|
1. Alipanahi, B. D. (2015). Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature biotechnology, 33(8), 831. 2. Altschul, S. F. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 25(17), 3389-3402. 3. Asgari, E. &. (2015). Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS ONE, 10(11), e0141287. 4. Boeckmann, B. B. (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic acids research, 31(1), 365-370. 5. Chang, C. C. (2011). LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3), 27. 6. Chen, K. M. (2011). Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors. Bioinformatics, 28(3): 331-341. 7. Chen, S. A. (2011). Prediction of transporter targets using efficient RBF networks with PSSM profiles and biochemical properties. Bioinformatics, 27(15), 2062-2067. 8. Chou, K. C. (2001). Prediction of protein cellular attributes using pseudo‐amino acid composition. Proteins: Structure, Function, and Bioinformatics, 43(3), 246-255. 9. Consortium, U. (2016). UniProt: the universal protein knowledgebase. Nucleic acids research, 45(D1), D158-D169. 10. Frank, E. H. (2004). Data mining in bioinformatics using Weka. Bioinformatics, 20(15), 2479-2481. 11. Gromiha, M. M. (2002). Important amino acid properties for determining the transition state structures of two‐state protein mutants. FEBS letters, 526(1-3), 129-134. 12. Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of Tricks for Efficient Text Classification. eprint arXiv:1607.01759, 1607.01759. 13. Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure. 405 (2), 442–451. 14. Mikolov, T. S. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, 3111-3119. 15. Moody, G. (Feb 2004). Digital Code of Life: How Bioinformatics is Revolutionizing Science, Medicine, and Business. Wiley. 16. Ou, Y. Y. (2005). QuickRBF: a package for efficient radial basis function networks. . QuickRBF software available at http://csie. org/~ yien/quickrbf. 17. Ou, Y. Y. (2010). Classification of transporters using efficient radial basis function networks with position‐specific scoring matrices and biochemical properties. Proteins: Structure, Function, and Bioinformatics, 78(7), 17. 18. Park, K. J. (2003). Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics, 19(13), 1656-1663. 19. Piotr Bojanowski, E. G. (2016). Enriching Word Vectors with Subword Information. eprint arXiv:1607.04606, 1607.04606. 20. Qian, Y. &. (2016). Very deep convolutional neural networks for robust speech recognition. In Spoken Language Technology Workshop (SLT), 2016 IEEE, 481-488. 21. Saier Jr, M. H. (2006). TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic acids research, 34(suppl_1), D181-D186. 22. Shi, J. Y. (2007). Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino acids, 33(1), 69-74. 23. Spencer, M. E. (2015). A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM transactions on computational biology and bioinformatics (TCBB), 12(1), 103-112. 24. Taju, S. W. (2016). DeepEfflux: a 2D convolutional neural network model for identifying families of efflux proteins in transporters. Bioinformatics. 25. UniProt, C. (2014). UniProt: a hub for protein information. Nucleic acids research, 43(D1), D204-D212. 26. Yu-Yen Ou, S.-A. C.-Y. (2011). Prediction of transporter targets using efficient RBF networks with PSSM profiles and biochemical properties. Bioinformatics, Volume 27, Issue 15, 1 August 2011, Pages 2062–2067. 27. Zhang, X. Z. (2015). Character-level convolutional networks for text classification. In Advances in neural information processing systems, 649-657. 28. Zhao, M. N. (2014). Prediction of Membrane Transport Proteins and Their Substrate Specificities Using Primary Sequence Information. PLoS ONE, 9(6): e100278. doi:10.1371/journal.pone.0100278.
|