跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯之彥
研究生(外文):TANG, JHIH-YAN
論文名稱:開發新型不可逆性HER2抑制劑 用於乳癌的治療
論文名稱(外文):Discovery of novel irreversible HER2 inhibitors for breast cancer treatment
指導教授:劉宣良劉宣良引用關係
指導教授(外文):LIU, HSUAN-LIANG
口試委員:劉宣良何意黃志宏
口試委員(外文):LIU, HSUAN-LIANGHO, YIHHUANG, CHIH-HUNG
口試日期:2019-01-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:67
中文關鍵詞:人類表皮生長因子受體2乳癌不可逆性HER2抑制劑以結構為基礎的藥效基團模型虛擬篩選分子嵌合分子動態模擬Michael acceptorADMET分析
外文關鍵詞:human growth factor receptor 2breast cancerirreversible HER2 inhibitorsstructure-based pharmacophore modelingvirtual screeningmolecular dockingmolecular dynamics simulationMichael acceptorADMET analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
過去的研究指出,人類表皮生長因子受體2 (HER2) 的過表達與乳癌的發生有所關聯,因此,HER2被認為是一個可以用來治療乳癌的藥物標靶。目前,已經開發出許多可逆性HER2抑制劑用來治療HER2陽性乳癌 ,其中的lapatinib (Tykerb®) 已經通過美國食品藥物管理局的審查。然而HER2上的三種點突變 (L755S、T798I、T798M) 已被證實會對lapatinib產生耐藥性。雖然已有一些不可逆性HER2抑制劑被開發出來用於克服這些耐藥性問題,然而,大部分都還停留在臨床試驗階段。因此,為了尋找更有效且副作用較低的新型不可逆性HER2抑制劑,我們應用了數種電腦演算方法,包含以結構為基礎的藥效基團模型、虛擬篩選、分子嵌合、分子動態模擬與ADMET分析。我們依據HER2 L755S、T798I、T798M三種突變的同源結構模型,分別建構三種以結構為基礎的藥效基團模型,並且藉由receiver operating characteristic (ROC)曲線分析與Güner-Henry (GH) 評分方法進行驗證。根據驗證結果,最佳的藥效基團模型將作為3D模板,從美國國家癌症研究所的小分子資料庫中進行虛擬篩選,其中能吻合所有藥效基團模型結構特徵及具有不可逆性抑制劑必要結構 Michael acceptor的小分子將被篩選出來,作為具潛力的不可逆性HER2抑制劑。接下來以分子嵌合模擬來分析其位於結合位點的結合作用力,根據分子嵌合評分函數與分子嵌合構型,我們挑選出NSC278329、NSC642003、NSC718305三個分子作為不可逆HER2抑制劑。最後,我們利用分子動態模擬的實驗來驗證HER2的突變結構和這三種不可逆抑制劑之間的結合是穩定的。為了降低臨床失敗的風險,我們還進行了ADMET分析。在ADMET分析結果中發現,由於NCS642003的高致癌性與對CYP450的高抑制性,使其不適合臨床使用。最後,只有NSC278329和NSC718305被我們認為是具安全性的新型不可逆HER2抑制劑,這兩個分子可在未來進行體外/體內分析,以評估其藥效或作為先導化合物來設計更有效的不可逆HER2抑制劑。
Previous studies have indicated that overexpression of human epidermal growth factor receptor 2 (HER2) is associated with the carcinogenesis of breast cancer. Therefore, HER2 has been considered as a drug target for breast cancer treatment. So far, many reversible HER2 inhibitors have been developed for treating HER2-positive breast cancer. Among them, lapatinib (Tykerb®) has been approved by the U.S. Food and Drug Administration (FDA). However, three types of HER2 point mutations, including L755S, T798I and T798M, have been shown to confer drug resistance toward lapatinib. Although several irreversible HER2 inhibitors have been developed to overcome these drug resistance problems, most of them are still under clinical trials. Therefore, several computational approaches, including structure-based pharmacophore modeling, virtual screening, molecular docking, molecular dynamics simulation and ADMET analysis, were adopted in this study to discover novel irreversible HER2 inhibitors with better efficacy and less side effects. Three different pharmacophore models were constructed based on the built homology models of HER2 L755S, T798I and T798M. These models were subsequently validated through receiver operating characteristic (ROC) curve analysis and Güner-Henry (GH) scoring methods. Then, the best models were utilized as 3D queries to screen compounds from the National Cancer Institute (NCI) database. Only compounds which fit well with all the features of the pharmacophore models and show the covalent interaction termed as Michael acceptor, an essential substructure of irreversible inhibitors, were retrieved as hit compounds. Then, they were submitted to molecular docking experiments to investigate their binding interactions in their respective binding pockets. Based on the docking scores and docking poses, three compounds, NSC278329, NSC642003 and NSC718305, were selected as the potential irreversible HER2 inhibitors. Finally, these three binding complexes were subjected to molecular dynamics (MD) simulations and the results showed that these binding complexes were stable during the entire MD simulation courses. To reduce the risk of clinical failure, ADMET analyses were performed towards these three compounds and the results showed that NCS642003 exhibited high carcinogenicity and CYP450 inhibitory promiscuity, making it unsuitable for clinical use. Finally, only NSC278329 and NSC718305 were considered as safe and novel irreversible HER2 inhibitors, which can be further subjected to in vitro/vivo analyses to estimate their efficacy or the possibility to act as the lead compounds for designing more potent irreversible HER2 inhibitors.
CHINESE ABSTRACT...i
ENGLISH ABSTRACT...iii
ACKNOWLEDGEMENTS...v
CONTENTS...vi
TABLE CONTENTS...viii
FIGURE CONTENTS...ix
Chapter 1 GENERAL INTRODUCTION...1
Chapter 2 LITERATURE REVIEW...3
2.1 Breast cancer...3
2.2 Human epidermal growth factor receptor 2...4
2.3 The development of anti-HER2 drugs...4
2.4 The mutations and variants of HER2...5
2.5 The development of irreversible HER2 inhibitors...11
Chapter 3 Methods...13
3.1 Overview...13
3.2 Pharmacophore modeling...14
3.2.1 HypoGen pharmacophore...15
3.2.2 Receptor-ligand pharmacophore...15
3.3 Virtual screening...16
3.4 Molecular docking...17
3.4.1 Docking programs...18
3.5 Molecular dynamics simulations...18
3.5.1 Force field...19
3.5.1.1 CHARMm force field...19
3.5.1.2 The Parameters in the force field...20
3.5.1.3 Functional form of the CHARMm Force Field...23
3.5.2 Minimization...24
3.5.3 Equilibrium...27
3.5.4 Molecular dynamics...28
Chapter 4 Discovery of novel irreversible HER2 inhibitors for breast cancer treatment...30
4.1 Abstract...30
4.2 Introduction...30
4.3 Materials and Methods...32
4.3.1 Protein and ligand preparation...32
4.3.2 Structure-based pharmacophore model generation and validation...34
4.3.3 Virtual screening and molecular docking...35
4.3.4 Molecular dynamics (MD) simulation...37
4.3.5 ADMET analysis...37
4.4 Results and discussion...37
4.4.1 Structure-based pharmacophore model generation and
validation...38
4.4.2 Virtual screening and molecular docking...43
4.4.3 MD simulations...47
4.4.4 ADMET analysis...48
4.4.5 Evaluation of hit compounds...50
4.5 Conclusions...52
4.6 References...53
Chapter 5 GENERAL CONCLUSION...58
Chapter 6 GENERAL REFERENCE...59

