跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/13 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林棟樑
研究生(外文):Tung-Liang Lin
論文名稱:活性污泥生成溶解性微生物產物特性之研究
論文名稱(外文):Characteristics of Soluble Microbial Products in Activated Sludge
指導教授:莊順興莊順興引用關係
指導教授(外文):Shun-Hsing Chuang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:157
中文關鍵詞:基質利用相關產物溶解性微生物產物揮發性有機酸生物質量分解相關產物連續批式活性污泥法
外文關鍵詞:Biomass associated productsUtilization associated productsSoluble microbial productsSequencing batch reactorVolatile fatty acids
相關次數:
  • 被引用被引用:3
  • 點閱點閱:556
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
生物處理程序主要是利用反應槽中各不同微生物的代謝特性,藉微生物的反應以分解、去除污水中的有機物質及營養鹽類,生物處理放流水中包含了各式各樣的溶解性有機物質,通常被稱之為溶解性微生物產物(Soluble microbial products, SMPs),SMPs的存在是非常值得注意的議題,其不但與達到現行的排放標準有關,更是考慮水回收再利用時,減低薄膜積垢所需考慮之因子。
本研究利用連續批式活性污泥法(Sequencing batch reactor, SBR)馴養不同SRT條件下之污泥,馴養完成後以葡萄糖為基質分別於好氧、缺氧及厭氧不同環境下,進行持續負荷及內呼吸條件之批次實驗,藉以探討活性污泥在不同操作環境與不同SRT條件下SMPs之生成特性。
研究結果顯示,不同SRT下之SMPs產量,以持續負荷為條件時,SMPs產量會隨SRT增加而增加,以內呼吸為條件時,SMPs之變化不大,顯示內呼吸情況下,SMPs產量會受限,產量明顯皆在8 mg C/g MLSS以下。
不同SRT條件下,SMPs之分子量分佈情形,以持續負荷為批次實驗條件時,以大分子(大於100 kDa)居多,隨時間增加,轉變成較小的含碳有機化合物;內呼吸條件下,分子則以小分子(小於30 kDa)居多,隨時間增加,逐漸形成較大的分子。
Biological wastewater treatment processes employed various microorganisms to reduce and degrade organic substances in wastewater. However, it was difficult to remove the residual organics in the effluent, which usually included the soluble microbial products (SMPs). Therefore, the SMPs were essential not only for meeting the standard of effluent but also for improving potential of wastewater reuse.
In this study, the activated sludge was acclimated in a sequencing batch reactor (SBR), which operated at different SRT condition. The acclimated sludge was used for batch experiments to investigate the characteristics of SMPs production in activated sludge.
The results showed that in the conditions of anoxic and anaerobic, and the condition of loading, the production of SMPs would be increased because of the with SRT increasing after reacting for 6 hours in the continuous loading under anoxic and anaerobic conditions. In the condition of endogenous, the correlation between the SMPs production and showed less influence when the SRT changing was not evident. That showed that t The production of SMPs would be was limited obviously and below 8 mg C/g MLSS.
In the continuous loading batch experiments, the analysis of molecular weight distribution (MWD) of SMPs showed that , the molecular weight of the most SMPs was higher than 100 kDa at the initial stage; and then it was down to lower than 30 kDa. However, the molecular weight of the most SMPs was lower than 30 kDa in the condition of endogenous at the initial stage; finally, the higher molecular weight substances became the major parts of SMPs in the endogenous experiments.
總目錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 IIV
表目錄 VII
圖目錄 VIII

