跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊志賢
研究生(外文):Chih-Hsien Chuang
論文名稱:具前饋控制與死區的比例積分微分控制器之脈波寬度調變換流器設計
論文名稱(外文):Design of Proportional Integral Derivative Controller with Feedforward Control and Dead Zone for PWM Inverters
指導教授:張恩誌
指導教授(外文):En-Chih Chang
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:51
中文關鍵詞:脈波寬度調變換流器總高諧波失真死區比例積分微分控制器前饋控制非線性負載
外文關鍵詞:Pulse-width modulation (PWM) inverterstotal harmonic distortion (THD)feedforward controldead zone PID controllernon-linear load
相關次數:
  • 被引用被引用:0
  • 點閱點閱:504
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統比例積分微分控制器,因為架構簡單、設計容易已被廣泛使用於脈波寬度調變換流器。然而,傳統比例積分微分控制器對於參數的變動與負載干擾是敏感的,一旦換流器的負載為高度非線性時,將使換流器輸出有高總諧波失真與慢動態響應。因此,本論文提出具前饋控制與死區比例積分微分控制器,使用死區比例積分微分控制器,換流器可以在大的參數變動或高度非線性負載狀況下變得不敏感,而前饋控制進一步增強了追蹤控制的精確性,使得換流器輸出有低總諧波失真與快的動態響應。為了驗證所提出控制器的有效性,MATLAB軟體模擬結果顯示,所提出之換流器可以在非線性負載下得到低總諧波失真與快的動態響應。

Traditional proportional-integral-derivative (PID) controllers have been broadly applied to pulse-width modulation (PWM) inverters due to their simple structures and easy designs. However, traditional PID controllers are sensitive to parameter changes and load interferences. This fact may result in high total harmonic distortion (THD) and slow dynamic response in cases with an inverter of highly non-linear load. Thus, this thesis proposes a (PID) controllers with feedforward control and dead zone. With the dead zone PID controller, the sensitivity to large parameter changes and highly non-linear load can be reduced. And the feedforward control can enhance dynamic response, that in cases with an inverter of highly non-linear load, there can be low THD and fast dynamic response. To verify the effectiveness of the proposed controller, this thesis used the software MATLAB to run simulations. And the results showed that the proposed inverter can achieve low THD and fast dynamic response in cases with non-linear load.

中文摘要-i
英文摘要-ii
章節目錄-iii
圖目錄-v
表目錄-vi
第一章 簡介-1
1-1 研究動機-1
1-2 論文大綱-2
第二章 傳統的控制方法-3
2-1 傳統比例積分微分控制器-3
2-1-1 比例控制器-4
2-1-2 比例積分控制器-5
2-1-3 比例微分控制器-6
第三章 脈波寬度調變換流器動作原理-8
3-1 脈波寬度調變-8
3-1-1 單電壓極性切換-9
3-1-2 雙電壓極性切換-11
3-2 具前饋控制與死區的比例積分微分控制器-14
第四章 電路模擬-15
4-1 脈波寬度調變換流器系統參數-15
4-1-1 模擬參數-15
4-1-2 所提出之模擬電路-16
4-2 模擬結果-18
4-2-1 脈波寬度調變之雙電壓極性切換-18
4-2-2 脈波寬度調變之單電壓極性切換-18
第五章 結論與未來研究方向-32
5-1 結論-32
5-2 未來研究方向-33
參考文獻-34

[1]T. H. Islam, “Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data,” Energy Policy, vol. 65, pp. 340-350, 2014.
[2]E. L. Olson, “Green innovation value chain analysis of PV solar power,” Journal of Cleaner Production, vol. 64 , pp. 73-80, 2014.
[3]T. H. Islam and N. G. Meade, “The impact of attribute preferences on adoption timing: The case of photo-voltaic (PV) solar cells for household electricity generation,” Energy Policy, vol. 55, pp. 521-530, 2013.
[4]S. Zhang, A. S. Philip, and Meiyun. Ji, “The erratic path of the low-carbon transition in China: Evolution of solar PV policy,” Energy Policy, vol. 67, pp. 903-912, 2014.
