotatory dispersion of the aggregates of purified polypeptides of alpha-crystallin. Exp Eye Res 19, pp 49-57; 1974
113. Lamba, O. P., Borchman, D., Sinha, S. K., Shah, J., Renugopalakrishnan, V. and Yappert, M. C.: Estimation of the secondary structure and conformation of bovine lens crystallins by infrared spectroscopy: quantitative analysis and resolution by Fourier self-deconvolution and curve fit. Biochim Biophys Acta 1163, pp 113-123; 1993
114. Singh, K., Zewge, D., Groth-Vasselli, B. and Farnsworth, P. N.: A comparison of structural relationships among α-crystallin, human HSP27, γ-crystallins and βB2-crystallin. Int J Biol Macromol 19, pp 227-233; 1996
115. Carver, J. A., Aquilina, J. A., Truscott, R. J. and Ralston, G. B.: Identification by 1H NMR spectroscopy of flexible C-terminal extensions in bovine lens alpha-crystallin. FEBS Lett 311, pp 143-149; 1992
116. Kim, K.K., Kim R., Kim S.H.: Crystal structure of a small heat- shock protein. Nature 394, pp 595-599; 1998
117. van Montfort, R.L.M., Basha E., Friedrich K.L., Slingsby C., Vierling E.: Crystal structure and assembly of a eukaryotic small heat- shock protein. Nature Struct Biol 8, pp 1025-1030; 2001
118. van Montfort, R., Slinsgsby C., Vierling E.: Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59, pp 105-156; 2001
119. Rajaraman K., Raman B., Rao C.M.: Molten-globule state of carbonic anhydrase binds to the chaperone-like alpha-crystallin. J Biol Chem 271, pp 27595-27600; 1996
120. Rajaraman K., Raman B., Ramakrishna T., Rao C.M.: The chaperone-like alpha-crystallin forms a complex only with the aggregation-prone molten globule state of alpha-lactalbumin. Biochem Biophys Res Commun 249, pp 917-921; 1998
121. Das, K.P. J.M. Petrash, W.K. Surewicz: Conformational Properties of Substrate Proteins Bound to a Molecular Chaperone alpha-Crystallin. J Biol Chem 271, pp 10449-10452; 1996
122. Buchner, J., Grallert, H. and Jakob, U.: Analysis of chaperone function using citrate synthase as nonnative substrate protein. Methods Enzymol 290, pp 323-338; 1998
123. Jakob, U., Lilie,H. I. and Buchner, Meyer, J.: Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem 270, pp 7288-7294; 1995
124. Hendrick, J. P., and Hartl, F.-U.: Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62, pp 349-384; 1993
125. Merck, K. B., Groenen, P. J. T. A., Voorter, C. E. M., de Haard-Hoekman, W. A., Horwitz, J., Bloemendal, H., and de Jong, W. W.: Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem 268, pp 1046-1052; 1993
126. Kantorow, M., and Piatigorsky, J.: α-Crystallin/Small Heat Shock Protein has Autokinase Activity. Proc Natl Acad Sci, USA 91, pp 3112-3116; 1994
127. Palmisano, D. V., Groth-Vasselli, B., Farnsworth, P. N., and Reddy, M. C.: Interaction of ATP and lens alpha crystallin characterized by equilibrium binding studies and intrinsic tryptophan fluorescence spectroscopy. Biochim Biophys Acta 1246, pp 91-97; 1995
128. Paul J. Muchowski, Lara G. Hays, John R. Yates, III, and John I.: Clark ATP and the Core "α-Crystallin" Domain of the Small Heat-shock Protein αB-crystallin. J Biol Chem 274, pp 30190-30195; 1999
129. Muchowski, P.J., Clark J.I.: ATP enhanced molecular chaperone function of the small heat-shock protein human alpha B-crystallin. Proc Nat Acad Sci, USA 95, pp 1004-1009; 1998
130. Rawat, U., Rao M.: Interaction of chaperone alpha-crystallin with the molton globule state of xylose-reductase. Implication for reconstitution of the active enzyme. J Biol Chem 273, pp 9415- 9423; 1998
131. Smulders, R.H.P.H., de Jong W.W.: The hydrophobic probe 4,4''-bis (1-anilino-8-naphthalene sulfonic acid) is specifically photoincorporated into the N-terminal domain of alpha B-crystallin. FEBS Lett 409, pp 101- 104; 1997
132. Stevens, A., Augusteyn R.C.: Binding of 1-anilinonaphthalene- 8-sulfonic acid to alpha-crystallin. Eur J Biochem 243, pp 792-797; 1997
133. Jobling, A.I., Stevens A., Augusteyn R.C.: Binding of dexamethasone by alpha-crystallin. Invest Ophthalmol Vis Sci 42, pp 1829-1832; 2001
134. Horwitz, J.: Proctor Lecture. The function of alpha-crystallin. Invest Ophthalmol Vis Sci 34, pp 10-21; 1993