目錄
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 2
第二章 文獻回顧 3
2.1 溶解性微生物之定義 3
2.1.1 溶解性微生物產物之研究 6
2.1.2 溶解性微生物產物之定義 10
2.1.3 溶解性微生物產物之生成特性 18
2.2 微生物代謝作用 22
2.2.1 好氧相生化反應機制 22
2.2.2 厭氧相生化反應機制 30
2.2.3 缺氧相生化反應機制 37
2.3 連續批式活性污泥法 40
2.3.1 SBR之原理 41
2.3.2 SBR之優點 44
第三章 研究方法與設備 46
3.1 研究方法 46
3.1.1 研究架構 47
3.1.2 研究內容 48
3.2 實驗設備 51
3.2.1 SBR模型廠 51
3.2.2 批次實驗裝置 52
3.2.3 實驗基質 54
3.3 分析方法及設備 56
第四章 結果與討論 58
4.1 SBR反應槽操作參數特性之分析 58
4.1.1 pH之變化特性 58
4.1.2 ORP之變化特性 59
4.1.3 DO之變化特性 60
4.1.4 COD之變化特性 61
4.1.5 MLSS之變化特性 63
4.1.6 SMPs之生成特性 64
4.2 SRT 5天條件下SMPs之生成特性 66
4.2.1 好氧環境SMPs生成特性 66
4.2.1.1 DO之變化特性 66
4.2.1.2溶解性有機物之變化特性 67
4.2.1.3 VFAs之變化特性 70
4.2.1.4 SMPs之變化特性 72
4.2.1.5 SMPs分子量分佈之變化特性 74
4.2.1.6好氧環境溶解性微生物產物生成特性小結 76
4.2.2 缺氧環境SMPs生成特性 77
4.2.2.1 ORP之變化特性 77
4.2.2.2溶解性有機物之變化特性 78
4.2.2.3 VFAs之變化特性 81
4.2.2.4 SMPs之變化特性 82
4.2.2.5 SMPs分子量分佈之變化特性 84
4.2.2.6缺氧環境溶解性微生物產物生成特性小結 85
4.2.3 厭氧環境SMPs生成特性 86
4.2.3.1 ORP之變化特性 86
4.2.3.2溶解性有機物之變化特性 87
4.2.3.3 VFAs之變化特性 90
4.2.3.4 SMPs之變化特性 91
4.2.3.5 SMPs分子量分佈之變化特性 93
4.2.3.6缺氧環境溶解性微生物產物生成特性小結 95
4.2.4 不同環境條件下SMPs之生成特性比較 96
4.3 SRT 20天條件下SMPs之生成特性 98
4.3.1 好氧環境SMPs生成特性 98
4.3.1.1 DO之變化特性 98
4.3.1.2溶解性有機物之變化特性 99
4.3.1.3 VFAs之變化特性 102
4.3.1.4 SMPs之變化特性 103
4.3.1.5 SMPs分子量分佈之變化特性 105
4.3.1.6好氧環境溶解性微生物產物生成特性小結 106
4.3.2 缺氧環境SMPs生成特性 107
4.3.2.1 ORP之變化特性 107
4.3.2.2溶解性有機物之變化特性 108
4.3.2.3 VFAs之變化特性 111
4.3.2.4 SMPs之變化特性 112
4.3.2.5 SMPs分子量分佈之變化特性 114
4.3.2.6缺氧環境溶解性微生物產物生成特性小結 115
4.3.3 厭氧環境SMPs生成特性 116
4.3.3.1 ORP之變化特性 116
4.3.3.2溶解性有機物之變化特性 117
4.3.3.3 VFAs之變化特性 120
4.3.3.4 SMPs之變化特性 121
4.3.3.5 SMPs分子量分佈之變化特性 123
4.3.3.6厭氧環境溶解性微生物產物生成特性小結 124
4.3.4 不同環境條件下SMPs之生成特性比較 125
4.4 不同SRT條件下SMPs生成特性之比較 127
第五章 結論與建議 131
5.1 結論 131
5.2 建議 133
參考文獻 134
附錄 143
附錄一 143
附錄二 144
附錄三 146
附錄四 147
附錄五 149