[5]D. P.Clarke, A. L. Abdeli, M. Yasir, and G. Kothapalli, “The effects of including intricacies in the modelling of a small-scale solar-PV reverse osmosis desalination system,” Desalination, vol. 311, pp. 127-136, 2013.
[6]S. Jolly, R. Raven, and H. Romijn, “Upscaling of business model experiments in off-grid PV solar energy in India,” Sustainability Science, vol. 7, pp. 199-212, 2012.
[7]J. Jung and W. E. Tyner, “Economic and policy analysis for solar PV systems in Indiana,” Energy Policy, vol. 74, pp. 123-133, 2014.
[8]S. Reichelstein and M. Yorston, “The prospects for cost competitive solar PV power,” Energy Policy, vol. 55, pp. 117-127, 2013.
[9]S. Jolly, R. Raven, and H. Romijn, “Upscaling of business model experiments in off-grid PV solar energy in India,” Sustainability Science, vol. 7, pp. 199-212, 2012.
[10]V. Bosetti, M. Catenacci, G. Fiorese, and E. Verdolini, “The future prospect of PV and CSP solar technologies: An expert elicitation survey,” Energy Policy, vol. 49, pp. 308-317, 2012.
[11]P. Wolf and V. Benda, “Identification of PV solar cells and modules parameters by combining statistical and analytical methods,” Solar Energy, vol. 93, pp. 151-157, 2013.
[12]S. M. Muyeen and A. A. Durra, “Modeling and control strategies of fuzzy logic controlled inverter system for grid interconnected variable speed wind generator,” IEEE Systems Journal, vol. 7, pp. 817-824, 2013.
[13]F. Villarroel, J. R Espinoza, C. A. Rojas, J. Rodriguez, M. Rivera, and D. Sbarbaro, “Multiobjective switching state selector for finite-states model predictive control based on fuzzy decision making in a matrix converter,” IEEE Trans. on Industrial Electronics, vol. 60, pp. 589-599, 2013.
[14]C. Cecati, F. Ciancetta, and P. Siano, “A multilevel inverter for photovoltaic systems with fuzzy logic control,” IEEE Trans. on Industrial Electronics, vol. 57, pp. 4115-4125, 2010.
[15]A. E. Khateb, N. A. Rahim, J. Selvaraj, and M. N. Uddin, “Fuzzy-logic-controller-based SEPIC converter for maximum power point tracking,” IEEE Trans. on Industry Applications, vol. 50, pp. 2349-2358, 2014.
[16]H. M. Hasanien and M. Matar, “A fuzzy logic controller for autonomous operation of a voltage source converter-based distributed generation system,” IEEE Trans. on Smart Grid, vol. 6, pp. 158-165, 2015.
[17]D. Chen, J. Zhang and Z. Qian, “An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability,” IEEE Trans. on Industrial Electronics, vol. 60, pp. 814-823, 2013.
[18]C. L. Hao, L. L. Xie, X. Li, T.Wang, and J. Zhang, “Research on repetitive control strategy of photovoltaic grid-connected inverter,” Advanced Materials Research, vol. 933, pp. 510-515, 2014.
[19]N. Chen, “Sine waveform inverter based on S-Domain repetitive control,” International Journal of Digital Content Technology and its Applications, vol. 7, pp. 112-120, 2013.
[20]W. Rohouma, P. Zanchetta, P. W. Wheeler, and L. Empringham, “A four-leg matrix converter ground power unit with repetitive voltage control,” IEEE Trans. on Industrial Electronics, vol. 62, pp. 2032-2040, 2015.
[21]B. Zhang, K. Zhou, and D. Wang, “Multirate repetitive control for PWM DC/AC converters,” IEEE Trans. on Industrial Electronics, vol. 61, pp. 2883-2890, 2014.
[22]J. F. Stumper, V. Hagenmeyer, S. Kuehl, and R. Kennel, “Deadbeat control for electrical drives: A robust and performant design based on differential flatness,” IEEE Trans. on Power Electronics, vol. 30, pp. 4585-4596, 2015.
[23]M. Bisiacco and M. Valcher, “Partial interconnection and observer-based dead-beat control of two-dimensional behaviors,” Multidimensional Systems and Signal Processing, vol. 26, pp. 459-479, 2015.