Ahmed M, Sadek MM, Abouzid KA, Wang F. In silico design: Extended molecular dynamic simulations of new series of dually acting inhibitors against EGFR and HER2. Journal of Molecular Graphics and Modelling. 2013;44:220-231.

Barf T, Kaptein A. Irreversible Protein Kinase Inhibitors: Balancing the Benefits and Risks. J. Med. Chem. 2012;55:6243-6262.

Bellmunt J, Werner L, Bamias A, Fay AP, Park RS, Riester M, Selvarajah S, Barletta JA, Berman DM, Muga SD, Salido M, Gallardo E, Rojo F, Guancial EA, Bambury R, Mullane SA, Choueiri TK, Loda M, Stack E, Rosenberg J. HER2 as a target in invasive urothelial carcinoma. Cancer Medicine. 2015;4(6):844-852.

Berendsen HJC, Vanderspoel D, Vandrunen R. GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION. Computer Physics Communications. 1995;91(1-3):43-56.

Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, Monsey J, Goel N, Aronson AB, Li S, Ma CX, Ding L, Mardis ER, Ellis MJ. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discovery. 2013;3(2):224-237.

Brandt-Rauf PW, Pincus MR. Carney WP. The c-erbB-2 protein in oncogenesis: molecular structure to molecular epidermal epidemiology. Crit Rev Oncog. 1994;5:313-29.