表目錄
表2.1 溶解性微生物產物之相關研究 4
表2.2 厭氧菌對不同有機物的細胞增殖係數 35
表3.1 人工調配合成基質主要成分 56
表4.1 不同負荷條件好氧環境下溶解性有機物之變化-SRT5天 69
表4.2 不同負荷條件好氧環境下VFAS之變化-SRT5天 71
表4.3 不同負荷條件好氧環境下SMPS之變化-SRT5天 73
表4.4 不同負荷條件缺氧環境下溶解性有機物之變化-SRT5天 80
表4.5 不同負荷條件缺氧環境下VFAs之變化-SRT5天 82
表4.6 不同負荷條件缺氧環境下SMPs之變化-SRT5天 83
表4.7 不同負荷條件厭氧環境下溶解性有機物之變化-SRT5天 89
表4.8 不同負荷條件厭氧環境下VFAS之變化-SRT5天 91
表4.9 不同負荷條件厭氧環境下SMPS之變化-SRT5天 92
表4.10 不同負荷條件好氧環境下溶解性有機物之變化-SRT20天 101
表4.11 不同負荷條件好氧環境下VFAS之變化-SRT20天 103
表4.12 不同負荷條件好氧環境下SMPS之變化-SRT20天 104
表4.13 不同負荷條件缺氧環境下溶解性有機物之變化-SRT20天 110
表4.14 不同負荷條件缺氧環境下VFAs之變化-SRT20天 112
表4.15 不同負荷條件缺氧環境下SMPs之變化-SRT20天 113
表4.16 不同負荷條件厭氧環境下溶解性有機物之變化-SRT20天 119
表4.17 不同負荷條件厭氧環境下VFAS之變化-SRT20天 121
表4.18 不同負荷條件厭氧環境下SMPS之變化-SRT20天 122






