跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾秉邑
研究生(外文):Ping-E Chung
論文名稱:使用非對稱式均勻阻抗負載樁共振器設計多頻帶通濾波器
論文名稱(外文):Multi-Band Bandpass Filters by Using Asymmetric Uniform Stub Loaded Resonators
指導教授:劉世崑劉世崑引用關係
指導教授(外文):Shih-Kun Liu
口試委員:劉世崑翁敏航劉志益王鴻猷
口試委員(外文):Shih-Kun LiuMin-Hang WengChih-Yi LiuHung-Yu Wang
口試日期:2013-07-04
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:三頻帶通濾波器四頻帶通濾波器五頻帶通濾波器非對稱式負載裝均勻阻抗共振器傳輸零點帶通濾波器
外文關鍵詞:filtertri-bandquad-bandquint-bandasymmetric uniform stub-loaded resonatortransmission zero
相關次數:
  • 被引用被引用:4
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種使用非對稱式均勻阻抗負載樁共振器(Asymmetric uniform stub loaded resonators , AUSLRs)分析。利用輸入導納分析繪製出共振圖,藉由共振圖可自由地設計共振器的模態,並應用於多頻帶通濾波器設計。
在雙頻帶通濾波器設計中,輸入導納分析繪製出共振圖並利用交錯式耦合提供額外的傳輸零點,讓通帶間能有良好的隔離性。該結構可提供緊湊面積,而且使用一組共振器設計雙頻帶通濾波器。利用交錯式技術能近一步更能減少濾波器的面積。此濾波器中心頻帶通濾設計在2.44/3.55 GHz,插入損失為2.5/2.8 dB,傳輸零點的位置在2.2/2.8 GHz,完全符合WLAN與WiMAX的應用。
在三頻帶通濾波器設計中,利用與雙頻設計概念相同的輸入導納分析繪製出共振圖並利用交錯式耦合提供額外的傳輸零點,讓通帶間能有良好的隔離性。該結構可提供緊湊面積,而且使用一組共振器設計三頻帶通濾波器。此濾波器中心頻率設計在1.45/2.7/3.55 GHz,插入損失為0.9/1.75/2.1 dB,傳輸零點的位置在1.27/2.04/3.37/3.67 GHz,可以應用在WLAN及WiMAX上。
在四頻帶通濾波器設計中,利用與雙頻設計概念相同的輸入導納分析繪製出共振圖並利用交錯式耦合提供額外的傳輸零點,讓通帶間能有良好的隔離性。該結構可提供緊湊面積,而且使用一組共振器設計四頻帶通濾波器。此濾波器中心頻率設計在0.89/1.92/2.35/3.31 GHz,插入損失為0.37/0.72/0.99/1.06 dB,傳輸零點的位置在0.7/1.4/1.7/2.1/2.67/2.74/3.58 GHz,可以應用在GSM、WLAN及藍牙上。
在五頻帶通濾波器設計中,利用與雙頻設計概念相同的輸入導納分析繪製出共振圖並利用交錯式耦合提供額外的傳輸零點,讓通帶間能有良好的隔離性。該結構可提供緊湊面積,而且使用一組共振器設計五頻帶通濾波器。此濾波器中心頻率設計在0.87/1.99/2.48/3.52/4.42 GHz,插入損失為0.99/1.2/1.09/1.48/2.15 dB,傳輸零點的位置在0.75/1.06/2.27/2.78/3.62/4.29/4.77 GHz,可以應用在GSM,WLAN,WiMAX及藍牙上。
關鍵詞:三頻帶通濾波器、四頻帶通濾波器、五頻帶通濾波器、帶通濾波器、非對稱式負載裝均勻阻抗共振器、傳輸零點。
This thesis presents the design of the multi-band bandpass filter (BPF) using the stub-loaded resonators structure. The possible resonant modes can be found by deriving the input admittance of the resonators. The resonant figure contains the information about the possible resonator modes to be chosen. The passbands of the filters are supported by the modes. In the thesis, four different bandpass filters designed for various applications of interest are discussed.
