跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋學碩
研究生(外文):Syue-Shuo Song
論文名稱:聚亞醯胺發泡體之合成及其性質研究
論文名稱(外文):Synthesis and properties analysis of polyimide foams
指導教授:廖文城廖文城引用關係
指導教授(外文):LIAO, WEI-CHEN
口試委員:蔣見超劉博滔
口試委員(外文):TSIANG, CHIEN-CHAOLIU, BO-TAU
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:107
中文關鍵詞:熱穩定性抗壓強度整泡劑發泡體前驅物
外文關鍵詞:Thermal stabilityCompressive strengthFoam regulatorFoamPrecursor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用較便宜的二胺單體1,6己二胺以不同比例導入3,3',4,4'-二苯甲酮四甲酸二酐與4,4-二胺基二苯醚中,藉以降低單價較高的4,4-二胺基二苯醚的添加量,進而降低製造聚亞醯胺發泡體所需成本,並添加不同比例的整泡劑(B-8462、L-6863)。本實驗會利用傅立葉紅外線光譜儀(FT-IR)分析兩種不同整泡劑的官能基以及整泡劑的添加是否會影響前驅物、發泡體化學結構,再藉由核磁共振分析儀(1H-NMR)計算整泡劑的親水親油鏈段的重複單元,以及利用掃描式電子顯微鏡(SEM)探討發泡體孔徑大小和泡孔均勻度,接者利用熱重分析儀(TGA)分析前驅物發泡溫度及添加整泡劑後的熱性質差異以及添加不同1.6己二胺的發泡體熱性質差異,再利用微差掃描卡計儀(DSC)分析添加不同1.6己二胺的發泡體Tg點有何差異,最後在進行抗壓強度的測試。兩種整泡基經由FT-IR與1H-NMR的分析結果顯示,B-8462的整泡劑屬於親水型整泡劑,L-6863則屬於親油型泡劑,此外添加整泡劑並不會影響前軀物與發泡體的化學結構,經SEM分析顯示發泡體泡孔均勻度在添加B-8462(2phr)時較均勻,另外經由TGA分析結果顯是有無添加整泡劑對發泡體本身熱性質影響不大,另外1.6己二胺添加到20%時Td10溫度與Tg溫度分為別為517oC和230oC。並在最後所有發泡體1.6己二胺添加20%時、添加整泡劑B-8462為2phr時抗壓強度0.064kgf/cm2高於其他發泡體。
In this study, try to use more cheaper diamine monomer 1.6-hexanediamine (HDA)react with 3,3’,4,4’-Benzophenonetetracarboxylic dianhydride(BTDA) and 4,4'-oxydianiline(ODA) to reduce the synthesis cost, and will add two different foam regulators, B-8462 and L-6863.We use FT-IR to analysis the functional groups of two different foam regulators and then analysis if the precursor and foam have foam regulator, chemical structure will change or not. 1H-NMR to analysis foam regulator Lipophilic/Hydrophilic parts repeat units. SEM to analysis foams pore size and pore uniformity. TGA to analysis the precursors foaming temperature and analysis the thermal stability of the foam that have or not foam regulator, and analysis the thermal stability of foams with different HDA molar percent.DSC to analysis the Tg of foams with different HDA molar percent. Finally do the compression strength test.
According to the results of FT-IR and 1H-NMR show that the B-8462 foam regulator belong to Hydrophilic type and the L-6863 foam regulator belong to Lipophilic type., and then FT-IR results show that having foam regulator of the precursors and the foams, that are not change their original chemical structure. SEM results show that the pore uniformity is the best when the foam has 2phr of the B-8462 foam regulator additive quantity .TGA results show that the thermal stability is not changed whatever the foam have foam regulator or not. When the foam has the molar percent of HDA up to 20% then the Td10 temperature and the Tg of the foam reduce to 517 oC and 230 oC, but is still high enough.
The compressive strength results show that when all of the foams have 20 molar% HDA, the foam which has the 2phr of the B-8462 foam regulator additive quantity that it compression strength is 0.064kgf/cm2, higher than other foams.

摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1前言 1
1.2聚亞醯胺簡介 3
1.3聚亞醯胺發泡體的應用 5
1.3.1低溫燃料箱隔熱系統 5
1.3.2透波材料 6
1.3.3飛機機身隔熱系統 6
1.3.4飛行器座椅 7
1.3.5 其它 7
1.4 研究動機 8
第二章 文獻回顧 9
2.1聚亞醯胺發泡體合成種類 9
2.1.1主鏈型聚亞醯胺發泡體合成 9
2.1.2奈米顆粒填充聚亞醯胺發泡體 13
2.1.3側鏈型聚甲基亞醯胺(PMI)發泡體合成; 14
2.2改善聚亞醯胺發泡體性質文獻回顧 17
2.2.1改善機械性質 17
2.2.2改善介電性能 17
第三章 實驗材料 19
3.1藥品與材料 19
3.2藥品純化 21
3.2.1溶劑的純化 21
3.2.2雙酸酐的純化 21
3.3儀器設備 23
3.4合成實驗 25
3.4.1聚亞醯胺發泡體合成 25
3.4.2聚亞醯胺發泡體合成實驗步驟 26
第四章 結果與討論 31
4.1整泡劑結構與官能基鑑定 32
4.1.1 B-6864與L-6863親水親油型光譜鑑定 32
4.1.2整泡劑1H-NMR鑑定 35
4.2雙酸酐BTDA純化與酯化前後FTIR官能基鑑定 39
4.2.1雙酸酐BTDA純化之FTIR光譜鑑定 39
4.2.2 BTDA酯化前後FTIR光譜圖 41
4.3比較兩種不同整泡劑和有/無整泡劑對前驅物PEAS和發泡體FTIR鑑定 43
4.3.1無添加整泡劑之前驅物PEAS和其發泡後的發泡體FTIR光譜圖 43
4.3.2含B-8462或L-6863整泡劑PEAS、發泡體FTIR光譜圖 45
4.3.3前驅物PEAS、發泡體有/無整泡劑之FTIR光譜圖比較 46
4.3.4探討發泡體發泡時間 47
4.3.5比較不同HDAmol%添加量之前驅物PEAS之光譜圖 49
4.3.6不同HDAmol%添加量之PI發泡體之光譜圖 50
4.4有/無整泡劑之PI發泡體與各不同比例HDA的前驅物PEAS與PI發泡體熱性質分析 51
4.4.1有/無整泡劑PI發泡體之熱重分析比較 51
4.4.2比較不同HDAmol%添加量之前驅物PEAS熱重分析圖譜 52
4.4.3比較不同HDAmol%添加量之PI發泡體熱重分析(TGA)與微差掃描熱卡計(DSC)圖譜 53
4.5巨觀探討有/無添加整泡劑外觀樣貌 55
4.6不同整泡劑及比例與不同HDA含量比例聚亞醯胺發泡體微結構分析 56
4.7各比例聚亞醯胺發泡體發泡孔徑與密度關係 72
4.8各比例聚亞醯胺發泡體開孔率 78
4.9各比例聚亞醯胺發泡體抗壓縮強度與發泡倍率 84
第五章 結論 90
參考文獻 91
[1]江選雅,聚亞醯胺的合成及其在LCD的應用,化工資訊月刊,vol13,No7,p43-53(1999)。
[2]Robinson M., British G, 1995, U.S.Pat.2710853, Polyimide based upon pyromellitic acid
[3]Sroog C. E., Endrey A. L., Abramo S. V., Berr C. E., Edwards, W. M., Olivier K. L., Aromatic polypyromellitimides from aromatic polyamic acids, J. Polymer. Sci,:Part A, 1995, 3, 1373-1390.
[4]W. R. Hendrix, US Patent 3,249,561. 1966
[5]T. H. Hou, E. S. Weiser, E. J. Siochi, T. L. ST. Clair, High Perform. Polym.
2004, 16, 487–504.
[6]M. K. Williams, E. S. Weiser, J. E. Fesmire, B. W. Grimsley, T. M. Smith, J.
R. Brenner, G. L. Nelson, Polym. Adv. Technol. 2005, 16, 167–174.
[7]E. S. Weiser, T. F. Johnson, T. L. St Clair, Y. Echigo, H. Kaneshiro, B. W.
Grimsley, High Perform. Polym. 2000, 12, 1–12.
[8]E. S. Weiser, T. L. St Clair, Y. Echigo, H. Kaneshiro, US Patent 1,333,330.
2000.
[9]F.Y. Hshieh, D.B. Hirsch, and H.D Beeson, Fire Mater., 27, 119(2003)
[10]C. I. Cano, E. S.Weiser, T. Kyu, R. B. Pipes, Polymer 2005, 46, 9296–9303.
[11]H.J. Chu, B.K. Zhu, and Y.Y. Xu, Aerospace Mater. Technol., 35, 1(2006)
[12]L.C.Wang, B. H. Guo, X. M. Zeng, J. M. Guo, S. F. Li, Eng. Plast. Appl.
2008, 36(3), 6–8.