圖目錄
圖2.1 溶解性微生物產物理論概念圖 8
圖2.2 溶解性微生物產物反應途徑圖 11
圖2.3 BAP與UAP進入細胞之途徑圖 13
圖2.4 酚及葡萄糖批次實驗之SMPs變化情形 20
圖2.5 細胞內呼吸SMPs及生物量隨時間之變化 21
圖2.6 生物好氧分解之過程 23
圖2.7 有機物生物分解之過程 25
圖2.8 EMP路徑 27
圖2.9 TCA循環 28
圖2.10 醱酵作用 29
圖2.11 厭氧反應有機物代謝途徑(以污泥為例) 32
圖2.12 典型SBR反應流程圖及基質與微生物濃度之消長圖 42
圖3.1 研究架構圖 47
圖3.2 SBR系統單一循環操作模式 49
圖3.3 SBR系統穩定後之取樣點 49
圖3.4 批次實驗流程圖 50
圖3.5 SBR模型廠示意圖 53
圖3.6 批次實驗反應槽 54
圖4.1 SBR系統操作之pH變化圖 59
圖4.2 SBR系統操作之ORP變化圖 60
圖4.3 SBR系統操作之DO變化圖 61
圖4.4 SBR系統COD濃度之變化- SRT 5天 62
圖4.5 SBR系統COD濃度之變化- SRT 20天 62
圖4.6 SBR系統MLSS與放流SS之變化- SRT 5天 63
圖4.7 SBR系統MLSS與放流水SS之變化- SRT 20天 64
圖4.8 SBR系統於不同SRT條件下SMPs之變化- mg C/L 65
圖4.9 SBR系統於不同SRT條件下SMPs之變化- mg C/g MLSS 65
圖4.10 好氧環境下DO之變化 - SRT 5天 66
圖4.11 好氧環境下葡萄糖濃度之變化 - SRT 5天(持續負荷) 68
圖4.12 好氧環境下SCOD之變化 – SRT 5天 68
圖4.13 好氧環境下DOC之變化 - SRT 5天 69
圖4.14 好氧環境下總VFAs之變化 – SRT 5天(持續負荷) 71
圖4.15 好氧環境下SMPs之變化 - SRT 5天 73
圖4.16 好氧環境下SMPs之分子量分佈 – SRT 5天(持續負荷) 75
圖4.17 好氧環境下SMPs之分子量分佈 – SRT 5天(內呼吸) 75
圖4.18 缺氧環境下ORP之變化 - SRT 5天 77
圖4.19 缺氧環境下葡萄糖濃度之變化 - SRT 5天(持續負荷) 79
圖4.20 缺氧環境下SCOD之變化 – SRT 5天 79
圖4.21 缺氧環境下DOC之變化 - SRT 5天 80
圖4.22 缺氧環境下總VFAs之變化 – SRT 5天(持續負荷) 81
圖4.23 缺氧環境下SMPs之變化- SRT 5天 83
圖4.24 缺氧環境下SMPs之分子量分佈 – SRT 5天(持續負荷) 84
圖4.25 缺氧環境下SMPs之分子量分佈 – SRT 5天(內呼吸) 85
圖4.26 厭氧環境下ORP之變化 - SRT 5天 86
圖4.27 厭氧環境下葡萄糖濃度之變化 - SRT 5天(持續負荷) 88
圖4.28 厭氧環境下SCOD之變化 – SRT 5天 88
圖4.29 厭氧環境下DOC之變化 - SRT 5天 89
圖4.30 厭氧環境下總VFAs之變化 – SRT 5天(持續負荷) 90
圖4.31 厭氧環境下SMPs之變化- SRT 5天 92
圖4.32 厭氧環境下SMPs之分子量分佈 – SRT 5天(持續負荷) 94
圖4.33 厭氧環境下SMPs之分子量分佈 – SRT 5天(內呼吸) 94
圖4.34 不同環境下SMPs之變化 - SRT 5天(持續負荷) 97
圖4.35 不同環境下SMPs之變化 - SRT 5天(內呼吸) 97
圖4.36 好氧環境下DO之變化 - SRT 20天 98
圖4.37 好氧環境下葡萄糖濃度之變化 - SRT 20天(持續負荷) 100
圖4.38 好氧環境下SCOD之變化 – SRT 20天 100
圖4.39 好氧環境下DOC之變化 - SRT 20天 101
圖4.40 好氧環境下總VFAs之變化 – SRT 20天(持續負荷) 102
圖4.41 好氧環境下SMPs之變化 - SRT 20天 104
圖4.42 好氧環境下SMPs之分子量分佈 – SRT 20天(持續負荷) 105
圖4.43 好氧環境下SMPs之分子量分佈 – SRT 20天(內呼吸) 106
圖4.44 缺氧環境下ORP之變化 - SRT 20天 107
圖4.45 缺氧環境下葡萄糖濃度之變化 - SRT 20天(持續負荷) 109
圖4.46 缺氧環境下SCOD之變化 – SRT 20天 109
圖4.47 缺氧環境下DOC之變化 - SRT 20天 110
圖4.48 缺氧環境下總VFAs之變化 – SRT 20天(持續負荷) 111
圖4.49 缺氧環境下SMPs之變化- SRT 20天 113
圖4.50 缺氧環境下SMPs之分子量分佈 – SRT 20天(持續負荷) 114
圖4.51 缺氧環境下SMPs之分子量分佈 – SRT 20天(內呼吸) 115
圖4.52 厭氧環境下ORP之變化 - SRT 20天 116
圖4.53 厭氧環境下葡萄糖濃度之變化 - SRT 20天(持續負荷) 118
圖4.54 厭氧環境下SCOD之變化 – SRT 20天 118
圖4.55 厭氧環境下DOC之變化 - SRT 20天 119
圖4.56 厭氧環境下總VFAs之變化 – SRT 20天(持續負荷) 120
圖4.57 厭氧環境下SMPs之變化- SRT 20天 122
圖4.58 厭氧環境下SMPs之分子量分佈 – SRT 20天(持續負荷) 123
圖4.59 厭氧環境下SMPs之分子量分佈 – SRT 20天(內呼吸) 124
圖4.60 不同環境下SMPs之變化 - SRT 20天(持續負荷) 126
圖4.61 不同環境下SMPs之變化 - SRT 20天(內呼吸) 126
圖4.62 好氧環境下不同SRT的SMPs之變化 - 持續負荷 128
圖4.63 缺氧環境下不同SRT的SMPs之變化 - 持續負荷 128
圖4.64 厭氧環境下不同SRT的SMPs之變化 - 持續負荷 129
圖4.65 好氧環境下不同SRT的SMPs之變化 - 內呼吸 129
圖4.66 缺氧環境下不同SRT的SMPs之變化 - 內呼吸 130
圖4.67 厭氧環境下不同SRT的SMPs之變化 - 內呼吸 130
Amann R. I., “Fluorescently labeled, rRNA-targeted digonucleotide probes in the study of microbial ecology,” Mol. Ecol., Vol. 4, pp. 543-554(1995).

Aquino S. F., Stuckey D. C., “Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds,” Wat. Res., Vol. 38, pp. 255-266(2004).

Arora, M. L., Barth E. F., and Umphres M. B., “Technology Evaluation of Sequencing Batch Reactor,” WPCF, Vol. 57, No. 8, pp. 867-875(1985).

Baker D. J., and Stuckey D. C., “A review of soluble microbial product (SMPs) in wastewater treatment systems,” Wat. Res., Vol. 33, No. 14, pp. 3063-3082(1999).