Burris HA. Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. The Oncologist. 2004;9(suppl3):10-15.

Case DA, Cerutti DS, III TEC, Darden TA, Duke RE, T.J., et al. AMBER16 and AmberTools17. University of California, San Francisco. 2017.

Cheng F, Li W, Zhou Y, et al. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J chem inf and model. 2012;52:3099-3105.

Ferla MP, Patrick WM. Bacterial methionine biosynthesis. Microbiology 2014;160:1571-1584.

Gogoi D, Baruah VJ, Chaliha AK, Buragohain AK. 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors. Journal of Theoretical Biology. 2016;411:68-80.

Guengerich FP. Cytochrome P450 and Chemical Toxicology. Chem Res. 2008;21:70-83.

Güner OF, Henry DR. Metric for analyzing hit lists and pharmacophores.
IUL Biotechnology Series. Güner O. F. (ed.). 2000a;191-212.

Güner OF, Waldman M, Hoffmann D, Kim JH. Strategies for database mining and pharmacophore development, 1st. Pharmacophore perception, development, and use in drug design, IUL Biotechnology Series. Güner O. F. (ed.) 2000b:213-236.

Huang SM, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R, et al. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. Journal of Clinical Pharmacology. 2008;48(6):662-670.

Kancha RK, Bubnoff NV, Bartosch N, Peschel C, Engh RA, Duyster J. Differential sensitivity of ERBB2 kinase domain mutations towards lapatinib. PLoS ONE. 2011;6(10):e26760.

Klutchko SR, Zhou HR, Winters T, Tran TP, Bridges AJ, Althaus IW, et al. Tyrosine Kinase Inhibitors. 19. 6-Alkynamides of 4-Anilinoquinazolines and 4-Anilinopyrido[3,4-d]pyrimidines as Irreversible Inhibitors of the erbB Family of Tyrosine Kinase Receptors. J. Med. Chem. 2006;49:1475-1485.

Kumar SP, Jha PC. Multi-level structure-based pharmacophore modelling of caspase-3-non-peptide complexes: Extracting essential pharmacophore features and its application to virtual screening. Chemico-Biological Interactions. 2016;254:207-220.

Levit A, Yarnitzky T, Wiener A, Meidan R, Niv MY. Modeling of human prokineticin receptors: interaction with novel small-molecule binders and potential off-target drugs. PloS One. 2011;6: e27990.

Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong K-K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27: 4702–4711.

Li G, Wang X, Hibshoosh H, Jin C, Halmos B. Modulation of ErbB2 Blockade in ErbB2-Positive Cancers: The Role of ErbB2 Mutations and PHLDA1. PLoS ONE 2014;9(9): e106349.

Li J, Chen Z, Su K, Zeng L. Clinicopathological classification and traditional prognostic indicators of breast cancer. Int. J. Clin. Exp. 2015;8(7): 8500-8505.

Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins-Structure Function and Bioinformatics. 2010;78(8): 1950-1958.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 2001;46: 3–26.

Liu C, He G, Jiang Q, Han B, Peng C. Novel Hybrid Virtual Screening Protocol Based on Molecular Docking and Structure-Based Pharmacophore for Discovery of Methionyl-tRNA Synthetase Inhibitors as Antibacterial Agents. Int. J. Mol. Sci. 2013;14: 14225-14239.

Logan GJ, Dabbs DJ, Lucas PC, et al. Molecular drivers of lobular carcinoma in situ. Breast Cancer Res. 2015;17:76.

Lu SH, Wu JW, Liu HI, Zhao JH, Liu KT, Chuang CK, Lin HY, Tsai WB, Ho Y. The discovery of potential acetylcholinesterase inhibitors: a combination of pharmacophore modeling, virtual screening, and molecular docking studies. J. Biomed. Sci. 2011;18(1): 8.

Minami Y, Shimamura T, Shah K, LaFramboise T, Glatt KA, Liniker E, et al. The major lung cancer-derived mutants of ERBB2 are oncogenic and are associated with sensitivity to the irreversible EGFR/ERBB2 inhibitor HKI-272. Oncogene. 2007;26:5023-5027.

Mishra R, Hanker AB, Garrett JT. Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget. 2017;8:114371-114392.

Raghavendra NM, Pingili D, Kadasi S, Mettu A, Prasad S. Dual or multi-targeting inhibitors: the next generation anticancer agents. European Journal of Medical Chemistry. 2018;143:1277-1300.