The proposed dual-band BPF is composed of a uniform impendence resonator (UIR) and a loaded stub connected to the UIR with different electronic lengths to form a stub loaded resonator (SLR). The SLR is used to design a compact dual-band bandpass filter (BPF). The resonant modes of the SLR form the passbands of the BPF. The center frequencies of the passbands of the BPF are determined by the length ratios. The BPF exhibits good passband performance with center frequencies of 2.44 and 3.55 GHz with low insertion losses of 2.5 and 2.8 dB, respectively. The transmission zeros are also obtained near the passband at 2.5 and 2.8 GHz. The BPF is compact due to the interdigital coupling design. The transmission zeros are created close to the first passband edge, which results in high selectivity. The measured results agree well with the simulated ones.
The second BPF is a tri-band BPF, which is constructed by a pair of asymmetric uniform stub-loaded resonators (AUSLRs). The center frequencies of the BPF are obtained by properly controlling the location of the stub and length ratio of the AUSLR. The center frequencies of the resultant BPF are located at 1.4, 2.6, and 3.5 GHz with low insertion losses of 0.9, 1.75, and 2.7 dB, respectively. The transmission zeros are also obtained near the passband at 1.27, 2.04, 3.37, and 3.67 GHz. Moreover this AUSLR structures create transmission zeros close to each passband edge, resulting in high selectivity, good isolation, and compact size. The measured results agree well with the simulated ones.
The third BPF is designed to have four passbands. The quad-band BPF is studied for the first time by using an asymmetric uniform stub-loaded resonator (AUSLR). The passbands of the proposed filter are designed for global system for mobile communications (GSM) and wireless local area network (WLAN) at 0.89, 1.92, 2.35, and 3.31 GHz. The passbands are centered at 0.9, 1.96, 2.4, and 3.35 GHz with low insertion losses of 0.37, 0.72, 0.99, and 1.06 dB, respectively. The transmission zeros are also obtained near the passband at 0.7, 1.4, 1.7, 2.1, 2.6, 2.7, and 3.6 GHz. The measurement results are in line with the simulation ones. As a result, the quad-band filter is proven to be compact, low-loss, and high selectivity.
The last proposed filter is quint-band BPF. The BPF is studied for the first time by using asymmetric uniform stub-loaded resonators (AUSLRs). The passband of the proposed filter is designed for global system for GSM, Bluetooth, WiMAX, and WLAN applications and the center frequencies are located at 0.91, 1.92, 2.43, 3.48, and 4.4 GHz. The passbands are centered at 0.87, 1.99, 2.48, 3.52, and 4.42 GHz with insertion losses of 0.99, 1.2, 1.09, 1.48, and 2.15 dB, respectively. The transmission zeros are also obtained near the passband at 0.75, 1.06, 2.27, 2.78, 3.62, 4.29, and 4.77 GHz. The measurement results are in line with the simulation ones. As a result, the quint-band filter is proven to be compact, low-loss, and high selectivity.

Keyword: bandpass filter, tri-band, quad-band, quint-band, asymmetric uniform stub-loaded resonator, transmission zero.
摘 要 I
Abstract III
誌 謝 V
目 錄 VI
圖 目 錄 VIII
表 目 錄 X
第1章 序論…………………………………………………………………………..1
1.1 無線通訊簡介………………………………………………………………1
1.2 平面濾波器的種類…………………………………………………………3
1.3 微帶線的結構………………………………………………………………4
1.4 非對稱負載樁帶通濾波器文獻研究………………………………………4
1.4.1 負載樁雙頻帶通濾波器…………………………………………4
1.4.2 負載樁三頻帶通濾波器…………………………………………7
1.4.3 負載樁四頻帶通濾波器………………………………………..11
