1. 葉修鋒, 以狹縫式塗佈技術製備大面積小分子有機發光二極體, in 化學工程學系. 2013, 國立清華大學.
2. 羅少軒, 以溼式塗佈技術進行OLED發光元件大型化之分析, in 化學工程學系. 2015, 國立清華大學.
3. 鍾長廷, 多光色溶液製程有機發光二極體之研製, in 化學工程學系. 2015, 國立清華大學.
4. 張簡俊寧, 有機發光二極體液態塗佈互溶改善之研究, in 化學工程學系. 2015, 國立清華大學.
5. Pope, M., H.P. Kallmann, and P. Magnante, Electroluminescence in organic crystals. Journal of Chemical Physics, 1963. 38: p. 2042-2043.
6. Tang, C.W. and S.A. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters, 1987. 51: p. 913-915.
7. Tang, C.W., S.A. VanSlyke, and C.H. Chen, Electroluminescence of doped organic thin films. Journal of Applied Physics, 1989. 65: p. 3610-3616.
8. 陳金鑫 and 黃孝文, 夢幻顯示器:OLED材料與元件. 2007: 五南圖書出版有限公司.
9. Burroughes, J.H., et al., Light-emitting diodes based on conjugated polymers. Nature, 1990. 347: p. 539-541.
10. Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395: p. 151-154.
11. Baldo, M.A., et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Applied Physics Letters, 1999. 75: p. 4-6.
12. Adachi, C., et al., Nearly 100% internal phosphorescence efficiency in an organic light emitting device. Journal of Applied Physics, 2001. 90: p. 5048-5051.
13. Kondakov, D.Y., et al., Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss. Journal of Applied Physics, 2003. 93: p. 1108-1119.
14. 何孟寰, 黃孝文, and 陳金鑫, 有機電激磷光材料與OLED磷光元件之發展近況. 化學, 2005. 63: p. 443-462.15. Kawamura, Y., S. Yanagida, and S.R. Forrest, Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers. Journal of Applied Physics, 2002. 92: p. 87-93.
16. Chao, Y.-C., et al., Highly efficient solution-processed red organic light-emitting diodes with long-side-chained triplet emitter. Synthetic Metals, 2011. 161: p. 148-152.
17. Kido, J., et al., White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 1994. 64: p. 815-817.
18. Kristukat, C., et al., Lifetime determination procedure for OLED lighting panels and proposal for standardisation, in Organic light-emitting diodes (OLEDs), A. Buckley, Editor. 2013, Woodhead Publishing Limited. p. 601-634.
19. Buckley, A.R., C.J. Yates, and I. Underwood, Towards a generic OLED lifetime model. Journal of the Society for Information Display, 2009. 17: p. 611-616.
20. Popovic, Z.D. and H. Aziz, Reliability and degradation of small molecule-based organic light-emitting devices (OLEDs). IEEE Journal of Selected Topics in Quantum Electronics, 2002. 8: p. 362-371.
21. Féry, C., et al., Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes. Applied Physics Letters, 2005. 87: p. 213502.
22. Zhang, J.P., et al., Experimental test and life estimation of the OLED at normal working stress based on the luminance degradation model. Luminescence, 2014. 30: p. 371-375.
23. Stolka, M., Organic light emitting diodes (OLEDs) for general illumination update 2002. 2002: Optoelectronics Industry Development Association.
24. 陳光榮, 軟性OLED阻水氧層技術, in 材料世界網電子報. 2010, 材料世界網.
25. McElvain, J., et al., Formation and growth of black spots in organic light-emitting diodes. Journal of Applied Physics, 1996. 80: p. 6002-6007.
26. Hayer, A., et al., Concepts for solution-processable OLED materials at Merck. Journal of Information Display, 2011. 12: p. 57-59.
27. Oikawa, K., Development of OLED lighting applications using phosphorescent emission system, in PE 2012 Exhibition & Conference. 2012.