Rexer BN, Ghosh R, Narasanna A, Estrada MV, Chakrabarty A, Song Y, Engelman JA, Arteaga CL. Human Breast Cancer Cells Harboring a Gatekeeper T798M Mutation in HER2 Overexpress EGFR Ligands and Are Sensitive to Dual Inhibition of EGFR and HER2. American Association for Cancer Research. 2013;19(19):5390-5401.

Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440(7083):463-469.

Schuler M, Awada A, Harter P, Canon JL, Possinger K, Schmidt M, et al. A phase II trial to assess efficacy and safety to afatinib in extensively pretreated patients with HER2-negative metastatic breast cancer. Breast cancer Res. Treat. 2012;134:1149-1159.

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. New York. 1987;235:177-182.

Sun A, Shi Y, Shen Y, Cao L, Zhang W, Guan X. Analysis of different HER-2 mutations in breast cancer progression and drug resistance. J. Cell. Mol. Med. 2015;19:2691-2701.

Swellmeen L, Shahin R, Al-Hiari Y, Alamiri A, Hasan A, Shaheen O. Structure-based drug design of Pim-1 kinase followed by pharmacophore guided synthesis of quinolone-based inhibitors. Bioorganic & Medicinal Chemistry. 2017;25:4855-4875.

Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J. Control Release. 2010;146(3):264-275.

Takeda M, Nakagawa K. Toxicity profile epidermal growth factor receptor tyrosine kinase inhibitors in patients with epidermal growth factor receptor gene mutation-positive lung cancer (Review). MOLECULAR AND CLINICAL ONCOLOGY. 2017;6:3-6.

Tamokou J-D-E, Kuete V. Mutagenicity and Carcinogenicity of African Medicinal Plants. Toxicological Survey of African Medicinal Plants. 2014;277-322.

Telesco SE, Radhakrishnan R. Atomistic insights into regulatory mechanisms of the HER2 tyrosine kinase domain: a molecular dynamics study. Biophys J. 2009;96:2321-2334.

Thangapandian S, John S, Sakkiah S, Lee KW. Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design. Eur J Med Chem. 2010;45:4409-4417.

Tian S, Wang J, Li Y, Li D, Xu L, Hou T. The application of in silico drug likeness predictions pharmaceutical research. Advanced Drug Delivery Review. 2015;86:2-10.

Tsou H-R, Mamuya N, Johnson BD, Reich MF, Gruber BC, Ye F, et al. 6-Substituted-4-(3-bromophenylamino)quinazolines as Putative Irreversible Inhibitors of the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor (HER-2) Tyrosine Kinases with Enhanced Antitumor Activity. J. Med. Chem. 2001;44:2719-2734.

Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002;45:2615-2623.

Vyas VK, Goel A, Ghate M, Patel P. Ligand and structure-based approaches for the identification of SIRT1 activators. Chemico-Biological Interactions. 2015;228:9-17.

Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. Journal of Computational Chemistry 2004;25:1157-1174.

Wang S, Li Y, Wang J, Chen L, Zhang L, Yu H, Hou T. ADMET Evaluation in Drug Discovery. 12. Development of Binary Classification Models for Prediction of hERG Potassium Channel Blockage. Mol. Pharm. 2012;9(4):996-1010.

Xie H, Lin L, Tong L, Jiang Y, Zheng M, Chen Z, Jiang X, et al. AST1306, A Novel Irreversible Inhibitor of the Epidermal Growth Factor Receptor 1 and 2, Exhibits Antitumor Activity Both In Vitro and In Vivo. PLoS ONE. 2011;6(7):e21487.

Yoshida Y, Ozawa T, Yao T-W, Shen W, Brown D, Parsa TA, Raizer JJ, et al. NT113, a pan-ERBB inhibitor with High Brain Penetrance, inhibits the Growth of Glioblastoma Xenografts with EGFR Amplification. Mol. Cancer Ther. 2014;13(12):2919-2929.

Zou Y, Xiao J, Tu Z, Zhang Y, Yao K, Luo M, Ding K, et al. Structure-based discovery of novel 4,5,6-trisubstituted pyrimidines as potent covalent Bruton’s tyrosine kinase inhibitors. Bioorganic & Medicinal Chemistry Letters. 2016;26:3052-3059.

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2: 19-25.

Amato VD, Raimondo L, Formisano L, Giuliano M, Placido SD, Rosa R, Bianco R (2015) Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treatment Review 41: 877-883.