1.4.4 非對稱式負載樁雙頻帶通濾波器……………………………..13
1.5 論文架構…………………………………………………………………..17
第2章 非對稱式均勻阻抗負載樁共振器分析…………………………………..18
2.1 序論………………………………………………………………………..18
2.2 分析負載樁共振器及非對稱式均勻阻抗負載樁共振器………………..18
2.2.1 分析負載樁共振器……………………………………………..18
2.2.2 分析非對稱式均勻阻抗負載樁共振器……...………………...20
2.3 耦合分析…………………………………………………………………..21
2.3.1 電耦合…………………………………………………………..22
2.3.2 磁耦合…………………………………………………………..24
2.3.3 混合式耦合……………………………………………………..26
2.3.4 耦合因素及外部品質因素……………………………………..28
2.3.4.1 耦合因素…………………………………………………..28
2.3.4.2 外部品質因素……………………………………………..29
第3章 利用非對稱式均勻阻抗負載樁共振器製作多頻帶通濾波器…………..32
3.1 利用負載樁共振器製作雙頻帶通濾波器…………….………………….32
3.1.1 介紹……………………………………………………………..32
3.1.2 雙頻帶通濾波器之設計………………………………………..32
3.1.2.1 共振器結構………………………………………………..32
3.1.2.2 耦合方式…………………………………………………..35
3.1.2.3 濾波器電路………………………………………………..38
3.1.3 結果與討論……………………………………………………..39
3.1.4 小結……………………………………………………………..40
3.2 利用非對稱式均勻阻抗負載樁共振器製作三頻帶通濾波器…………..41
3.2.1 介紹……………………………………………………………..41
3.2.2 設計三頻帶通濾波器…………………………………………..42
3.2.2.1 分析共振器………………………………………………..43
3.2.2.2 分析耦合方式……………………………………………..43
3.2.3 結果與討論……………………………………………………..45
3.2.4 小結……………………………………………………………..46
3.3 利用非對稱式均勻阻抗負載樁共振器製作四頻帶通濾波器…..………46
3.3.1 介紹……………………………………………………………..46
3.3.2 設計四頻帶通濾波器…………………………………………..47
3.3.2.1 分析共振器………………………………………………..47
3.3.2.2 分析耦合方式……………………………………………..49
3.3.3 結果與討論……………………………………………………..52
3.3.4 小結……………………………………………………………..54
3.4 利用非對稱式均勻阻抗負載樁共振器製作五頻帶通濾波器……..……54
3.4.1 介紹……………………………………………………………..54
3.4.2 設計四頻帶通濾波器…………………………………………..55
3.4.2.1 分析共振器………………………………………………..55
3.4.2.2 分析耦合方式……………………………………………..56
3.4.3 結果與討論……………………………………………………..57
3.4.4 小結……………………………………………………………..59
第4章 結論與展望………………………………………………………………..60
參考文獻……………………………………………………………………………..61

[1]David K. Cheng, Field and Wave Electromagnetics, Addison Wesley, 1989.
[2]P. A. Rizzi, Microwave Engineering Passive Circuits, Prentice-Hall Inc., 1988.
[3]http://en.wikipedia.org/wiki/Electromagnetic_spectrum/, Apr. 26, 2013.
[4]X. Y. Zhang, J. X. Chen, Q. Xue, and S. M. Li, “ Dual-band bandpass filters using stub-loaded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 583–585, Aug. 2007.
[5]P. Mondal and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators, ” IEEE Trans. Microw. Theory Tech., vol.56, no. 1, pp. 150–155, Jan. 2008.
[6]C. H. Lee, C. I. G. Hsu, and C. C. Hsu, “Balanced dual-band BPF with stub-loaded SIRS for common-mode suppression,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 70–72, Feb. 2010.
[7]H. W. Wu, Y. F. Chen, and Y. W. Chen, “Multi-layered dual-band bandpass filter using stub-loaded stepped-impedance and uniform-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 114–116, Mar. 2012.
[8]F. C. Chen, Q. X. Chu, and Z. H. Tu, “Tri-band bandpass filter using stub loaded resonators,” Electron. Lett., vol. 44, no. 12, pp. 747–749, Jun. 2008.
[9]X. L. Lai, C. H. Liang, H. Di, and B. Wu, “Design of tri-band filter based on stub loaded resonator and DGS resonator,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 265–267, May 2010.
[10]W. Y. Chen, M. H. Weng, and S. J. Chang, “A new tri-band bandpass filter based on stub-loaded step-impedance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 179–181, Apr. 2012.
[11]J. Y. Wu and W. H. Tu, “Design of quad-band bandpass filter with multiple transmission zeros,” Electron. Lett., vol. 48, no. 15, pp. 935–936, Jul. 2012.
[12]K. W. Hsu and W. H. Tu, “Sharp-rejection quad-band bandpass filter using meandering structure,” Electron. Lett., vol. 47, no. 8, pp. 502–503, Apr. 2011.
