|
(1) Kaneshiro, J.; Gaillard, N.; Rocheleau, R.; Miller, E.Advances in Copper-Chalcopyrite Thin Films for Solar Energy Conversion. Sol. Energy Mater. Sol. Cells 2010, 94 (1), 12–16. (2) Contreras, M. A.; Mansfield, L. M.; Egaas, B.; Li, J.; Romero, M.; Noufi, R.; Rudiger-voigt, E.; Mannstadt, W.Wide Bandgap Cu(In,Ga)Se2 Solar Cells with Improved Energy Conversion Efficiency. Prog. PHOTOVOLTAICS Res. Appl. 2016, 24, 3–11. (3) Setsuhara, Y.; Takenaka, K.; Ebe, A.Large-Area Low-Damage Plasma Sources Driven by Multiple Low-Inductance-Antenna Modules for next-Generation Flat-Panel Display Processes. Surf. Coatings Technol. 2008, 202, 5225–5229. (4) Shah, A.; Meier, J.; Droz, C.; Kroll, U.; Wyrsch, N.; Guillet, J.; Graf, U.Microcrystalline Silicon and “ Micromorph ” Tandem Solar Cells. Appl. Phys. A Mater. Sci. Process. 1999, 69, 170–177. (5) Chittik, R. C.; Alexander, J. H.; Sterling, H. F.The Preparation and Properties of Amorphous Silicon. J. Electrochem. Soc. 1969, 116 (1), 77–81. (6) Mahan, A. H.; Carapella, J.; Nelson, B. P.; Crandall, R. S.; Balberg, I.Deposition of Device Quality, Low H Content Amorphous Silicon. J. Appl. Phys. 1991, 69 (9), 6728–6730. (7) A.Matsuda, T. G.ROLE OF SURFACE AND GROWTH-ZONE REACTIONS IN THE FORMATION PROCESS OF Gc-Si:H. Mater. Res. Soc. 1990, 164, 3–14. (8) Akihisa Matsuda; Katsuhiko Nomoto; Yoshiaki Takeuchi; Atsushi Suzuki; Akimasa Yuuki; Perrin, J.Temperature Dependence of the Sticking and Loss Probabilities of Silyl Radicals on Hydrogenated Amorphous Silicon. Surf. Sci. 1990, 227, 50–56. (9) Robertson, J.Deposition Mechanism of Hydrogenated Amorphous Silicon. J. Non. Cryst. Solids 2000, 266–269, 79–83. (10) Hansen, U.; Vogl, P.Hydrogen Passivation of Silicon Surfaces: A Classical Molecular-Dynamics Study. Phys. Rev. B 1998, 57 (20), 13295–13304. (11) Staebler, D. L.; Wronski, C. R.Reversible Conductivity Changes in Discharge-Produced Amorphous Si. Appl. Phys. Lett. 1977, 31 (4), 292–294. (12) Keppner, H.; Torres, P.; Meier, J.; Platz, R.; Fischer, D.; Kroll, U.; Dubail, S.; Selvan, J. A. A.; Vaucher, N. P.; Ziegler, Y.; Tscharner, R.; Hof, C.; Beck, N.; Goetz, M.; Pernet, P.; Goerlitzer, M.; Wyrsch, N.; Veuille, J.; Cuperus, J.; Shah, A.; Pohl, J.The “ Micromorph ” Cell : A New Way To High-Efficiency- Low-Temperature Crystalline Silicon Thin-Film Cell Manufacturing ?; 2000. (13) Branz, H. M.Hydrogen Collision Model Of Light-Induced Metastability In Hydrogenated Amorphous Silicon. Phys. Rev. B 1998, 59 (8), 387–391. (14) Li, S. B.; Wu, Z. M.; Li, W.; Liao, N. M.; Jiang, Y. D.Investigation of the Microstructure and Optical Properties of Hydrogenated Polymorphous Silicon Films Prepared with Pure Silane. Philos. Mag. 2007, 87 (35), 5539–5549. (15) Ahn, J. Y.; Lim, K. S.Amorphous Silicon Solar Cells with Stable Protocrystalline Silicon and Unstable Microcrystalline Silicon at the Onset of a Microcrystalline Regime as I-Layers. Appl. Phys. Lett. 2003, 82 (11), 1718–1720. (16) Shim, J. H.; Im, S.; Cho, N. H.Nanostructural Features of Nc-Si:H Thin Films Prepared by PECVD. Appl. Surf. Sci. 2004, 234, 268–273. (17) Shah, A.V.; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Graf, U.Material and Solar Cell Research in Microcrystalline Silicon. Sol. Energy Mater. Sol. Cells 2003, 78, 469–491. (18) Matsuda, A.Growth Mechanism of Microcrystalline Silicon Obtained from Reactive Plasmas. Thin Solid Films 1999, 337, 1–6. (19) Matsuda, A.Formation Kinetics and Control of Microcrystallite in Μc-Si:H from Glow Discharge Plasma. J. Non. Cryst. Solids 1983, 59–60 (PART 2), 767–774. (20) Kondo, M.; Fukawa, M.; Lihui, G.; Matsuda, A.High Rate Growth of Microcrystalline Silicon at Low Temperatures. J. Non. Cryst. Solids 2000, 266–269, 84–89. (21) Vetterl, O.; Finger, F.; Carius, R.; Hapke, P.; Houben, L.; Kluth, O.; Lambertz, A.; Mück, A.; Rech, B.; Wagner, H.Intrinsic Microcrystalline Silicon: A New Material for Photovoltaics. Sol. Energy Mater. Sol. Cells 2000, 62 (1), 97–108. (22) Collins, R. W.; Ferlauto, A. S.; Ferreira, G. M.; Chen, C.; Koh, J.; Koval, R. J.; Lee, Y.; Pearce, J. M.; Wronski, C. R.Evolution of Microstructure and Phase in Amorphous, Protocrystalline, and Microcrystalline Silicon Studied by Real Time Spectroscopic Ellipsometry. Sol. Energy Mater. Sol. Cells 2003, 78, 143–180. (23) Selberherr, S.Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon; Springer-Verlag Wien GmbH: Fraunhofcr Institut fiir Integriertc Systeme und Bauelememetechnologie (lISB) Erlangen. Germany, 2004. (24) Safarian, J.; Tangstad, M.; Introduction, I.Phase Diagram Study of the Si – P System in Si-Rich Region. Mater. Res. Soc. 2011, 26 (12), 1494–1503. (25) Search, H.; Journals, C.; Contact, A.; Iopscience, M.; Address, I. P.The Effect of Passivation of Boron Dopants by Hydrogen in Nano-Crystalline and Micro-Crystalline Silicon Films. Phys. Condens Matter 1994, 6, 713–718. (26) Morgan, A. E.; Chen, T.-Y. J.; Reed, D. A.; Baker, J. E.Measurement of Boron Segregation at the SiO2/Si Interface Using SIMS. J. Vac. Sci. Technol. A 1984, 2, 1266–1270. (27) Setsuhara, Y. Shoji, T. Ebe, A. Baba, S. Yamamoto, N. Takahashi, K. Ono, K. Miyake, S.Development of Internal-Antenna-Driven Large-Area RF Plasma Sources Using Multiple Low-Inductance Antenna Units. Surf. Coatings Technol. 2003, 174–175, 33–39. (28) Kaki, H.; Tomyo, A.; Takahashi, E.; Hayashi, T.; Ogata, K.; Ebe, A.; Takenaka, K.; Setsuhara, Y.Interface Structure of Microcrystalline Silicon Deposited by Inductive Coupled Plasma Using Internal Low Inductance Antenna. Surf. Coatings Technol. 2008, 202, 5672–5675. (29) Moon, B. Y.; Youn, J. H.; Won, S. H.; Jang, J.Polycrystalline Silicon Film Deposited by ICP-CVD. Sol. Energy Mater. Sol. Cells 2001, 69, 139–145. (30) Wang, W. C.; Jiang, X. X.; Cherng, J. S.; Chen, Q.Nanocrystalline Si:H Films Made by Inductively Coupled Plasma Using Internal Low Inductance Antenna. Mater. Sci. Semicond. Process. 2015, 38, 362–365. (31) Wang, W. C.; Yang, H. H.; Cherng, J. S.Characteristics of Nanocrystalline Si:H Films Made by Inductively Coupled Plasma with Low-Inductance Antenna. Nanosci. Nanotechnol. Lett. 2016, 8, 539–543. (32) 王瑋仲.以高密度電漿輔助化學氣相沉積系統製備 P 型奈米晶 矽氫薄膜及特性研究. 2015, 明志科技大學. (33) 盧駿勝.射頻電感耦合式電漿源之電探針(蘭牟 爾)診斷系統研發. 1996. (34) Takagi, T.; Hayashi, R.; Ganguly, G.; Kondo, M.; Matsuda, A.Gas-Phase Diagnosis and High-Rate Growth of Stable a-Si:H. Thin Solid Films 1999, 345, 75–79. (35) U, T. E.Hydrogen Bonding Properties in Nitrogen Doped Microcrystalline Silicon and Amorphous Silicon Prepared Using Highly Diluted Silane. Thin Solid Films 2000, 379, 292–296. (36) Das, D.Structural Studies on Si:H Network by Raman, Micro-Photoluminescence, Electron Microscopy and Ultraviolet Ellipsometry: Effect of Ar Dilution to the SiH4-Plasma. Thin Solid Films 2005, 476, 237–245. (37) Viera, G.; Huet, S.; Boufendi, L.Crystal Size and Temperature Measurements in Nanostructured Silicon Using Raman Spectroscopy. J. Appl. Phys. 2001, 90 (8), 4175–4183. (38) Fathi, E.; Vygranenko, Y.; Vieira, M.; Sazonov, A.Boron-Doped Nanocrystalline Silicon Thin Films for Solar Cells. Appl. Surf. Sci. 2011, 257, 8901–8905. (39) Parratt, L. G.Surface Studies of Solids by Total Reflection of X-Rays. Phys. Rev. 1954, 95 (2), 359–369. (40) Setsuhara, Y.; Miyake, S.; Sakawa, Y.; Shoji, T.Production of Inductively-Coupled Large-Diameter Plasmas with Internal Antenna. Jpn. J. Appl. Phys. 1999, 38 (7 B), 4263–4267. (41) Song, C.; Wang, X.; Song, J.; Lin, Z.; Zhang, Y.; Guo, Y.; Huang, R.Boron Doped Nanocrystalline Silicon Film Characterization for Solar Cell Application. Sci. China Mater. 2015, 58 (9), 704–708.
|