Arribas J, Baselga J, Pedersen K et al. (2011) p95HER2 and breast cancer. Cancer Res.71: 1515-1519.

Arteaga CL, Engelman JA, et al. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014; 25: 282–303.

Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(18):10037-41.

Baselga J and Albanell J (2001) Mechanism of action of anti-HER2 monoclonal antibodies. Ann. Oncol. 12: S35-S41.

BIOVIA (2017) BIOVIA Discovery Studio 2017. Discovery Studio, Discovery Studio 2017 ed. San Diego: Dassault Systèmes BIOVIA.

Brandt-Rauf PW, Pincus MR, Carney WP (1994) The c-erbB-2 protein in oncogenesis: molecular structure to molecular epidermal epidemiology. Crit Rev Oncog. 5: 313-329.

Berendsen HJC, Vanderspoel D, Vandrunen R (1995) GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION. Computer Physics Communications 91(1-3): 43-56.

Brooks BR, Bruccoleri RE, Olafson BD, States D.J.; Swaminathan S.; Karplus M (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4: 187-217.

Bianco G, Forli S, Goodsell DS, Olson AJ (2016) Covalent docking using autodock: Two-point attractor and flexible side chain methods. PROTEIN SCIENCE. 25: 295-301.

Barf T and Kaptein A Irreversible Protein Kinase Inhibitors: Balancing the Benefits and Risks. J. Med. Chem. 2012;55:6243-6262.

Case DA, Cerutti DS, III TEC, Darden TA, Duke RE, T.J., et al. (2017) AMBER16 and AmberTools17. University of California, San Francisco.

Castiglioni F, Tagliabue E, Campiglio M, et al. (2006) Role of exon-16-deletedHER2 in breast carcinomas. Endocr. Relat. Cancer. 70: 221-232.

Chowdhury A, Sen S, Dey P, Chetia P, Talukdar AD, Bhattacharjee A, Choudhury MD (2012) Computational validation of 3-ammonio-3-(4-oxido-1H-imidazol-1-ium-5-yl) propane-1, 1-bis (olate) as a potent anti-tubercular drug against me-MetAP. Bioinforation 8(18): 875-880.

Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehenbacher L, Wolter JM, Patom V, Shak S, Lieberman G, Slamon DJ, et al. (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpression metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 17: 2639-2648.

Cross S, Baroni M, Goracci L, Cruciani G (2012) GRID-Based Three-Dimensional Pharmacophores I: FLAPpharm, a Novel Approach for Pharmacophore Elucidation. JOURNAL OF CHEMICAL INFORMATION AND MODELING 52: 2587-2598.

Dube D, Periwal V, Kumar M, Sharma S, Singh TP, Kaur P (2012) 3D-QSAR based pharmacophore modeling and virtual screening for identification of novel pteridine reductase inhibitors. J Mol Model 18: 1701-1711.

Dubey AK, Gupta U, Jain S (2015) Breast cancer statistics and prediction methodology: a systematic review and analysis. Asian Pac J Cancer Prev. 16: 4237-4245.

Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics. 98: 10089.

Diller DJ and Merz KM (2001) High throughout docking for library design and library prioritization. Protein. 43(2): 113-124.

Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L, Cristofanilli M, Arun B, Esmaeli B, Fritsche HA, et al. (2002) Phase II study of weekly docetaxel and trastuzumab for patients with HER2—overexpressing metastatic breast cancer. J. Clin. Oncol. 20: 1800-1808.

Gogoi D, Baruah VJ, Chaliha AK, Buragohain AK (2016) 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors. Journal of Theoretical Biology. 411: 68-80.

Greulich H, Kaplan B, Mertins P, et al. (2012) Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2. Proc. Nat. Acad. Sci. USA. 109: 14476-14481.

Güner OF & Henry DR (2000a) Metric for analyzing hit lists and pharmacophores.
IUL Biotechnology Series. Güner O. F. (ed.) : 191-212.

Güner OF, Waldman M, Hoffmann D, Kim JH (2000b) Strategies for database mining and pharmacophore development, 1st. Pharmacophore perception, development, and use in drug design, IUL Biotechnology Series. Güner O. F. (ed.) : 213-236.

Haseeb M and Hussain S (2015) Pharmacophore Development for Anti-Lung Cancer Drugs. Pharmacophore Development for Anti-Lung Cancer Drugs 16(18): 8307-8311.

Holbro T, Civenni G, Hynes NE (2003) The ErbB receptors and their role in cancer progression. Exp. Cell Res. 284: 99-110.