Barker D. J., Mannucchi G. A., Salvi S. M. L., and Stuckey D. C., “Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents,” Wat. Res., in press, (1999).

Bender M. E., Matson W. R., and Jordan R. A., “On the significance of metal complexing agents in secondary sewage effluents,” Environ. Sci. Technol., Vol. 4, No. 6, pp. 520-521(1970).

Boero V. J., Eckenfelder Jr. W. W., and Bowers A. R., “Soluble microbial product formation in biological systems,” Wat. Sci. Technol., Vol. 23, pp. 1067-1076(1991).
Boero V. J., Eckenfelder Jr. W. W., and Bowers A. R., “Molecular weight distribution of soluble microbial products in biological systems,” Wat. Sci. Technol., Vol. 34, No. 5-6, pp. 241-248(1996).

Boylen C. W., and Ensign J. C., “Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of arthrobacter crustallopoietes,” J. Bact., Vol. 103, pp. 578-587(1970).

Burleigh I. G., and Dawes E. A., “Studies on the endogenous metabolism and senescence of starved sarcin lutea,” Biochem. J., Vol. 102, pp. 236-250(1967).

Carlson K. H., Any G. L., “The Importance of soluble microbial products (SMPs) in biological drinking water treatment,” Wat. Res., Vol 34, No. 4, PP 1386-1396(2000).

Chipasa K. B., Medrzycka K., “Behavior of microbial communities developed in the presence/reduced level of soluble microbial products,” J Ind Microbiol Biotechnol., Vol 31, PP 457-461(2004).

Chipasa K. B., Medrzycka K., “Adaptive response of microbial communities to soluble microbial products,” J Ind Microbiol Biotechnol., Vol 31, PP 384-390(2004).

Christensen H. N., “Biological Transport,” 2nd ed. W.A. Benjamin, Reading, MA(1975).
Chudoba J., “Inhibitory effect of refractory organic compounds produced by activated sludge microorganisms on microbial activity and flocculation,” Wat. Res., Vol. 19, No. 2, pp. 197-200(1985a).
Chudoba J., “Quantitative estimation in COD units of refractory organic compounds produced by activated sludge microorganisms,” Wat. Res., Vol. 19, No. 1, pp. 37-43(1985b).

Dawes E. A., and Ribbins D. W., “Some aspects of the endogenous metabolism of bacteria,” Bact. Rev., Vol. 28, pp. 126-149(1964).

Demain A. L., Burg R. W., and Hendlin D., “Excretion and degradation of ribonucleic acids by Bacillus subtilis,” J. Bact., Vol. 89, pp. 640-646(1965).

Eckenfelder Jr. W. W., “Point toxics control for industrial wastewaters,” Civil Eng. Pract., pp. 98-112(1988).

Emery T., “Iron metabolism in humans and plants,” Am. Sci., Vol. 70, pp. 626-632(1982).

Epstein E., “The Science of Composting,” Technomic Publishing Company, Pennsylvania, pp. 32-39(1997).

Germirli F., Orhon D., Artan N., Ubay E., and Gőrgűn E., “Effect of two-stage treatment on the biological treatability of strong industrial wastes,” Wat. Sci. Technol., Vol. 28, No. 2, pp. 145-154(1993).


Hao O. J., and Huang J., “Alternating aerobic-anoxic process for nitrogen removal:Process evaluation,” Wat. Environ. Res., Vol. 68, No.1, pp. 83-93(1996).

Harold F. M., “Conservation and transformation of energy by bacterial membranes,” Bact. Rev., Vol. 36, pp. 172-230(1972).

Heinrich D., “Wastewater treatment in a compahy with advanced demands for water quality,” Wat. Sci. Tech., Vol. 32, pp. 143-150(1995).

Heppel L., “Selective release of enzymes from bacteria,” Science, Vol. 156, pp. 1451-1455(1967).

Herbert H., “The chemical composition of microorganisms as a function of their environment,” Symp. Soc. Gen. Microbiol., Vol. 11, pp. 391-416(1961).

Hoyos S. E. G., Juárez J. V., Ramonet C. A., Lόpez J. G., Rios A. A., Uribe E. G., “Aerobic Thermophilic Composting of Waste Sludge from Gelatin-Grenetine Industry,” Conservation and Recycling, Vol. 34, pp. 161-173(2002).