28. Höfle, S., et al., Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes. Organic Electronics, 2014. 15: p. 337-341.
29. Han, E.-M., et al., Crystallization of organic thin films for electroluminescent devices. Thin Solid Films, 1996. 273: p. 202-208.
30. Xia, S.C., et al., Oled device operational lifetime: insights and challenges, in 2007 International Reliability Physics Symposium. 2007. p. 253-257.
31. Kondakov, D.Y., W.F. Nichols, and W.C. Lenhart, Structural identification of chemical products and mechanism of operational degradation of OLEDs, in International Symposium of the Society-for-Information-Display (SID 2007). 2007, SID INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS. p. 1494-1496.
32. Adachi, C., K. Nagai, and N. Tamoto, Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Applied Physics Letters, 1995. 66: p. 2679-2681.
33. Trlifaj, M., Nonradiative destruction of triplet excitons by excess electrons in organic crystals. Journal of Physics, 1973. 23: p. 558-566.
34. Shen, J., et al., Degradation mechanisms in organic light emitting diodes. Synthetic Metals, 2000. 111-112: p. 233-236.
35. Lee, S.T., Z.Q. Gao, and L.S. Hung, Metal diffusion from electrodes in organic light-emitting diodes. Applied Physics Letters, 1999. 75: p. 1404-1406.
36. 李孟庭, OLED壽命提升課題探討. 工業材料雜誌, 2008. 256: p. 124-133.37. Popovic, Z.D., et al., Life extension of organic LED's by doping of a hole transport layer. Thin Solid Films, 2000. 363: p. 6-8.
38. Culligan, S.W., et al., Effect of hole mobility through emissive layer on temporal stability of blue organic light-emitting diodes. Advanced Functional Materials, 2006. 16: p. 1481-1487.
39. Meerheim, R., et al., Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. Journal of Applied Physics, 2008. 104: p. 014510.
40. Yoo, J.-D., et al., Soluble processed low-voltage and high efficiency blue phosphorescent organic light-emitting devices using small molecule host systems. Organic Electronics, 2012. 13: p. 586-592.
41. Yoo, S.-J., et al., A new electron transporting material for effective hole-blocking and improved charge balance in highly efficient phosphorescent organic light emitting diodes. Journal of Materials Chemistry C, 2013. 1: p. 2217-2223.
42. Duan, L., et al., Solution processable small molecules for organic light-emitting diodes. Journal of Materials Chemistry, 2010. 20: p. 6392-6407.
43. Xie, H.-Z., et al., Reduction of self-quenching effect in organic electrophosphorescence emitting devices via the use of sterically hindered spacers in phosphorescence molecules. Advanced Materials, 2001. 13: p. 1245-1248.
44. Choi, S.H., et al., Improved efficiency and lifetime of organic light-emitting diode with lithium-quinolate-doped electron transport layer. The Japan Society of Applied Physics, 2009. 48: p. 062101.
45. Shaheen, S.E., et al., Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode. Journal of Applied Physics, 1998. 84: p. 2324-2327.
46. Wang, X.J., et al., Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode. Journal of Applied Physics, 2004. 95: p. 3828-3830.
47. Ganzorig, C. and M. Fujihira, A lithium carboxylate ultrathin film on an aluminum cathode for enhanced electron injection in organic electroluminescent devices. Japanese Journal of Applied Physics, 1999. 38: p. 1348-1350.
48. Matsumura, M., K. Furukawa, and Y. Jinde, Effect of Al/LiF cathodes on emission efficiency of organic EL devices. Thin Solid Films, 1998. 331: p. 96-100.
49. Su, S., et al., Dependence study of optoelectronics performance on carefully differed LiF thickness in Alq3 based OLEDs. Optics and Photonics Journal, 2013. 3: p. 256-259.