[13]X. Y. Zhang, J. X. Chen, J. Shi, and Q. Xue, “High-selectivity dual-band bandpass filter using asymmetric stepped-impedance resonators,” Electron. Lett., vol. 45, no. 1, pp. 63–64, Jan. 2009.
[14]Y. T. Liu, “Study of ultra-wideband ring bandpass filters and diplexer,” National Kaohsiung University of Applied Sciences, Jun. 2008, Kaohsiung, Taiwan.
[15]G. L. Matthaei, L. Young, E. M. T. Jone, “Microwave filters, impedance- matching networks and coupling structures, “New York, McGraw Hill, 1980.
[16]F. Z. Zheng, “Multi-band and ultra-wideband bandpass filters by using stepped impedance stub-loaded resonators,” Master Thesis National Kao- hsiung University of Applied Sciences, Jun. 2012, Kaohsiung, Taiwan.
[17]J. S. Hong and M. J. Lancaster, “Microstrip filters for RF/microwave applications,” John Wiley & Sons, Inc., 2001.
[18]T. C. Edwards and M. B. Steer, “Foundations of interconnect and microstrip design,” John Wiley and Sons, Inc., 2000.
[19]K. C. Gupta, R. Gargq, and I. J. Bahl, “Microstrip lines and slot lines,” Artech House Inc., Norwood, MA, 1996.
[20]J. R. James and A. Henderson, “High-frequency behavior of microstrip open-circuit terminations, ” J. Microw., Opt., Acoust., vol. 3, pp.205–218, Sep. 1979.
[21]翁敏航編著,射頻被動元件設計,東華書局,2007年3月。
[22]M. H. Weng, S. K. Liu, H. W. Wu, and C. H. Hung, “A dual-band bandpass filter with wide band and narrow band simultaneously,” Progress In Electromagnetics Research Letter, Vol. 13, pp. 139-147, 2010.
[23]C. Y. Huang, M. H. Weng, C. S. Ye, and Y. X. Xu, “A high band isolation and wide stopband diplexer using ring dual-mode stepped-impedance resonators for GSM and WLAN,” Progress In Electromagnetics Research, Vol. 100, pp. 299-308, 2010.
[24]M. H. Weng, C. H. Kao, and Y. C. Chang, “A compact dual-band bandpass filter using cross-coupled asymmetric SIRs for WLANs,” Journal of Electromagnetic Waves and Applications. Vol. 24, pp. 161-168, 2010.
[25]W. Y. Chen, M. H. Weng, S. J. Chang, and H. Kuan, “A high selectivity dual-band filter using ring-like SIR with embedded coupled open stubs resonators, ” Journal of Electromagnetic Waves and Applications. Vol. 25, pp. 2011-2021, 2011.
[26]C. Y. Huang, M. H. Weng, C. Y. Hung, and S. W. Lan, “Design of a dual-band bandpass filter for GSM and direct sequence ultra-wideband communication systems,” Journal of Electromagnetic Waves and Applications. Vol. 25, pp. 1605–1615, 2011.
[27]M. Zhou, X. Tang, and F. Xiao, “Compact dual-band bandpass filter using novel E-type Resonators with controllable Bandwidths,” IEEE Microw. Wireless Compon. Lett., Vol. 18, pp. 779–781, 2008.
[28]X. Y. Zhang, C. H. Chan, Q. Xue, and B. J. Hu, “Dual-band bandpass filter with controllable bandwidths using two coupling paths,” IEEE Microw. Wireless Compon. Lett., Vol. 20, pp. 616–618, 2010.
[29]M. H. Weng, R. Y. Yang, Y. C. Chang, H. W. Wu, and K. Shu, “Design of a multilayered dual-band bandpass filter with transmission zeros,” Microw. Opt. Technol. Lett., Vol. 50, pp. 2012-2013, 2008.
[30]J. S. Hong, and M. J. Lancaster, “Development of new microstrip pseudo-interdigital bandpass filters,” IEEE Microw. Guided Wave Lett., Vol. 5, pp. 261–263, 1995.