Huang X., Yi Qian R. L., “Behaviour of soluble microbial products in a membrane bioreactor,” Process Biochemistry, Vol. 36, pp. 401-406 (2000).

Huang X., Yi Qian J. X., “Microbial behaviour in a membrane bioreactor withcomplete sludge retention,” Process Biochemistry, Vol. 40, pp. 3165-3170 (2005).

Hutner S. H., “Inorganic nutrition,” Ann. Rev. Microbiol., Vol. 26, pp. 313-346(1972).
Imai T., Lu S. G., Ukita M., Sekine M., Higuchi T., and Fukagawa M., “A
Model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products ,” Wat. Res., Vol. 35, No. 8, pp. 2038-2048(2001).

Irvine R. L., and Busch A. W., “Sequencing Batch Biological Reactor-an Overview,” Feature, pp. 235-243(1979).

Irvine R. L., and Ketchum L. H., “An Organic Loading Study of Full-Scale Sequencing Batch Reactor,” WPCF, Vol. 57, No. 8, pp. 847-853(1985).

Itävaara, M., Venelampi, O., Karjomaa, S., “Testing methods for determining the compostability of packaging materials,” In: Barth, J. (Ed.), Proceedings of Biological Waste Management “Wasted Chance”. BWM Infoservice, Germany(1995).

Jia X. S., “Extracellular polymers of hydrogen-utilizing methanogenic and slulfate-reducing sludges,” Wat. Res., Vol. 30, pp. 1439-1444 (1996).

Karapanagiotis N. K., “Extraction and characterization of extracellular polymers in digested sewage sludge,” J. Chem. Tech., Biotechnol, Vol. 44, pp. 107-120(1993).

Ketchum L. H., Irvine R. L., and Ping-Chau Liao., “First Cost Analysis of Sequencing Batch Reactor,” J. W. P. C. F., Vol. 51, No. 2, pp. 288-297(1979).
Kuo W. C., “Production of soluble microbial chelators and their impact on anaerobic treatment,” Ph.D. thesis, University of Iowa, Iowa City(1993).
Kuo W. C., and Parkin G. F., “Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties,” Wat. Res., Vol. 30, No. 4, pp. 915-922(1996).

Kuo W. C., Sneve M. A., and Parkin G. F., “Formation of soluble microbial products during anaerobic treatment,” Wat. Environ. Res., Vol. 68, pp. 279-285(1996).

Lee Y., Cho J., Seo Y., Lee J. W., Ahn K. H., “Modeling of submerged membrane bioreactor process for wastewater treatment,” Desalination Vol. 146, pp. 451-457(2002).

Liu Y., and Rols J. L., “Kinetics of soluble microbial product formation in substrate-sufficient batch culture of activated sludge,” Appl Microbiol Biotechnol Vol. 59, pp. 605-608(2002).

Lynch B., and Jiang O., “Molecular size distributions of dissolved organic matter,” J. Environ. Eng. Div., Vol. 116, No. 6, pp. 1046-1062(1992)

Morel F. M. M., “Principles of Aquatic Chemistry,” John Wiley Interscience, New York(1983).

Morgan J. W., “A comparative study of the nature of biopolymers extracted from anaerobic and activated sludge,” Wat. Res., Vol. 24, pp. 743-750(1990).

Namkung E., and Rittmann B. E., “Effects of SMP on biofilm-reactor performance,” J. Environ. Eng. Div., ASCE Vol. 114, No. 1, pp. 199-210(1988).

Namkung E., and Rittmann B. E., “Soluble microbial products (SMP) formation kinetics by biofilms,” Wat. Res., Vol. 20, No. 6, pp. 795-806(1986).
Neijssel O. M., and Tempest D. W., “The role of energy-spilling reactions in the growth of Klebsiella Aerogenes NCTC 418 in aerobic chemostat culture,” Arch. Microbiol., Vol. 110, pp. 305-311(1976).

Neilands J. B., “Hydroxamic acids in nature,” Science, Vol. 156, pp. 1443-1447(1967).