[24]M. Bisiacco and M. E. Valcher, “Dead-beat control in the behavioral approach,” IEEE Trans. on Automatic Control, vol. 57, pp. 2163-2175, 2012.
[25]G. Jia, L. Zhigang, D. Yong, and C. Chunyan, “Analysis of the deadbeat control algorithm for photovoltaic grid connected inverter output current,” International Journal of Online Engineering, vol. 9, pp. 46, 2013.
[26]X. Zhang, W. Zhang, J. Chen, and D. Xu, “Deadbeat control strategy of circulating currents in parallel connection system of three-phase PWM converter,” IEEE Trans. on Energy Conversion, vol. 29, pp. 406-417, 2014.
[27]H. H. Park and G. H. Cho, “A DC–DC converter for a fully integrated PID compensator with a single capacitor,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 61, pp. 629-633, 2014.
[28]J. S. Li and Y. D. Wang, “Harmonic suppression based on PID controlled AC-DC inverter,” Journal of Convergence Information Technology, vol. 8, pp. 95-101, 2013.
[29]V. Mummadi, “Design of robust digital PID controller for H-bridge soft-switching boost converter,” IEEE Trans. Industrial Electronics, vol. 58, pp. 2883-2897, 2013.
[30]S. Zhonghan, N. Yan, and H. Min, “A multimode digitally controlled boost converter with PID autotuning and constant frequency/constant off-time hybrid PWM control,” IEEE Trans. Power Electronics, vol. 26, pp. 2588-2598, 2011.
[31]K. I. Hwu and Y. T. Yau, “Performance enhancement of boost converter based on PID controller plus linear-to-nonlinear translator,” IEEE Trans. Industrial Electronics, vol. 25, pp. 1351-1361, 2010.
[32]R. K. Goudanaikar and D. K. S. Sundar, “High step up DC-DC converter with PID controller for photovoltaic applications,” International Journal of Engineering Trends and Technology, vol. 12, pp. 176-182, 2014.
[33]S. T. Ren, L. L. Liu, and R. X. Shen, “The stability analysis of buck converter with constant power load and optimal PID controller design,” Electric Switchgear, vol. 48, pp. 19-21, 2010.
[34]L. U . Xuan, M. Xin, Z. Zekun, and B. Zhang, “Design of high-voltage buck converter based on on-chip PID compensator,” Microelectronics, vol. 40, pp. 667-670, 2010.
[35]S. Kapat and P. T. Krein, “Formulation of PID control for DC–DC converters based on capacitor current: A geometric context,” IEEE Trans. on Power Electronics, vol. 27, pp. 1424-1432, 2012.
[36]K. K. Fujio, M. G. Tomoyuki, U. N. Kimitoshi, and O. G. Hiroyuki, “Digital PID control forward type multiple-output DC-DC converter,” IEICE Trans. on Communications, vol. 94, pp. 3421-3428, 2011.
[37]L. J. Sheng, “AC/DC converter AC side harmonic wave detection based on self-adaption fuzzy PID controlling,” Information Technology Journal, vol. 13, pp. 1702-1708, 2014.
[38]K. I. Hwu, “Forward converter with FPGA-based self-tuning PID controller,” Journal of Applied Science and Engineering, vol. 13, pp. 173-180, 2010.
[39]R. C. Shama, K. R. Vutukuru and Patnaik, S.K. Taylor, and G. Francis, “SM-based IMC-PID control of single-switch quadratic boost for wide DC conversion ratios,” Electric Power Components and Systems, vol. 41, pp. 1617-1634, 2013.
[40]W. Chuang, and L. Zunchao, L, Cheng, Z. Lijuan, Y. F. Zhang and L. Feng, “An optimized auto-tuning digital DC&DC converter based on linear-non-linear and predictive PID,” IEICE Trans. on Electronics, vol. 97, pp. 813-819, 2014.
[41]R. Arulmurugan and N. S. Vanitha, “Optimal design of DC to DC boost converter with closed loop control PID mechanism for high voltage photovoltaic application,” International Journal of Power Electronics and Drive Systems, vol. 2, pp. 434-444, 2012.
[42]M. Fusheng, “Feedfoward and feedback optimal control and simulation for vehicle active suspension systems,” Journal of Ningxia University(Natural Science Edition), vol. 27, pp. 320-323, 2006.