135. Groenen, P. J. T. A., Merck, K. B., de Jong, W. W., and Bloemendal, H.: Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem 225, pp 1-19; 1994
136. Raman, B., and Rao, C. M.: Chaperone-like activity and quaternary structure of alpha-crystallin. J Biol Chem 269, pp 27264-27268; 1994
137. Farahbakhsh, Z. T., Huang, Q.-L., Ding, L.-L., Altenbach, C., Steinhoff, H.-J., Horwitz, J., and Hubbell, W. L.: Interaction of alpha- crystallin with spin-labeled peptides. Biochemistry 34, pp 509-516; 1995
138. DOSS-PEPE, ELLEN W.; CAREW, ERICA L.; KORETZ, JANE F. Studies of the Denaturation Patterns of Bovine Alpha-Crystallin Using an Ionic Denaturant, Guanidine Hydrochloride and a Non-Ionic Denaturant, Urea. Exp Eye Res 67, pp 657-679; 1994
139. Radlick, L. W. and Koretz, J. F.: Biophysical characterization of α-crystallin aggregates: validation of the micelle hypothesis. Biochim Biophys Acta 1120, pp 193-200; 1992
140. Koretz, J. F.; Doss, E. W.; Reid, G. H.: Analysis of the factors involved in the loss and restoration of the chaperone-like function of α-crystallin. Biochem Biophys Res Commun 231, pp 270-276; 1997
141. Takemoto, L., and Boyle, D. Molecular chaperone properties of the high molecular weight aggregate from aged lens. Curr Eye Res 13, pp 35-44; 1994
142. Das, K. P.; Surewicz, W. K.: Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett 369, pp 321-325; 1995
143. Das, B. K.; Liang, J. J. N.; Chakrabarti, B.: Heat-induced conformational change and increased chaperone activity of lens alpha-crystallin. Curr Eye Res 16, pp 303-309; 1997
144. Datta, S. A. and Rao, C. M.: Differential temperature-dependent chaperone-like activity of αA- and αB-crystallin homoaggregates. J Biol Chem 274, pp 34773-34778; 1999
145. Burgio MR, Bennett PM, Koretz JF.: Heat-induced quaternary transitions in hetero- and homo-polymers of alpha-crystallin. Mol Vis 7, pp 228-233; 2001
146. Bode C, Tolgyesi FG, Smeller L, Heremans K, Avilov SV, Fidy J.: Chaperone-like activity of alpha-crystallin is enhanced by high-pressure treatment. Biochem J 370, pp 859-866; 2003
147. Das, B. K. and Liang, J. J.: Detection and characterization of alpha-crystallin intermediate with maximal chaperone-like activity. Biochem Biophys Res Commun 236, pp 370-374; 1997
148. del Valle LJ, Escribano C, Perez JJ, Garriga P.: Calcium-induced decrease of the thermal stability and chaperone activity of alpha-crystallin. Biochim Biophys Acta 1601, pp 100-109; 2002
149. Koretz, J. F., Doss, E. W. and LaButti, J. N.: Environmental factors influencing the chaperone-like activity of alpha-crystallin. Int J Biol Macromol 22, pp 283-294; 1998
150. Marini I, Bucchioni L, Voltarelli M, Del Corso A, Mura U.: Alpha-crystallin-like molecular chaperone against the thermal denaturation of lens aldose reductase: the effect of divalent metal ions. Biochem Biophys Res Commun 212, pp 413-420; 1995
151. Carver, J. A., Aquilina, J. A., Cooper, P. G., Williams, G. A. and Truscott, R. J.: Alpha-Crystallin: molecular chaperone and protein surfactant. Biochim Biophys Acta 1204, pp 195-206; 1994
152. Rao, P. V., Horwitz, J. and Zigler, J. S., Jr: Alpha-Crystallin, a molecular chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. Biochem Biophys Res Commun 190, pp 786-793; 1993
153. Hook, D. W. and Harding, J. J.: Molecular chaperones protect catalase against thermal stress. Eur J Biochem 247, pp 380-385; 1997
154. Gopalakrishnan, S., Boyle, D. and Takemoto, L.: Preferential interaction of alpha-crystallin with denatured forms of gamma-crystallin. Invest Ophthalmol Vis Sci 35, pp 382-387; 1994
155. Carver, J. A., Guerreiro, N., Nicholls, K. A. and Truscott, R. J.: On the interaction of alpha-crystallin with unfolded proteins. Biochim Biophys Acta 1252, pp 251-260; 1995
156. Das, K. P. and Surewicz, W. K.: On the substrate specificity of alpha-crystallin as a molecular chaperone. Biochem J 311, pp 367-370; 1995
157. Reddy GB, Das KP, Petrash JM, Surewicz WK.: Temperature- dependent chaperone activity and structural properties of human αA- and αB-crystallins. J Biol Chem 275, pp 4565-4570; 2000