[31]H. J. Yuzn, and Y. Fan, “Compact microstrip dual-band filter with stepped-impedance resonators,” Electron. Lett., Vol. 47, pp. 1328, 2011.
[32]Y. C. Li, H. Wong.., and Q. Xue, “Dual-mode dual-band bandpass filter based on a stub-loaded patch resonator,” IEEE Microw. Wireless Compon. Lett., Vol. 21, pp. 525–527, 2011.
[33]G. Chaudhary, H. Choi, Y. Jeong, J. Lim, D. Kim, and J. C. Kim, “Design of dual-band bandpass filter using DGS with controllable second passband,” IEEE Microw. Wireless Compon. Lett., Vol. 21, pp. 589–591, 2011.
[34]S. Luo, L. Zhu, and S. Sun, “Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1222–1229, May 2011.
[35]C. H. Lee, CI. G. Hsu, H. K. Jhuang, “Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 18,no. 1, pp. 19–21, Jan. 2008.
[36]X. Y. Zhang, Q. Xue, and B. J. Hu, “Planar tri-band bandpass filter with compact size,” IEEE Microw. Wireless Compon. Lett., vol. 20,no. 5, pp. 262–264, MAY 2010.
[37]Q. X. Chu, F. C. Chen, Z. H. Tu, and H. Wang, “A novel crossed resonator and its applications to bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1753–1759, Jul. 2009.
[38]B. J. Chen, T. M. Shen, and R. B. Wu, “Design of tri-band filters with improved band allocation,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1790–1797, Jul. 2009.
[39]M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol.28, no. 12, pp. 1413–1417, Dec. 1980.
[40]J. T. Kuo, T.-H. Yeh, and C.-C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1331–1337, Apr. 2005.
[41]S. F. Chang, Y. H. Jeng, and J. L. Chen “Dual-band step-impedance bandpass filter for multimode wireless LANs,” Electron. Lett., vol. 40, no. 1, pp. 38–39, Jan. 2004.
[42]M. L. Chuang “Concurrent dual band filter using single set of microstrip open-loop resonators,” Electron. Lett., vol. 41, no. 18, pp. 1013–1014, Sep. 2005.
[43]M. Zhou, X. Tang, and, F. Xiao, “Compact dual band bandpass filter using novel e-type resonators with controllable bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 779–781, Dec. 2008.
[44]F. C. Chen, Q. X. Chu, and Z. H. Tu “Tri-band bandpass filter using stub loaded resonators,” Electron. Lett., vol. 44, no. 12, pp. 747–749, Jun. 2008.
[45]J. Z. Chen, N. Wang, Y. He and C. H. Liang, “Fourth-order tri-band bandpass filter using square ring loaded resonators,” Electron. Lett., vol. 47, no. 15, pp. 858-859, Jul. 2011.
[46]M.T. Doan, W. Q. Che and W. J. Feng, “Tri-band bandpass filter using square ring short stub loaded resonators,” Electron. Lett., vol. 48, no. 2, pp. 858-859, Jan. 2012.
[47]S. K. Liu, F. Z. Zheng, “A new compact tri-band bandpass bilter using step impedance iesonators with open stubs,” Journal of Electromagnetic Waves and Applications, vol. 26, pp. 130-139, Jan. 2012.
[48]J. C. Liu, J. W. Wang, B.H. Zeng, and D. C. Chang, “CPW-fed dual-mode double-square-ring resonators for quad-band filters,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 3, pp. 142–144, Mar. 2010.
[49]J. Xu, C. Miao, L. Cui, Y. X. Ji and W. Wu, “Compact high isolation quad-band bandpass filter using quad-mode resonator,” Electron. Lett., vol. 48, no. 5, pp. 28-30, Jan. 2012.
[50]C. M. Cheng and C. F. Yang, “Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 268–270, May 2010.
[51]H. W. Wu and R. Y. Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203–205, Apr. 2011.
[52]J. Xu, C. Miao, L. Cui, Y. X. Ji and W. Wu, “Design of quad-band bandpass filter using open- and short-stub-loaded resonators,” Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, pp. 661-663, Jul. 2011.
[53]Chi-Feng Chen, “A design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators,” IEEE Microwave and Wireless Components Letters, Vol. 22, no. 7, pp. 357- 359, July 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