[43]L. Hang, M. Zhang, L. M. Tolbert, and Z. Lu, “Digitized feedforward compensation method for high-power-density three-phase vienna PFC converter,” IEEE Trans. on Industrial Electronics, vol. 60, pp. 1512-1519, 2013.
[44]C. Peng, Z. Zhang, J. Zou, K. Li, and J. Zhang, “Internal model based robust inversion feedforward and feedback 2DOF control for LPV system with disturbance,” Journal of Process Control, vol. 23, pp. 1415-1425, 2013.
[45]G. Herrmann, F. L. Lewis, S. S. Ge, J. T. Zhang, and G. Francis, “ Discrete adaptive neural network disturbance feedforward compensation for non-linear disturbances in servo-control applications,” International Journal of Control, vol. 82, pp. 721-740, 2009.
[46]X. Lv and X. Ren, “Non-iterative identification and model following control of hammerstein systems with asymmetric dead-zone non-linearities,” IET Control Theory & Applications, vol. 6, pp. 84-89, 2012.
[47]C. Restrepo, T. Konjedic, J. Calvente, and R. Giral, “Hysteretic transition method for avoiding the dead-zone effect and subharmonics in a noninverting buck–boost converter,” IEEE Trans. on Power Electronics, vol. 30, pp. 3418-3430, 2015.
[48]D. C. Jones and R. W. Erickson, “A nonlinear state machine for dead zone avoidance and mitigation in a synchronous noninverting buck–boost converter,” IEEE Trans. on Power Electronics, vol. 28, pp. 467-480, 2013.
[49]S. C. Tong and Y. M. Li, “Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs,” IEEE Trans. on Fuzzy Systems, vol. 21, pp. 134-146, 2013.
[50]C. H. Chang and S. X. Ding, “Model following controller design for large-scale systems with time-delay interconnections and multiple dead-zone inputs,” IEEE Trans. on Automatic Control, vol. 56, pp. 962-968, 2011.
[51]C. X. Hu, B. Yao, and Q. F. Wang, “Adaptive robust precision motion control of systems with unknown input dead-zones: A case study with comparative experiments,” IEEE Trans. on Industrial Electronics, vol. 58, pp. 2454-2464, 2011.
[52]J. M. Wei and Y. Hu, M. Sun, “Adaptive iterative learning control for a class of nonlinear time-varying systems with unknown delays and input dead-zone,” IEEE/CAA Journal of Automatica Sinica, vol. 1, pp. 302-314, 2014.
[53]S. J. Yoo, “Decentralised adaptive control of a class of interconnected non-linear systems with unknown time delays and dead-zone inputs,” IET Control Theory & Applications, vol. 4, pp. 2639-2650, 2010.
[54]T. H. Nguyen, S. Odomari, T. Yoshida, T. Senjyu, and A. Yona, “Nonlinear adaptive control of ultrasonic motors considering dead-zone,” IEEE Trans. Industrial Informatics, vol. 9, pp. 1847-1854, 2013.
[55]J. Wang and J. Hu, “Robust adaptive neural control for a class of uncertain non-linear time-delay systems with unknown dead-zone non-linearity,” IET Control Theory & Applications, vol. 5, pp. 1782-1795, 2011.
[56]林彥谷,“修正型微分先行比例積分微分控制之直流-交流換流器之研製”,義義守大學碩士論文,民國102年。
[57]葉姿君,“具有可變參數的比例積分微分控制器於不斷電系統換流器之應用”,守大學碩士論文,民國102年。
[58]劉庭瑋,李一中,丁心詒,“使用智慧型基因演算法設計混合 H2/H∞最佳化控制器”,逢甲大學專題報告,民國90年。
[59]林家慶,“應用於工業控制之 CPU-BASED 精密運動控制晶片設計介紹”,工業技術學院研究院、機械所。
[60]陳威韶,“應用基因演算法於伺服馬達 PID 控制器 參數之調變”, 逢甲大學碩士論文,民國93年。
[61]陶永華,“新型PID控制及其應用” ,機械工業出版社,民國91年。
[62]劉金琨,“先進PID控制及其MATLAB仿真”,北京:電子工業出版社,民國91年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top