158. Raman, B., Ramakrishna, T. and Rao, C. M.: Temperature-dependent chaperone-like activity of alpha-crystallin. FEBS Lett 365, pp 133-136; 1995
159. Raman, B. and Rao, C. M.: Chaperone-like activity and temperature- induced structural changes of alpha-crystallin. J Biol Chem 272, pp 23559- 23564; 1997
160. Lindner, R.A.; Kapur, A.; Mariani, M.; Titmuss, S.J. and Carver, S.J.: Structural alterations of alpha-crystallin during its chaperone action. Eur J Biochem 258, pp 170-183; 1998
161. Shroff, N.P.; Cherian-Shaw, M.; Bera, S. and Abraham, E.C.: Mutation of R116C results in highly oligomerized alpha A-crystallin with modified structure and defective chaperone-like function. Biochemistry 39, pp 1420- 1426; 2000
162. Lindner, R.A.; Kapur, A. and Carver, J.A.: The interaction of the molecular chaperone, alpha-crystallin, with molten globule states of bovine alpha-lactalbumin. J Biol Chem 272, pp 27722-27729; 1997
163. Raman, B.; Ramakrishna, T. and Rao, Ch.M.: Effect of the chaperone-like alpha-crystallin on the refolding of lysozyme and ribonuclease A. FEBS Lett 416, pp 369-372; 1997
164. Horwitz, J, Huang, QL, Ding, L, Bova, MP: Lens α-crystallin: chaperone-like properties. Methods Enzymol 290, pp 365-383; 1998
165. Carver, J.A.; Aquilina, J.A. and Truscott, R.J.W.: A possible chaperone-like quaternary structure for alpha-crystallin. Exp Eye Res 59, pp 231-234; 1994
166. Elena Ganea: Chaperone-like Activity of alpha-Crystallin and Other Small Heat Shock Proteins. Curr Protein Pept Sci 2, pp 205-225; 2001
167. Lindner, R.A.; Treweek, T.M. and Carver, J.A.: The molecular chaperone alpha-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of alpha-lactalbumin. Biochem J 354, pp 79-87; 2001
168. Bova, M.P.; Ding, L.-L.; Horwitz, J. and Fung, B.K.-K.: Subunit Exchange of αA-Crystallin. J Biol Chem 272, pp 29511-29517; 1997
169. Bova, M. P., Mchaourab, H. S., Han, Y., and Fung, B. K.-K.: Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alpha A-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 275, pp 1035-1042; 2000
170. Frederick J. E., H. E. Snell , E. K. Haywood: Solar ultraviolet radiation at the Earths surface. Photochem Photobiol 50, pp 443-450; 1989
171. Frederick J. E., A. D.: Alberts The natural UV-A radiation environmentIn. Biological Responses to Ultraviolet A Radiation (Edited by F. Urbach). Valdenmar Publishing, Overland Park, KS pp 7-18, 1992
172. Zigman S.: The role of sunlight in human cataract formation. Surv Ophthalmol 27, pp 317-326; 1983
173. Hietanem M.: Ocular exposure to solar ultraviolet and visible radiation at high altitudes. Scand J Work Health 17, pp 398-403; 1991
174. Oriowo O. M.: A study of UV radiation effects on porcine crystalline lens and development of a new assay methodology for UV cataractogene- sis investigationPh.D. dissertation, University of Waterloo, Waterloo, ON, 2000
175. Green A. E. S., T. Sawada , E. P. Shettle: The middle ultraviolet reaching the ground. Photochem Photobiol 19, pp 251-259; 1974
176. Mecherikunnel A. T., J. A. Gatlin , J. C. Richmond: Data on total and spectral solar irradiance. Appl Optics 1983; 22, pp 1354-1359
177. Pitts D. G.: Sunlight as an ultraviolet source. Optom Vision Sci 67, pp 401-406; 1990
178. Zigman S.: Environmental near UV radiation and cataracts. Optom Vision Sci 72, pp 899-901; 1995
179. Pirie A.: Formation of N-formylkynurenine in proteins from lens and other sources by exposure to sunlight. Biochem J 125, pp 203-208; 1971
180. . Zigman S., T. Vaughan: Near-ultraviolet light effects on the lenses and retinas of mice. Investig Ophthalmol Vis Sci 13, pp 462-465; 1974
181. Bachem A.: Ophthalmic ultraviolet action spectra. Am J Ophthalmol 41, pp 969-975; 1956
182. Pitts D. G., A. P. Cullen , P. D. Hacker: Ocular effects of ultraviolet radiation from 295 to 365 nm. Investig Ophthalmol Vis Sci 16, pp 932-939; 1977
183. Jose J. G., D. G. Pitts: Wavelength dependence of cataracts in albino mice following chronic exposure. Exp Eye Res 41, pp 545-563; 1985
