跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧亘皓
研究生(外文):Hsuan-Hao Teng
論文名稱:高效率TE11模式虛陰極振盪器研究
論文名稱(外文):High Efficiency TE11 Mode Virtual Cathode Oscillator
指導教授:朱國瑞朱國瑞引用關係
口試委員:陳仕宏陳漢穎張存續吳佳勳
口試日期:2018-01-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:MAGICTE11模式虛陰極振盪器
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
虛陰極振盪器(Vircator)為一產生脈衝式高功率微波源之裝置,具有結構簡單、高峰值功率、電子束品質要求低且無須外加磁場等優點,然其脈寬窄、頻率飄移、輸出功率不穩定與電子束-微波轉換效率低乃是虛陰極振盪器之主要缺點,本文使用具有PIC模擬功能的MAGIC程式進行物理特性分析與三維結構參數優化,設計結構相對於原有之優化同軸結構[59],進一步採用非對稱的同軸設計結構,實現TE11模式輸出模式之虛陰極振盪器結構設計,並且研究其中TE11與TM01模式之間的競爭機制,並提高其設計結構電子轉換效率至7.6%、輸出頻率為7.2GHz、峰值功率2.78GW。
相較於國內外文獻[21-68],本文藉由三維數值模擬的方法,發現在相同設計結構中,因為陰陽極間隙的調整與虛陰極位置變動,對應到的虛陰極自身振盪與電子束來回反射兩者輻射機制所產生的模式激發競爭是前人較少注意到與討論的現象,另外相對於文獻[61]同樣是增強同軸式TE11模式激發,本文也將波-束轉換效率由4%提升至7.6%,大大提高效能。
Vircator is a pulsed high power microwave source device with the advantages of simple structure, high peak power, low e-beam quality necessary and no external magnetic field, etc. However, short pulse width, frequency drift, output power instability and low beam-wave interaction is the main disadvantage of Vircator. We base on previous study [59] and use the MAGIC (PIC simulation software) for physical properties analysis and optimization of three-dimensional asymmetric coaxial structure to achieve TE11 output mode. In this thesis, we study the competition mechanism between TE11 and TM01 mode and increase the efficiency of beam-wave interaction to 7.6%, which the output frequency of 7.2GHz and the peak power of 2.78GW.
In this thesis, we use numerical simulation to illustrate mode excitation mechanism which is few noticed and discussed in literatures [21-68]. We find that in the same design structure, due to the adjustment of the gap between cathode and anode and variation of the virtual cathode will affect excitation mode. It is corresponding to self-oscillation of the virtual cathode and forth-and-back motion of e-beam in diode region.
Compared with literature [61], we optimize the enhanced coaxial vircator structure to improve the efficiency from 4% to 7.6%.
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖表目錄 vii
第一章 緒論 1
1.1 高功率微波源(HPM)概況 1
1.2 虛陰極振盪器(Vircator)概況 5
1.3 虛陰極振盪器與空間電荷效應 6
1.4 共振腔式虛陰極振盪器 13
1.5 同軸式虛陰極振盪器 15
第二章 虛陰極振盪器理論 19
2.1 Child-Langmuir 空間限制電流 19
2.2 虛陰極振盪 26
第三章 虛陰極振盪器數值模擬 30
3.1 MAGIC 數值計算軟體簡介 30
3.2 MAGIC 計算方法 32
3.3 同軸TE11模式虛陰極振盪器結構設計 38
3.4 結構設計驗證 43
3.5 阻抗匹配與結構參數設計優化 49
3.6 阻抗與效率關係 61
3.7 TE11與TM01模式競爭機制 63
第四章 結論 64
文獻參考 66
[1]J. Benford and J. Swegle, High-Power Microwaves, Artech House, Inc., Norwood, MA, 1992.
[2]George B. Collins, Microwave Magnetrons. New York: McGraw-Hill, 1984.
[3]D. Shffier, etc. IEEE Trans. On Plasma Sci., vol. 18, 1990.