Jackson C, Browell D, Gautrey H, et al. (2013) Clinical significance of HER2 splice variants in breast cancer progression and drug resistance. Int. J. Cell Biol. 5994: 973584.

Jorgensen WL, Chandrasekhar J, Maduraa JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. 79: 926-935.

Kancha RK, Bubnoff NV, Bartosch N, Peschel C, Engh RA, Duyster J (2011) Differential sensitivity of ERBB2 kinase domain mutations towards lapatinib. PLoS ONE 6(10): e26760.

Klutchko SR, Zhou HR, Winters T, Tran TP, Bridges AJ, Althaus IW, Amato DM, Elliott WL, Ellis PA, Meade MA, Roberts BJ, Fry DW, Gonzales AJ, Harvey PJ, Nelson JM, Sherwood V, Han H-K, Pace G, Smaill JB, Denny WA, Showalter HDH. (2006) Tyrosine Kinase Inhibitors. 19. 6-Alkynamides of 4-Anilinoquinazolines and 4-Anilinopyrido[3,4-d]pyrimidines as Irreversible Inhibitors of the erbB Family of Tyrosine Kinase Receptors. J. Med. Chem. 49: 1475-1485.

Kumar SP and Jha PC (2016) Multi-level structure-based pharmacophore modelling of caspase-3-non-peptide complexes: Extracting essential pharmacophore features and its application to virtual screening. Chemico-Biological Interactions 254: 207-220.

Kumari R, Kumar R, Lynn A, Open Source Drug Discovery C (2014) g_mmpbsa-A GROMACS Tool for High-Throughput MM-PBSA Calculations. Journal of Chemical Information and Modeling. 54(7): 1951-1962.

Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, Thomas V, Rizzo RC, Case DA, James TL, Kuntz ID (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. RNA. 15(6): 1219-1230.

Lemmon MA and Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell. 141: 1117-1134.

Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H and Wong K-K (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 27: 4702–4711.

Li G, Wang X, Hibshoosh H, Jin C, Halmos B (2014) Modulation of ErbB2 Blockade in ErbB2-Positive Cancers: The Role of ErbB2 Mutations and PHLDA1. PLoS ONE 9(9): e106349.

Li J, Chen Z, Su K, Zeng L (2015) Clinicopathological classification and traditional prognostic indicators of breast cancer. Int. J. Clin. Exp. 8(7): 8500-8505.

Li J, Wang H, Li J, Bao J, Wu C (2016) Discovery of a Potential HER2 Inhibitor from Natural Products for the Treatment of HER2-Positive Breast Cancer. International Journal of Molecular Sciences 17: 1055.

Li Y, Zhao Y, Liu Z, Wang R (2011) Automatic Tailoring and Transplanting: A Practical Method that Makes Virtual Screening More Useful. JOURNAL OF CHEMICAL INFORMATION AND MODELING 51: 1474-1491.

Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins-Structure Function and Bioinformatics. 78(8): 1950-1958.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 46: 3–26.
Logan GJ, Dabbs DJ, Lucas PC, et al. (2015) Molecular drivers of lobular carcinoma in situ. Breast Cancer Res. 17: 76.

Marchini C, Gabrielli F, Lezzi M, et al. (2011) The human splice variant Delta16HER2 induces rapid tumor onset in a reporter transgenic mouse. PLoS ONE 6: e18727.

Marrink SJ and Mark AE (2004) Molecular View of Hexagonal Phase Formation in Phospholipid Membranes. Biophysical Journal 87: 3894-3900.

Marrink SJ, Risselada J, Mark AE (2005) Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. Chemistry and Physics of Lipid 135: 223-244.

Mendelsohn J (2000) Blockade of receptors for growth factors: an anti-cancer therapy. The fourth annual Joseph H. Burchenal American Association for cancer research clinical research award lecture. Clin. Cancer Res. 6: 747–753.

Menard S, Casalini P, Campiglio M, Pupa SM, Tagliabue E (2004) Role of HER2/neuin tumor progression and therapy. Cell. Mol. Life Sci. 61: 2965-2978.

Meng X, Li Y, Tang H, Mao W, Yang H, Wang X, Ding X, Xie S (2016) Drug response to HER2 gatekeeper T798M mutation in HER2-positive breast cancer. Amino Acids. 48: 487-497.

Mitra D, Brumlik MJ, Okamgba SU, et al. (2009) An oncogenic isoform of HER2 associated with locally disseminated breast cancer and trastuzumab resistance. Mol. Cancer Ther. 8: 2152-2162.