Noguera D. R., Araki N., and Rittmann B. E., “Soluble microbial products (SMP) in anaerobic chemostats,” Biotech. Bioeng., Vol. 44, pp. 1040-1047(1994).
Nossal N. G., and Heppel L. A., “The release of enzymes by osmotic shock from E. coli in exponential phase,” J. Biol. Chem., Vol. 241, No. 13, pp. 3055-3062(1966).

Pirt S. J., “Principles of Microbe and Cell Cultivation,” Blackwell Scientific, Oxford(1975).

Postgate J. R., and Hunter J. R., “Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates,” J. Gen. Microbiol., Vol. 34, 459-473(1964).
Pribyl M., Tucek F., Wilderer P. A., and Wanner J., “Amount and nature of soluble refractory organics produced by activated sludge microorganisms in sequencing batch and continuous flow reactors,” Wat. Sci. Technol., Vol. 35, No. 1, pp. 27-34(1997).

Rittmann B. E., McCarty P. L., “Environmental Biotechnology: principles and applications,” New York, NY: McGraw Hill(2001).

Rittmann B. E., Laspidou C. S., “Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances,” Water Research, Vol 38, Issue. 14-15, PP 3349-3361(2001).

Rittmann B. E., Laspidou C. S., “A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass,” Water Research, Vol 36, PP 2711-2720(2002).

Rittmann B. E., Laspidou C. S., “Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass,” Water Research, Vol 36, PP 1983-1992(2002).
Rogers D., “Osmotic pools in Escherichia coli,” Science, Vol. 159, pp. 531-532(1968).

Saier M. H., Feucht B. U., and McCaman M. T., “Regulation of intracellular adenosine cyclic 3'':5''-monophosphate levels in Escherichia coli and Salmonella typhimurium,” J. Biol. Chem., Vol. 250, No. 19, pp. 7593-7601(1975).

Schiener P., Nachaiyasit S., and Stuckey D. C., “Production of soluble microbial products (SMP) in an anaerobic baffled reactor: composition, biodegradability and the effect of process parameters,” Environ. Technol., Vol. 19, pp. 391-400(1998).

Smeaton J. R., and Elliot W. H., “Selective release of ribonuclease inhibitor from B. subtilis cells by cold shock treatment,” Biochem. Biophys. Res. Commun., Vol. 26, No. 1, pp. 75-81(1967).

Shin H. S., and Kang S. T., “Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times,” Water Research, Vol. 37, pp. 121-127(2003).

Strange R. E., and Dark F. A., “Substrate-accelerated death of Aerobacter aerogenes,” J. Gen. Microbiol., Vol. 39, pp. 215-228(1965).

Thompson J., “Characteristics and energy requirements of an A-aminoisobutyric acid transport system in Streptococcus lactis,” J. Bact., Vol. 127, No. 2, pp. 719±730(1976).

Tuomela M., Vikman M., Hatakka A., Itavaara M., “Biodegradation of Lignin in a Compost Environment,” Bioresource Technology, Vol. 72, pp. 169-183(2000).

Water Environment Federation, ISBN:1-57278-123-8. Biological and Chemical Systems for Nutrient Removal(1998).



歐陽嶠暉,生物處理法新技術,經濟部工業污染防治中心印行,臺北(1994)。

歐陽嶠暉,下水道工程學,長松文化公司,臺北(2000)。

章裕民等,環境工程化學,文京圖書有限公司(1995)。

官路,「下水污泥堆肥化操作因子之研究」,碩士論文,國立中央大學土木工程學研究所,桃園(1990)。

許添財,「連續流回分式活性污泥系統好氧相曝氣控制策略之研究 : 線上即時量測溶氧轉換率與需氧量方法之建立」,碩士論文,國立中央大學環境工程研究所,桃園(2002)。

卓伯全,「連續流循序批分式活性污泥系統好氧相即時曝氣控制策略之發展:低溶氧生物脫氮除磷程序控制技術之研究」,博士論文,國立中央大學環境工程研究所,桃園(2003)。

李伯亨,「下水污泥堆肥程序質能平衡之研究」,碩士論文,國立交通大學環境工程研究所,新竹(2003)。

蔡人傑,「蔬菜廢棄物好氧生物降解(堆肥化)」,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,高雄(2003)。

楊立豪,「以改良式SBR 程序進行含糖廢水醱酵產氫之饋料進流策略最佳化探討」,碩士論文,逢甲大學化學工程研究所,臺中(2003)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