[4]J. A. Swegle, J. W. poukey, and G. T. Leifeste, Phys. Fluids, vol. 28, 1985.
[5]J. Benford, etc. IEEE Trans. On Plasma Sci., vol. PS-13,1985.
[6]V. L. Granatstein and I. Alexeff, High-Power Microwave Source, Artech House, Inc., Norwood, MA, 1987.
[7]A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quant. Electr. 10, 1967.
[8]K. R. Chu, V. L. Granatstein, P. E. Latham, W. Lawson, and C. D. Striffler, IEEE Trans. Plasma Sc. PS-13, 1985
[9]M. I. Petelin, Sov. Radioph. and Quant. Electr. 17, 1974.
[10]R. A. Mathaffey, P. Sprangle, J. Golden, and C. A. Kapetanakos, Phys. Rev. Lett. vol. 39, p. 843, 1977.
[11]H. Sze, J. Benford, W. Woo, and B. Harteneck, Phys. Fluids vol. 29, p. 3873, 1986.
[12]W. Jiang, K. Woolverton, J. Dickens, and M. Kristiansen, IEEE Trans. On Plasma Sci. Vol. 27, p. 1538, 1999.
[13]M. W. Wu, P. S. Song, C. Y. Chen, M. J. Yang, K. N. Tung, and W. S. Hou, 7th Int. Conference on High-Power Particle Beams, Karlsruhe, Germany, July 4-8, 1988.
[14]S. P. Bugaev, Sov. Tech. Phys. Lett., vol. 9, 1983.
[15]R. W. Lemke, M. C. Clark, J. App. Phys. Vol. 62, 1987.
[16]L. S. Bogdankevich and A. A. Rukhadze, Sov. Phys. USPEKHI vol. 14, 163, 1971.
[17] B. Goplen, L. Ludeking, D. Smithe and G. Warren, MAGIC User’s Manual, Mission Research Corp., MRC/WDC-R-409, 1997.
[18]羅雄,“同軸虛陰極振盪器基礎理論研究及原理性實驗”,博士論文,西南交通大學,2007。
[19]劉錫三,高功率脈衝技術,國防工業出版社,2007。
[20]王瑩,高功率脈衝電源,原子能出版社,1989。
[21]M. V. Fazio, J. Kinross-Wright, B. Haynes, R. F. Hoeberling, The virtual cathode microwave amplifier experiment, J. Appl. Phys., vol. 66, p. 2675, 1989.
[22]D. Price, H. Sze, D. Fittinghoff, Phase and frequency locking of a cavity vircator driven by a relativistic magnetron, J. Appl. Phys., vol. 65, p. 5185, 1989.
[23]M. V. Fazio, R. F. Hoeberling, J. Kinross-Wright, Narrow-band microwave generation from an oscillating virtual cathode in a resonant cavity, J. Appl. Phys., vol. 65, p. 1321, 1989.
[24]N. A. Nikolov, K. G. Kostov, I. P. Spasovsky, V. A. Spasov, High-power microwave generation from virtual cathode in foilless diode (vircator), Elec. Lett., vol. 24, p. 1445, 1988.
[25]D. Price, D. Fittinghoff, J. Benford, H. Sze, W. Woo, Operational features and microwave characteristics for the vircator II experiment, IEEE Trans. Plama Sci., vol. 16, p. 177, 1988.
[26]H. A. Davis, R. R. Bartsch, T. J. T. Kwan, E. G. Sherwood, R. M. Stringfield , Experimental confirmation of the reditron concept, IEEE Trans. Plasma Sci., vol. 16, p. 192, 1988.
[27]H. A. Davis, R. R. Bartsch, T. J. T. Kwan, E. G. Sherwood, R. M. Stringfield , Gigawatt-level microwave bursts from a new type of virtual cathode oscillator, Phys. Rev. Lett., vol. 59, p. 288, 1987.