Müller O, Neumann H, Bayer MJ, Mayer A (2003) Role of the Vtc proteins in V-ATPase stability and membrane trafficking. Journal of Cell Science 116(6): 1107-1115.

Nielsen DL, Kümler I, Palshof JA, Andersson M (2013) Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Breast. 22(1): 1-12.

Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal H (2015) Breast Cancer: Conventional Diagnosis and Treatment Modalities and Recent Patents and Technologies. Breast Cancer: Basic and Clinical Research. 9(S2): 17–34.

O’Shaughnessy JA, Vukelja S, Marsland T, Kimmel G, Ratnam S, Pippen JE (2004) Phase II study of trastuzumab plus gemcitabine in chemotherapy-pretreated patients with metastatic breast cancer. Clin. Breast Cancer. 5: 142-147.

Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, Baly D, Baughman SA, Twaddell T, Glaspy JA, et al. (1998) Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J.Clin. Oncol. 16: 2659-2671.

Pedersen K, Angelini P-D, Laos S, et al. (2009) A naturally occurring HER2 carboxy-terminal fragment promotes mammary tumor growth and metastasis. Mol. Cell Bio. 29: 3319-3331.

Pegram MD, Konecny CE, O’Callaghan C, Beryt M, Pietras R, Slamon DJ (2004) Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J. Natl. Cancer Inst. 96: 739-749.

Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, et al. (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. 353: 1659-1672.

Prokuda OV, Belosludov V, Igumenov I, Stabnikov P (2006) Calculations of van der Waals interaction energies for Al, Cl, Fe and Ir acetylacetonate crystals. Journal of Structural Chemistry 47(6): 1032-1041.

Rarey M, Kramer B, Lengauer T, Klebe G. A Fast Flexible Docking Method using an Incremental Construction Algorithm. J. Mol. Biol., 1996;261:470489.

Rexer BN, Ghosh R, Narasanna A, Estrada MV, Chakrabarty A, Song Y, Engelman JA and Arteaga CL (2013) Human Breast Cancer Cells Harboring a Gatekeeper T798M Mutation in HER2 Overexpress EGFR Ligands and Are Sensitive to Dual Inhibition of EGFR and HER2. American Association for Cancer Research. 19(19): 5390-5401.

Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, et al. (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353: 1673-1684.

Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, Hallett WA, Johnson BD, Nilakantan R, Overbeek E, Reich MF, Shen R, Shi X, Tsou H-R, Wang Y-F, Wissner A (2004) Antitumor Activity of HKI-272, an Orally Active, Irreversible Inhibitor of the HER-2 Tyrosine Kinase. CANCER RESEARCH. 64: 3958–3965.

Schroeder RL, Stevens CL, Sridhar J (2014) Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer. Molecule. 19: 15196-15212.

Scholl S, Beuzeboc P, Pouillart P (2001) Targeting HER2 in other tumor types. Ann.Oncol. 12(Suppl. 1): S81-S87.

Seidman AD, Fornier MN, Esteva FJ, Ta L, Kaptain S, Bach A, Panageas KS, Arroyo C, Valero V, Currie V, et al. (2001) Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J. Clin. Oncol. 19: 2587-2595.

Selwa E, Elsee E, Zavala A, Iorga BI (2018) Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations. J Compu Aided Mol Des 32: 273-286.

Singh A, Paliwal SK, Sharma M, Mittal A, Sharma S, Sharma JP (2016) In silico and in vitro screening to identify structurally diverse non-azole CYP51 inhibitors as potent antifungal agent. Journal of Molecular Graphics and Modelling 63: 1-7.

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, et al. (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. New York. 235: 177-182.

Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344: 783-792.

Sohn Y-S, Park C, Lee Y, Kim S, Thangapandian S, Kim Y, Kim H-H, Suh J-K, Lee KW (2013) Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. Journal of Molecular Graphics and Modelling 46: 1-9.

Sousa da Silva AW, Vranken WF (2015) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes. 5(1): 367.

Strambi A, Mori M, Rossi M, Colecchia D, Manetti F, Carlomagno F, Botta M, Chiariello M (2013) Structure Prediction and Validation of the ERK8 Kinase Domain. PLoS ONE 8: e52011.

Sun A, Shi Y, Shen Y, Cao L, Zhang W, Guan X (2015) Analysis of different HER-2 mutations in breast cancer progression and drug resistance. J. Cell. Mol. Med., 19: 2691-2701.