50. Kido, J. and T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Applied Physics Letters, 1998. 73: p. 2866-2868.
51. Kurczewska, H. and H. Bässler, Energy transfer across an anthracene-gold interface. Journal of Luminescence, 1977. 15: p. 261-266.
52. Ummartyotin, S., et al., Deposition of PEDOT:PSS nanoparticles as a conductive microlayer anode in OLEDs device by desktop inkjet printer. Journal of Nanomaterials, 2011. 2011: p. 7.
53. Zhou, Y., et al., Mild oxygen plasma treated PEDOT:PSS as anode buffer layer for vacuum deposited organic light-emitting diodes. Chemical Physics Letters, 2006. 427: p. 394-398.
54. Benor, A., et al., Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT:PSS using UV-ozone exposure. Organic Electronics, 2010. 11: p. 938-945.
55. Lide, D.R., CRC Handbook of Chemistry and Physics. 2003-2004.
56. Schlatmann, A.R., et al., Indium contamination from the indium–tin–oxide electrode in polymer light-emitting diodes. Applied Physics Letters, 1996. 69(12): p. 1764-1766.
57. Jeon, S.K. and J.Y. Lee, Four times lifetime improvement of blue phosphorescent organic light-emitting diodes by managing recombination zone. Organic Electronics, 2015. 27: p. 202-206.
58. Meyerhofer, D., Characteristics of resist film produced by spinning. Journal of Applied Physics, 1978. 49: p. 3993-3997.
59. Tyona, M.D., A theoritical study on spin coating technique. Advances in Materials Research, 2013. 2: p. 195-208.
60. Zabihi, F., et al., Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating. Applied Surface Science, 2015. 338: p. 163-177.
61. Mao, C., et al., Considerable improvement in the stability of solution processed small molecule OLED by annealing. Applied Surface Science, 2011. 257: p. 7394-7398.
62. Baldo, M.A., C. Adachi, and S.R. Forrest, Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B, 2000. 62: p. 10967-10977.
63. Reineke, S., K. Walzer, and K. Leo, Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Physical Review B, 2007. 75: p. 125328.
64. Murawski, C., K. Leo, and M.C. Gather, Efficiency roll-off in organic light-emitting diodes. Advanced Materials, 2013. 25: p. 6801-6827.
65. Aziz, H. and Z.D. Popovic, Degradation phenomena in small-molecule organic light-emitting devices. Chemical Materials, 2004. 16: p. 4522-4532.
66. Fenter, P., et al., Thermally induced failure mechanisms of organic light emitting device structures probed by X-ray specular reflectivity. Chemical Physics Letters, 1997. 277: p. 521-526.
67. Kwong, R.C., et al., High operational stability of electrophosphorescent devices. Applied Physics Letters, 2002. 81: p. 162-164.
68. Rezvani, M.H., et al., Effect of solvents, their mixture and thermal annealing on the performance of solution processed polymer light-emitting diodes. Materials, 2013. 6: p. 1994-2006.
69. Phatak, R., Dependence of dark spot growth on cathode/organic interfacial adhesion in Organic Light Emitting Devices, in Electrical and Computer Engineering. 2011, University of Waterloo: Waterloo, Ontario, Canada.
70. Lang, U., et al., Microscopical investigations of PEDOT:PSS thin films. Advanced Functional Materials, 2009. 19: p. 1215-1220.
71. Xu, J., et al., Crosslinked remote-doped hole-extracting contacts enhance stability under accelerated lifetime testing in perovskite solar cells. Advanced Materials, 2016. 28: p. 2807-2815.
72. Kim, Y., et al., Accelerated pre-oxidation method for healing progressive electrical short in organic light-emitting devices. Applied Physics Letters, 2003. 82: p. 2200-2202.
73. 孫亞賢, 劉峻佑, and 簡士偉, 低掠角小角度X光散射原理及在高分子薄膜結構之應用. 科儀新知, 2013. 34: p. 61-70.