[28]S. Burkhart, Multigigawatt microwave generation by use of a virtual cathode oscillator driven by a 1-2 MV electron beam, J. Appl. Phys., vol. 62, p. 75, 1987.
[29]J. Benford, H. Sze, W. Woo, B. Harteneck, virtual-cathode oscillator emission by a pinched diode, Phys. Rev. Lett., vol. 56, p. 344, 1986.
[30] 藍 永 強,真空三極體結構研究-從場發射真空微三極體到反射式三極體之虛陰極振盪器,博士論文,2002。
[31]C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation,McGraw-Hill, New York, 1985.
[32]R. D. Scarpetti, S. C. Burkhart, The study of a reflex oscillator used to generate high power microwaves, IEEE Trans. Plasma Sci., vol. PS-13, p. 506, 1985.
[33]D. J. Sullivan, High power microwave generation from a virtual cathode oscillator (vircator), IEEE Trans. Nucl. Sci. vol. NS-30, p. 3426, 1983.
[34]J. Benford, D. Price, H Sze, D. Bromley, Interaction of a vircator microwave generator with an enclosing resonant cavity, J. Appl. Phys., vol. 61, p. 2098, 1987.
[35]M. Yatsuzuka, Y. Hashimoto, M. Sato, I. Ohta, T. Kaneko, S. Nobuhara, T. Tazima, High-frequency, high-power microwave generation by a virtual cathode oscillator, J. Phys. Soc. Jap., vol. 60, p. 352, 1991.
[36]C. S. Hwang, M. W. Wu, P. S. Song, W. S. Hou, High power microwave generation from a tunable radially extracted vircator, J. Appl. Phys., vol. 69, p. 1247, 1991.
[37]H. Hanjo, Y. Nakagawa, Generation of intense pulsed microwave from a high-density virtual cathode of a reflex triode, J. Appl. Phys., vol. 70, p. 1004, 1991.
[38]M. W. Wu, T. C. Guung, C. Y. Chen, C. S. Hwang, 8th IEEE Int. Pulsed Power Conf., San Diego, June 16-19, 1991.
[39]T. L. Lin, W. T. Chen, W. C. Liu, Y. Hu, M. W. Wu, Computer simulation of virtual cathode oscillations, J. Appl. Phys., vol. PS-13, p. 498, 1985.
[40]A. L. Peratt, C. M. Snell, L. E. Thode, A high-power reflex triode microwave sources, IEEE Trans. Plasma Sci., vol. PS-13, p. 498, 1985.
[41]L. S. Bogdankevich A. A. Rukhadze, Stability of relativistic electron beams in a plasma and the problem of critical currents, Sov. Phys. USPEKHI. vol. 14, p. 163, 1982.
[42]R. B. Miller, An introduction to the physics of intense charged particle beams, Plenum, New York, 1982.
[43]H. Shao, G. Z. Liu, Z. F. Yang, Electron beam-electromagnetic field interaction in one-dimensional coaxial vircator, J. Plasma Phys., vol. 71, p. 563, 2005.
[44]郡浩,劉國治,楊占峰,2006,「TE11模式增強型高效率同軸虛陰極振盪器」,強激光與粒子束第十八卷第二期,p. 230。
[45]羅雄,廖成,孟凡寶,張運儉,于愛民,王曉東,范植開,張新凱,「同軸虛陰極振盪器實驗研究」,強激光與粒子束第十八卷第二期,p. 249。
[46]羅雄,廖成,孟凡寶,2007,「同軸虛陰極振盪器微波輸出模式」,西南交通大學學報第四十二卷第二期,p. 186。
[47]C. Möller, and A. Larsson, “Proof of Principle Experiments on Direct Generation of the TE11 Mode in a Coaxial Vircator” IEEE Transactions on Plasma Science, Vol. 38, No. 1, pp.26-31, 2010.
[48]R. F. Hoeberling M. V. Fazio, Advances in virtual cathode microwave sources, IEEE Trans. EM. Compatibility, vol. 34, p. 252, 1992.