184. Jose J. G.: Posterior cataracts induction by UVB radiation in albino mice. Exp Eye Res 42, pp 11-20; 1986
185. Borkman, R.F.; Knight, G. and Obi, B.: The molecular chaperone alpha-crystallin inhibits UV-induced protein aggregation. Exp Eye Res 62, pp 141-148; 1996
186. Lee, J.S.; Samejina, T.; Liao, J.-H.; Wu, S.-H. and Chiou, S.-H.: Physiological role of the association complexes of alpha-crystallin and its substrates on the chaperone activity. Biochem Biophys Res Commun 244, pp 379-383; 1998
187. Lin, S.Y.; Ho, C.J. and Li, M.J.: UV-B-induced secondary conformational changes in lens alpha-crystallin. J Photochem Photobiol B 49, pp 29-34; 1999
188. Weinreb, O.; van Boekel, M.A.; Dourat, A. and Bloemendal, H.: Effect of UV-A light on the chaperone-like properties of young and old lens alpha-crystallin. Invest Ophthalmol Vis Sci 41, pp 191-198; 2000
189. Tamm ER, Russell P, Johnson DH, Piatigorsky J.: Human and monkey trabecular meshwork accumulate alpha B-crystallin in response to heat shock and oxidative stress. Invest Ophthalmol Vis Sci 37, pp 2402-2413; 1996
190. Preville X, Salvemini F, Giraud S, Chaufour S, Paul C, Stepien G, Ursini MV, Arrigo AP.: Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res 247, pp 61-78; 1999
191. Carver, J.A.; Aquilina, J.A. and Truscott, R.J.: An investigation into the stability of alpha-crystallin by NMR spectroscopy; evidence for a two-domain structure. Biochim Biophys Acta 1164, pp 22-28; 1993
192. Riley, L.M. and Harding, J.J.: The reaction of malondialdehyde with lens proteins and the protective effect of aspirin. Biochim Biophys Acta 1158, pp 107-112; 1993
193. Ganea, E. and Harding, J.J.: Alpha-crystallin protects glucose 6- phosphate dehydrogenase against inactivation by malondialdehyde. Biochim Biophys Acta 1500, pp 49-58; 2000
194. Maiti, M.; Kono, M. and Chakrabarti, B.: Heat-induced changes in the conformation of alpha- and beta-crystallins: unique thermal stability of alpha-crystallin. FEBS Lett 236, pp 109-114; 1988
195. Walsh, M. T., Sen, A. C. and Chakrabarti, B.: Micellar subunit assembly in a three-layer model of oligomeric alpha-crystallin. J Biol Chem 266, pp 20079-20084; 1991
196. Lee, J. S., Satoh, T., Shinoda, H., Samejima, T., Wu, S. H. and Chiou, S. H.: Effect of heat-induced structural perturbation of secondary and tertiary structures on the chaperone activity of alpha-crystallin. Biochem Biophys Res Commun 237, pp 277-282; 1997
197. Spector A, Li LK, Augusteyn RC, Schneider A, Freund T.: Alpha-Crystallin. The isolation and characterization of distinct macromolecular fractions. Biochem J 124, pp 337-343; 1971
198. Spector, A., Freund, T., Li, L.-K. and Augusteyn, R. C.: Age- dependent changes in the structure of alpha-crystallin. Invest Ophthal Vis Sci 10, pp 677-686; 1971
199. Spector A, Li S, Sigelman J.: Age-dependent changes in the molecular size of human lens proteins and their relationship to light scatter. Invest Ophthalmol Vis Sci 13, pp 795-798; 1974
200. Jedziniak JA, Kinoshita JH, Yates EM, Benedek GB.: The concentration and localization of heavy molecular weight aggregates in aging normal and cataractous human lenses. Exp Eye Res 20, 367-369; 1975
201. Liem-The KN, Stols AL, Hoenders HJ. Further characterization of HM-crystallin in rabbit lens. Exp Eye Res 20, pp 307-316; 1975
202. Dilley KJ, Harding JJ. Changes in proteins of the human lens in development and aging. Biochim Biophys Acta 386, pp 391-408; 1975
203. Roy D, Spector A.: High molecular weight protein from human lenses. Exp Eye Res 22, pp 273-279; 1976
204. Roy D, Spector A.: Human alpha-crystallin-III isolation and characterization of protein from normal infant lenses and old lens peripheries. Invest Ophthalmol Vis Sci 15, pp 394-399; 1976
205. Stauffer J, Rothschild C, Wandel T, Spector A.: Transformation of alpha-crystallin polypeptide chains with aging. Invest Ophthalmol Vis Sci 13, pp 135-146; 1974
206. Jedziniak JA, Nicoli DF, Baram H, Benedek GB.: Quantitative verification of the existence of high molecular weight protein aggregates in the intact normal human lens by light-scattering spectroscopy. Invest Ophthalmol Vis Sci 17, pp 51-57; 1978