[13]Weiser ES, Johnson TF, Clair St TL, Echigo Y, Kaneshiro H, Grimsley BW. Polyimide foams for aerospace vehicles. High Perform Polym 2000;12(1):1e12
[14]Weiser ES, Clair St TL, Echigo Y, Kaneshiro H. Polyimide precursor solid
residuum. US Patent 6180746 B1; 2001
[15]Weiser ES, Clair St TL, Echigo Y, Kaneshiro H. Aromatic polyimide foam. US Patent 6133330; 2000
[16]Wang LC, Guo BH, Zeng XM, Guo JM, Li SF. Preparation and performance study of polyimide foam. Eng Plast Appl 2008;36(3):6e8
[17]Liu XY, Zhan MS, Wang KW, Li Y, Bai YF. Preparation and performance of a
novel polyimide foam. Polym Adv Technol 2012;23(3):677e85
[18]Wang LL, Hu AJ, Fan L, Yang SY. Structures and properties of closed-cell polyimide rigid foams. J Appl Polym Sci 2013;130:3282e91
[19]Chu Huijuan, Zhu Baoku, Xu Youyi, Application of polyimide foam materials in Aerpspace Vehicles, 宇航材料工藝, 2006年, 第3期
[20]Williams M K, Holland D B, MelendezO et al. Aromatic polyimide foams: factors that lead to high fire performance. Polym. Degrad. Stab. 2005; 88: 20~27
[21]Williams M K, Weiser E S, Fesmire J E et al. Effects of cell structure and density on the properties of high performance polyimide foams. Polym. Adv. Technol., 2005; 16: 167~174
[22]Hower R, Thomas, Hoang et al. Polyimide foam containing radomes.
US 5662293, 1997 - 09 – 02

[23]Fay, Ralph M, Wulliman et al. Burn through resistant systems for transportation, especially aircraft. US6322022, 2001- 11 – 27
[24]Indyke, David M. Polyimide foams and their production. US4952611, 1990 - 08 - 28
[25]Fay, RalphM W, Rebecca S L et al. Burn through resistant systems for transportation especially aircraft. US6565040,2003 - 05 - 20
[26]韓桂芳, 陳照峰, 張立同等. 高溫透波材料研究進展. 航空材科學報, 2003; 23 (1) : 57~62
[27]Zhao.F.M, Xu.Y.X, Research of Polyimide Foam, 宇航材料工藝, 2002年, 第3期
[28]Erik S Weiser,Terry L St Clair,Yoshiaki Echigo.Aromatic polyimide foam PJ.USA,US 61 33330.2000
[29]Hogenson-PA; Hamermesh-CL, Development of ambient cure polyimide foam, NTIS: PB 83-110197 :38 pages, 1978
[30]Loy W, Weinrotter K. Flame-retardant, high-temperature resistant foams of
polyimides. US Patent 5153234; 1992.
[31]P. Musto, F.E.Karasz and W.J.Macknight, Macromolecule, 1991, 24, 4672-4769.
[32]V. Deimede, G.A.Voyiatzis and J.K.Kallitsis, Macromolecules, 2000, 33,
7609-7617.
[33]Me Grath J E Jayaraman S K,Lakshmanan P,et a1.Polyimide
nanofoam:Materials design and develement[J].A Chem Soc Polym Prepr Div Polym Chem,1996,37(1):136~137

[34]李慶春,覃勇.聚亞醯胺奈米泡沫材料[J].绝缘材料,2002,(5):3~6
[35]Servaty.Method for producing block-shaped polymethacrylimide foamed materials [PJ].USA,US 6670405.2000
[36]Jianwei Li, Guangcheng Zhang,Yao Yao, Zhanxin Jing, Lisheng Zhou and Zhonglei Ma, Synthesis and properties of polyimide foams containing benzimidazole units, RSC Adv., 2016, 6, 60094
[37]Linli Xu, Shidong Jiang, Baopeng Li, Wenpeng Hou, Guoxing Li, Mushtaque A. Memon, Yong Huang, and Jianxin Geng, Chem. Mater., 2015, 27 (12), pp 4358–4367
[38]L. Wang, A. Hu and S. Yang, J. Appl. Polym. Sci., 2013, 130, 3282–3291
[39]Hui-Juan Chu, Bao-Ku Zhu, You-Yi Xu, Polyimide Foams with Ultralow Dielectric Constants, Wiley InterScience, Received 08 November 2005; accepted 04 March 2006
[40]Xi K, Meng Z, Heng L, et al. Polyimide-polydimethyl-siloxane copolymers for low-dielectric-constant and moisture-resistance applications [J]. Journal of Applied Polymer Science, 2009, 113(3): 1633-1641.
[41]Lee T, Park S S, Jung Y, et al. Preparation and characterization of
polyimide/mesoporous silica hybrid nanocomposites based on watersoluble
poly(amic acid) ammonium salt[J]. European Polymer Journal 2009, 45(1): 19-29.
[42]Lee Y J, Huang J M, Kuo S W, et al. Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low- dielectric applications[J]. Polymer, 2005, 46(1): 173-181

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top