Tai W, Mahato R, Cheng K T (2010) The role of HER2 in cancer therapy and targeted drug delivery. J. Control Release. 146(3): 264-275.

Telesco SE, Radhakrishnan R (2009) Atomistic insights into regulatory mechanisms of the HER2 tyrosine kinase domain: a molecular dynamics study. Biophys J. 96: 2321-2334.

Thangapandian S, John S, Sakkiah S, Lee KW (2010) Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design. Eur J Med Chem. 45: 4409-4417.

Tsou H-R, Mamuya N, Johnson BD, Reich MF, Gruber BC, Ye F, Nilakantan R, Shen R, Discafani C, DeBlanc R, Davis R, Koehn FE, Greenberger LM, Wang Y-F, Wissner (2001) A 6-Substituted-4-(3-bromophenylamino)quinazolines as Putative Irreversible Inhibitors of the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor (HER-2) Tyrosine Kinases with Enhanced Antitumor Activity. J. Med. Chem. 44: 2719-2734.

Tural D, Akar E, Mutlu H, et al. (2014) P95 HER2 fragments and breast cancer outcome. Expert Rev. Anticancer Ther. 14: 1089-1096.

Valasani KR, Vangavaragu JR, Day VW, Yan SS (2014) Structure Based Design, Synthesis, Pharmacophore Modeling, Virtual Screening, and Molecular Docking Studies for Identification of Novel Cyclophilin D Inhibitors. JOURNAL OF CHEMICAL INFORMATION AND MODELING 54: 902-912.

Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 45: 2615-2623.

Vyas VK, Goel A, Ghate M, Patel P (2015) Ligand and structure-based approaches for the identification of SIRT1 activators. Chemico-Biological Interactions 228: 9-17.

Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. Journal of Computational Chemistry. 25(9): 1157-74.

Wang JM, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling. 25(2): 247-60.

Wu G, Robertson DH, Brooks CL, Vieth M (2003) Detailed analysis of grid-based molecular molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm. J. Comput. Chem. 24: 1549-4562.

Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discovery Today 13(1-2): 23-29.

Wu G, Robertson DH, Brooks CL3rd, Vieth M (2003) Detailed Analysis of Grid-Based Molecular Docking: A Case Study of CDOCKER-A CHARMm-Based MD Docking Algorithm. Journal of Computational Chemistry 13: 1549-1562.

Wu D, Yan J, Wang J, Wang Q, Li H (2015) Characterisation of interaction between food colourant allura red AC and human serum albumin: Multispectroscopic analyses and docking simulations. Food Chemistry 170: 423-429.

Wu H, Liu Y, Guo M, Xie J, Jiang XM (2014) A Virtual Screening Method for Inhibitory Peptides of Angiotensin I-Converting Enzyme. Journal of Food Science, 79(9): C1635-1642.

Xie H, Lin L, Tong L, Jiang Y, Zheng M, Chen Z, Jiang X, Zhang X, Ren X, Qu W, Yang Y, Wan H, Chen Y, Zuo J, Jiang H, Geng M, Ding J (2011) AST1306, A Novel Irreversible Inhibitor of the Epidermal Growth Factor Receptor 1 and 2, Exhibits Antitumor Activity Both In Vitro and In Vivo. PLoS ONE 6(7): e21487.

Yim-im W, Sawatdichaikul O, Semsri S, Horata N, Mokmak W, Tongsima S, Sukamrarn A, Choowongkomon K (2014) Computational analyses of curcuminoid analogs against kinase domain of HER2. BMC Bioinformatics. 15: 261.

Zhang J-H, Jiang Y-Y, Lin Y, Sun Y-F, Zheng S-P, Han S-Y (2013) Structure-Guided Modification of Rhizomucor miehei Lipase for Production of Structured Lipids. PLoS ONE 8(7): e67892.

Zhu K, Borrelli KW, Greenwood JR, Day T, Abel R, Farid RS, Harder E (2014) Docking Covalent Inhibitors: A Parameter Free Approach to Pose Prediction and Scoring. Journal of chemical information and modeling. 54: 1932-1940.

Zou Y, Xiao J, Tu Z, Zhang Y, Yao K, Luo M, Ding K, Zhang Y, Lai Y (2016) Structure-based discovery of novel 4,5,6-trisubstituted pyrimidines as potent covalent Bruton’s tyrosine kinase inhibitors. Bioorganic & Medicinal Chemistry Letters. 26: 3052-3059.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