207. Jedziniak JA, Kinoshita JH, Yates EM, Hocker LO, Benedek GB.: On the presence and mechanism of formation of heavy molecular weight aggregates in human normal and cataractous lenses. Exp Eye Res 15, pp 185-192; 1973
208. Cherian, M. and Abraham, E. C.: Decreased molecular chaperone property of alpha-crystallins due to post-translational modifications. Biochem Biophys Res Commun 208, pp 675-679; 1995
209. Liang JJ, Akhtar NJ.: Human lens high-molecular-weight alpha- crystallin aggregates. Biochem Biophys Res Commun 275, pp 354-359; 2000
210. Liang, J. N., Andley, U. P. and Chylack, L. T., Jr: Spectroscopic studies on human lens crystallins. Biochim Biophys Acta 832, pp 197-203; 1985
211. Liang, J. N. and Rossi, M.: Near-ultraviolet circular dichroism of bovine high molecular weight alpha-crystallin. Invest Ophthalmol Vis Sci 30, pp 2065-2068; 1989
212. Messmer, M. and Chakrabarti, B.: High-molecular-weight protein aggregates of calf and cow lens: spectroscopic evaluation. Exp Eye Res 47, pp 173-183; 1988
213. Liang, J. N. and Li, X. Y.: Interaction and aggregation of lens crystallins. Exp Eye Res 53, pp 61-66; 1991
214. Spector, A.: Aging of the lens and cataract formation. In Aging and Human Visual Function. (Eds Sekuler, R., Kline D. and Dismukes, K.) Alan R. Liss, New York, pp 27-43, 1982
215. Spector, A.: The search for a solution to senile cataracts. Invest Ophthalmol Visual Sci 25, pp 130-146; 1984
216. Ortwerth BJ, Olesen PR.: Studies on the nature of the water- insoluble fraction from aged bovine lenses. Exp Eye Res 48, pp 605-619; 1989
217. Harding, J. J. In: Cataract: Biochemistry, Epidemiology and Pharmacology. Chapman & Hall, London, pp 195-217, 1991
218. Sun TX, Akhtar N and Liang JJ.: Conformational change of human lens insoluble alpha-crystallin. J Protein Chem 17, 679-684; 1998
219. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klent, D. C.: Measurement of protein using bicinchoninic acid. Anal Biochem 150, pp 76-80; 1986
220. LaemmLi, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, pp 680-685; 1970
221. Colvis, C. M., Duglas-Tabor, Y., Werth, K. B., Vieira, N. E., Kowalak, J. A., Janjani, A., Yergey, A. L., and Garland, D. L.: Tracking pathology with proteomics: identification of in vivo degradation products of alphaB-crystallin. Electrophoresis 21, pp 2219-2227; 2000
222. Johnson, J. D., El-Bayoumi, M. A., Weber, L. D., and Tulinsky, A.: Interaction of alpha-chymotrypsin with the fluorescent probe 1-anilino- naphthalene-8-sulfonate in solution. Biochemistry 18, pp 1292-1296; 1979
223. Gupte, S. S. and Lane, L. K.: Reaction of purified (Na,K)-ATPase with the fluorescent sulfhydryl probe 2-(4''-maleimidylanilino) naphthalene 6-sulfonic acid. Characterization and the effects of ligands. J Biol Chem 254, pp 10362-10369; 1979
224. Mitchell, H. and Cook, G.: Galactose cataract in rats. Factors influencing progressive and regressive changes. Arch Ophthalmol 19, pp 22-23; 1938
225. Sippel, T. O.: Changes in the water, protein and glutathione contents of the lens in the course of galactose cataract development in rats. Invest Ophthalmol Vis Sci 5, pp 568-575; 1966
226. Gifford, S. R. and Bellows, J.: Histologic changes in the lens produced by galactose. Arch Ophthalmol 21, pp 346-358; 1939
227. Friedenwald, J. S. and Rytel, D.: Contribution to the histopathology of cataract. Arch Ophthalmol 53, pp 825-831; 1955
228. von Sallmann, L.: The lens epithelium in the pathogenesis of cataract. Am J Ophthalmol 44, pp 159-170; 1957
229. Hanna, C. and O’Brien, J.: Studies on galactose cataract formation utilizing thymidine-tritium. Arch Ophthalmol 67, pp 708-711; 1960
230. Grimes, P. and von Sallmann, L.: Lens epithelium proliferation in sugar cataract. Invest Ophthalmol 7, pp 535-543; 1968
231. Kuwabara, t., Kinoshita. J. H. and Cogan, D. G.: Electron microscopic study of galactose-induced cataract. Invest Ophthalmol Vis Sci 8, pp 133- 149; 1969
232. Unakar, N. J., Genyea, C., Reddan, J. R. and Reddy, V. N.: Ultrastructural changes during the development and reversal of galactose cataracts. Exp Eye Res 26, pp 123-133; 1978