[49]W. Woo, Two dimensional features for virtual cathdoe and microwave emission, Phys. Fluids, vol. 30, p. 239, 1987.
[50]W. Jiang, M. Kristiansen, Phys. of Plasmas, vol. 8, p.3781, 2001.
[51]S. D. Polevin, A. M. Efremov, A. A. Zherlitsyn, S. A. Kitsanov, A. I. Klimov,S. D. Korovin, B. M. Kovalchuk, I. K. Kurkan, 0. P. Kutenkov, S. V. Loginov, I. V. Pegel, S-band vircator with electron beam premodulation based on compact inductive energy storage generator, IEEE Trans. on Plasma Sci., vol. 2, p. 1642, 2001.
[52]L. Ludeking, A. Woods, L. Cavey, MAGIC User''s Manual, ATK, 2011.
[53]B. Goplen, L.Ludeking, D. Smithe, G. Warren, User-configurable MAGIC for electromagnetic PIC calculations, Computer Phys. Comm., vol. 87,p. 54, 1995.
[54]J. S. Wu, J. D. Wang and K. R. Chu, Investigation of Vircator with Time-Frequency Analysis, IVEC 2009.
[55]A. Roy, J.Mondal, R. Menon, S. Mitra, D. D. P. Kumar, A. Sharma, K. C. Mittal, High power microwave generation from coaxial vircator, APAC 2007.
[56]X. Chen, J. Dickens, L. L. Hatfield, E. H. Choi, M. Kristiansen, Approximate analytical solutions for the space-charge-limited current in one-dimensional and two-dimensional cylindrical diodes, Phys. Plasma, vol. 11, p. 3278. 2004.
[57]X. Chen, W. K. Toh, P. A. Lindsay, Physics of the Interaction Process in a Typical Coaxial Virtual Cathode Oscillator Based on Computer Modeling Using MAGIC, IEEE Trans. Plasma Sci., vol. 32, p. 1191, 2004.
[58]S. P. Bugaev, E. A. Litvinov, G. A. Mesyats, D. I. Proskurovskii, Explosive emission electrons, Sov. Phys. Usp., vol. 18, p. 51, 1975.
[59]朱國瑞,姜惟元,2012,「高能微波產生源分析研究」,101年度國防科技學術合作專案。
[60]Elfsberg, M. ; Grindsjon Res. Centre, Swedish Defence Res. Agency, Tumba, Sweden , Hurtig, T. ; Moller, C., Nyholm, S.E, Experimental studies on a coaxial vircator, designed for operation in TE11 mode, Pulsed Power Conference (PPC), 2011 IEEE
[61]Zhang Yongpeng ; Shao Hao ; Liu Guozhi ; Liang Tiezhu ,Frequency characteristics of TE11 mode enhanced coaxial vircator, High Power Particle Beams (BEAMS), 2008 17th International Conference
[62]Qingzi Xing, Dong Wang, Feng Huang, and Jingkang Deng, Two-Dimensional Theoretical Analysis of the Dominant Frequency in the Inward-Emitting Coaxial Vircator , IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006
[63]B. V. Alyokhin, A. E. Dubinov, V. D. Selemir, IEEE Trans. Plasma Sci. Vol. 22, p. 945, 1994.
[64]W. Jiang, M. Kitsumi, Y. Kiyoshi, Proc. of SPIE, 1994.
[65]X. Cheng, J. Dickens, E. H. Choi, Proc. of the 2003 IEEE Inter Pulse Conf.
[66]A. M. Efremov, A. A. Zherlitsyn, S. A. Kitsanov, Techn. Phys. Lett. Vol. 27, p.289, 2001.
[67]W. Jiang, J. Dickens, M. Kristiansen, IEEE Trans. Plasma Sci. Vol. 27, p.1543,1999.
[68]S. A. Kitsanov, A. I. Klimov, S. D. Korovin, IEEE Trans. Plasma Sci. Vol. 30, p.274, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top