233. Beyer-Mears, A., Farnsworth, P. N., Fu, S.-C. J. and Burke, P.: Progressive galactose cataractogenesis and regional susceptibility in neonatal lens. Exp Eye Res 27, pp 278-287; 1978
234. Beyer-Mears, A., Farnsworth, P. N., Fu, S.-C. J. and Yeh, C.-K.: Regional analyses of the reversal process in the neonatal galactose lens. Exp Eye Res 27, pp 627-635; 1978
235. Beyer-Mears, A., Farnsworth, P. N.: Regional analyses of the opaque the galactose cataract and the reversal process. Metab Pediatr Ophthalmol 4, pp 9-14; 1980
236. Unakar, N. J., Tsui, J. Y. and Harding, Jr., C. V.: Scanning electron microscopy of lens. Development and reversal of galactose cataracts. Ophthalmic Res 13, pp 20-35; 1981
237. Kinoshita J. H.: Cataract in galactosemia: The Jonas S. Fridenwald Memorial Lecture. Invest Ophthalmol Vis Sci 4, pp 786-789; 1965
238. Cotlier, E. and Becker, B.: Rubidium-86 Accumulative Dulcitol distribution in lenses of galactose-fed rats. Exp Eye Res 1965; 4, pp 340-345
239. Kawaba, T., Cheng, H. M. and Kinoshita, J. H.: The accumulation of myoinositol and rubidium ions in galactose-exposed rat lens. Invest Ophthalmol Vis Sci 27, pp 1522-1526; 1986
240. Harding, C. V., Unakar, N. J., Bobrowski, W. F., Dang, L., Tsui, J. Y. and Harding, D.: Elemental analysis of the developing rat galactose cataract. Lens Res 4, pp 27-54; 1987
241. Kinoshita J. H., Barber, G. W., Merola, L. O. and Tung, B.: Change in the levels of free amino acids and myo-inositol in the galactose- exposed lens. Invest Ophthalmol Vis Sci 8, pp 625-632; 1969
242. Reddy, V. N., Schwass, D., Chakrapani, B. and Lim, C. P.: Biochemical changes associated with the development and reversal of galactose cataracts. Exp Eye Res 23, pp 483-493; 1976
243. Lerman, S.: Pathogenic factors in experimental galactose cataract. Part II. Arch Ophthalmol 63, pp 132-135; 1960
244. Greiner, J. V., Kopp, S. J., Sanders, D. R. and Glonek, T.: Dynamic changes in the organophosphate profile on the experimental galactose- induced cataract. Invest Ophthalmol Vis Sci 22, pp 613-624; 1982
245. Dische, Z., Zelmenis, G. and Youlis, J.: Studies on protein and protein synthesis during the development of galactose cataract. Am J Ophthalmol 44, pp 332-341; 1957
246. Wittgenstein, E. and Rowe, K. W.: Agar-gel electrophoresis of soluble lens proteins in galactose-fed rats. Nature 208, pp 386-387; 1965
247. Holt, W. S. and Kinoshita, J. H.: Starch-gel electrophoresis of the soluble lens proteins from normal and galactosemic animals. Invest Ophthalmol Vis Sci 7, pp 169-178; 1968
248. Ocken, P. R., Fu, S.-C. J., Hart, R., White, J. H., Wagner, B. J. and Lewis, K. E.: Characterization of lens proteins. I. Identification of additional soluble fractions in rat lenses. Exp Eye Res 24, pp 355-367; 1977
249. Wagner, B. J. and Fu, S.-C. J.: Characterization of lens proteins. II. γ-Crystallin of normal and cataractous rat lenses. Exp Eye Res 26, pp 255- 265; 1978
250. Kador, P. F., Zigler, J. S. and Kinoshita, J. H.: Alteration of lens protein synthesis in galactosemic rats. Invest Ophthalmol Vis Sci 18, pp 696-702; 1979
251. Fu, S.-C. J., Wagner, B. J., Su, S. W. and Lai, C. Y.: Characterization of lens proteins. III. A group of labile rat lens proteins involed in cataract. Exp Eye Res 30, pp 455-467; 1980
252. Shinohara, T., Piatigorsky, J., carper, D. A. and Kinoshita, J. H.: Crystallin synthesis and crystallin mRNAs in galactosemic rat lenses. Exp Eye Res 34, pp 39-48; 1982
253. Williams, E. H., Chaplain, T. L. and Meakem, T.: A temporal and spacial study of synthesis and degradation of water-soluble and insoluble proteins in galactosemic rat lenses. Exp Eye Res 41, pp 475-486; 1985
254. Hsu, M.-Y., Unakar, N. J. and Bekhor, I.: Differential gene expression in rat lens undergoing chemically induced cataractogenesis. Lens Res 3, pp 305-318; 1986
255. Huang, F.-Y., Ho, Y., Shaw, T.-S. and Chung, S.-A.: Functional and structural studies of α-crystallin from galactosemic rat lenses. Biochem Biophys Res Commun 273, pp 197-202; 2000
256. Harding JJ: Non enzymatic covalent post-translational modification of lens proteins in vivo. Adv Protein Chem 37, pp 247-334; 1985
257. Harding JJ: Non enzymatic post-translational modification of lens proteins in aging. In: G. Abrechet, L.W. Stark (eds), Presbiopia Research. Plenum Press, New York; pp 57-60, 1991
258. Swamy MS, Abraham EC: Lens protein composition, glycation and high molecular weight aggregation in aging rats. Invest Ophthalmol Vis Sci 28, pp 1693-1701; 1987
259. Perry RE, Swamy MS, Abraham EC: Progressive changes in lens crystallin glycation and high molecular weight aggregate formation leading to cataract development in streptozotocin-diabetic rats. Exp Eye Res 44, pp 269-282; 1987
260. Chiou SH, Chylack LT Jr, Tung WH, Bunn HF: Non enzymatic glycosylation of bovine lens crystallins. Effect of aging. J Biol Chem 256, pp 961-970; 1981
261. Garlick RL, Mazer JS, Chylack LT Jr, Tung WH, Bunn HF: Non-enzymatic glycosylation of human lens crystallins. Effect of aging and diabetes mellitus. J Clin Invest 74, pp 1724-1729; 1985
262. Liang JN, Hershorin LL, Chylack LT Jr: Non enzymatic glycosylation in human diabetic lens crystallins. Diabetologia 29, pp 225-228 ; 1986
263. Kasai K, Nakamura T, Kase N, Hiraoka T, Suzuki R, Kogure F, Shimoda SI: Increased glycosylation of proteins from cataractous lenses in diabetes. Diabetologia 25, pp 36-38; 1983
264. Lee JH, Shi DH, Lupovitch A, Shi DX: Glycosylation of lens proteins in senile cataract and diabetes mellitus. Biochem Biophys Res Commun 123, pp 888-893; 1984
265. Brownlee M, Vlassara H, Cerami A: Non-enzymatic glycosylation and the pathogenesis of diabetic complications. Ann Int Med 101, pp 527-537; 1984
266. Beswick HT, Harding JJ: Conformational changes induced in lens ahpha- and gamma- crystallins by modification with glucose-6- phosphate: Implications to cataract. Biochem J 246, pp 761-769; 1987
267. Stevens VJ, Rouzer CA, Monnier VM, Cerami A: Diabetic cataract formation. Potential role of glycosylation of crystallins. Proc Natl Acad Sci 75, pp 2918-2922; 1978
268. Ansari NH, Awasthi Y, Srinivastava SK: Role of glycosylation in disulfide formation and cataractogenesis. Exp Eye Res 31, pp 9-19; 1988
269. King CR, Piatigorsky J.: Alternative RNA splicing of the murine alpha A-crystallin gene: protein-coding information within an intron. Cell 32, pp 707-712; 1983
270. Smulders RH, van Geel IG, Gerards WL, Bloemendal H, de Jong WW.: Reduced chaperone-like activity of alpha A(ins)-crystallin, an alternative splicing product containing a large insert peptide. J Biol Chem 270, pp 13916-13924; 1995
271. Liang JJ, Fu L.: Decreased subunit exchange of heat-treated lens alpha A-crystallin. Biochem Biophys Res Commun 293, pp 7-12; 2002
272. van Kleef FS, Hoenders HJ.: Population character and variety in subunit structure of high-molecular-weight proteins from the bovine eye lens. Eur J Biochem 40, pp 549-554; 1973
273. Chiesa R, Gawinowicz-Kolks MA, Kleiman NJ, Spector A.: Definition and comparison of the phosphorylation sites of the A and B chains of bovine alpha-crystallin. Exp Eye Res 46, pp 199-208; 1988
274. Yang Z, Chamorro M, Smith DL, Smith JB.: Identification of the major components of the high molecular weight crystallins from old human lenses. Curr Eye Res 13, pp 415-521; 1994
275. Srivastava OP, Srivastava K and Silney C.: Levels of crystallin fragments and identification of their origin in water soluble high molecular weight (HMW) proteins of human lenses. Curr Eye Res 15, pp 511-520; 1996
276. Giblin FJ, Hightower KR, Ragatzki PA, Reddy VN.: Calcium- induced high molecular weight proteins in the intact rabbit lens. Exp Eye Res 39, pp 9-17; 1984
277. Chiou SH, Azari P.: Physicochemical characterization of alpha- crystallins from bovine lenses: hydrodynamic and conformational properties. J Protein Chem 8, pp 1-17; 1989
278. Bera S, Abraham EC.: The alpha A-crystallin R116C mutant has a higher affinity for forming heteroaggregates with alpha B-crystallin. Biochemistry 41, pp 297-305; 2002
279. Bera S, Thampi P, Cho WJ, Abraham EC.: A positive charge preservation at position 116 of alpha A-crystallin is critical for its structural and functional integrity. Biochemistry 41, pp 12421-12426; 2002
280. Andley, U. P.: Photodamage to the eye. Photochem Photobiol 46, pp 1057-1066; 1987
281. Monnier, V. M.; Cerami, A.: Nonenzymatic browning in vivo: Possible process for aging of long-lived proteins. Science 211, pp 491-493; 1981
282. Liang JJ, Sun TX, Akhtar NJ.: Heat-induced conformational change of human lens recombinant alpha A- and alpha B-crystallins. Mol Vis 6, pp 10- 14; 2000
283. Andley UP, Liang JN, Chakrabarti B.: Spectroscopic investigations of bovine lens crystallins. 2. Fluorescent probes for polar-apolar nature and sulfhydryl group accessibility. Biochemistry 21, pp 1853-1858; 1982
284. Takemoto, L. J.: Oxidation of cysteine residues from alpha-crystallin during cataractogenesis of the human lens. Biochem Biophys Res Commun 223, pp 216-220; 1996
285. Takemoto, L. J.: Increase in the intramolecular disulfide bonding of αA-crystallin during aging of the human lens. Exp Eye Res 63, pp 585-590; 1996
286. Takemoto, L. J.: Disulfide bond formation of cysteine-37 and cysteine-66 of βB2 crystallin during cataractogenesis of the human lens. Exp Eye Res 64, pp 609-614; 1997
287. Siezen RJ, Coenders FG, Hoenders HJ.: Three classes of sulfhydryl group in bovine alpha-crystallin according to reactivity to various reagents. Biochim Biophys Acta 537, pp 456-465; 1978
288. Augusteyn RC, Hum TP, Putilin TP, Thomson JA.: The location of sulphydryl groups in alpha-crystallin. Biochim Biophys Acta 915, pp 132- 139; 1987
289. Pal J, Ghosh SK.: Influence of chemical modification of cysteine and histidine side chains upon subunit reassembly of alpha crystallin. J Protein Chem 17, pp 617-632; 1998
290. Chen SJ, Sun TX, Akhtar NJ, Liang JJ.: Oxidation of human lens recombinant alpha A-crystallin and cysteine-deficient mutants. J Mol Biol 305, pp 969-976; 2001
291. van Boekel MA, de Lange F, de Grip WJ, de Jong WW.: Eye lens alpha A- and alpha B-crystallin: complex stability versus chaperone-like activity. Biochim Biophys Acta 1434, pp 114-123; 1999
292. Bhattacharyya J, Srinivas V, Sharma KK.: Evaluation of hydrophobicity versus chaperonelike activity of bovine alpha A- and alpha B-crystallin. J Protein Chem 21, pp 65-71; 2002
293. Akhtar NJ, Sun TX, Liang JJ.: Conformational study of N(epsilon)- (carboxymethyl) lysine adducts of recombinant alpha-crystallins. Curr Eye Res 18, pp 270-276; 1999
294. Liang JN, Pelletier MR.: Destabilization of lens protein conformation by glutathione mixed disulfide. Exp Eye Res 47, pp 17-25; 1988
295. Dhir P, Akhtar NJ, Sun TX, Liang JJ.: Photooxidized products of recombinant alpha A-crystallin and W9F mutant. Photochem Photobiol 69, pp 329-335; 1999
296. Kramps HA, Stols AL, Hoenders HJ.: On the quaternary structure of high-molecular-weight proteins from the bovine eye lens. Eur J Biochem 50, pp 503-509; 1975
297. Burgio MR, Kim CJ, Dow CC, Koretz JF.: Correlation between the chaperone-like activity and aggregate size of alpha-crystallin with increasing temperature. Biochem Biophys Res Commun 268, pp 426-432; 2000
298. Das, B. K.; Liang, J. J-N.: Thermodynamic and kinetic characterization of calf lens γF-crystallin. Int J Biol Macromol 23, pp 191-197; 1998
299. Sun, T. X.; Akhtar, N. J.; Liang, J. J-N.: Thermodynamic stability of human lens recombinant αA- and αB-crystallins. J Biol Chem 274, pp 34067-34071; 1999
300. van den Oetelaar PJ, van Someren PF, Thomson JA, Siezen RJ, Hoenders HJ.: A dynamic quaternary structure of bovine alpha- crystallin as indicated from intermolecular exchange of subunits. Biochemistry 29, pp 3488-3493; 1990
301. Sun TX, Liang JJ.: Intermolecular exchange and stabilization of recombinant human alpha A- and alpha B-crystallin. J Biol Chem 273, pp 286-290; 1998
302. Sun TX, Akhtar NJ, Liang JJ.: Subunit exchange of lens alpha-crystallin: a fluorescence energy transfer study with the fluorescent labeled alphaA-crystallin mutant W9F as a probe. FEBS Lett 430, pp 401-404; 1998
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top