台灣行政院環境保護署(TWEPA) (2011). 底泥污染來源及傳輸模式調查計畫-以重點河川為例. (EPA-100-GA102-02-A232).
李偉. (2017). 利用全底泥暴露系統探討銅於不同環境底泥中之釋出能力、生物有效性及毒性. 碩士論文, 國立臺灣大學.林曉武. (2001). 淡水河系底泥重金屬之沉降通量與垂直變化-底泥重金屬之調查及管制策略研析. 行政院環保署.
陳冠維. (2016). 以離子交換樹脂埋入法評估重金屬鉛於底泥之生物有效性及毒性效應. 碩士論文,國立臺灣大學.溫威程. (2019). 應用化學及生物指標評估不同特性之環境底泥受長期砷汙染之生物有效性及毒性. 碩士論文,國立臺灣大學.Adam, N., Leroux, F., Knapen, D., Bals, S., & Blust, R. (2014). The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios. Environmental Pollution, 194, 130-137.
Agency for Toxic Substances and Disease Registry (ATSDR). (2007).
Alsop, D., & Wood, C. M. (2011). Metal uptake and acute toxicity in zebrafish: Common mechanisms across multiple metals. Aquatic Toxicology, 105(3-4), 385-393.
Batley, G. E. (1989 ). Trace Element Speciation Analytical Methods and Problems. Florida: CRC Press.
Beattie, J. H., & Pascoe, D. (1978). Cadmium Uptake by Rainbow-Trout, Salmo-Gairdneri Eggs and Alevins. Journal of Fish Biology, 13(5), 631-637.
Boechat, C. L., Pistola, V. C., Ludtke, A. C., Gianello, C., & Camargo, F. A. D. (2016). Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances. Revista Brasileira De Ciencia Do Solo, 40.
Borgmann, U., & Norwood, W. P. (1999). Assessing the toxicity of lead in sediments to Hyalella azteca: the significance of bioaccumulation and dissolved metal. Canadian Journal of Fisheries and Aquatic Sciences, 56(8), 1494-1503.
Breuer, E., Stevenson, A. G., Howe, J. A., Carroll, J., & Shimmield, G. B. (2004). Drill cutting accumulations in the Northern and Central North Sea: a review of environmental interactions and chemical fate. Marine Pollution Bulletin, 48(1-2), 12-25.
Bryan, G. W., & Langston, W. J. (1992). Bioavailability, Accumulation and Effects of Heavy-Metals in Sediments with Special Reference to United-Kingdom Estuaries - a Review. Environmental Pollution, 76(2), 89-131.
Calmano, W., Hong, J., & Forstner, U. (1993). Binding and Mobilization of Heavy-Metals in Contaminated Sediments Affected by Ph and Redox Potential. Water Science and Technology, 28(8-9), 223-235.
Chapman, P. M., Wang, F. Y., Adams, W. L., & Green, A. (1999). Appropriate applications of sediment quality values for metals and metalloids. Environmental Science & Technology, 33(22), 3937-3941.
Ciceri, G., Maran, S., Martinotti, W., & Queirazza, G. (1992). Geochemical Cycling of Heavy-Metals in a Marine Coastal Area - Benthic Flux Determination from Pore Water Profiles and Insitu Measurements Using Benthic Chambers. Hydrobiologia, 235, 501-517.
Dabrin, A., Durand, C. L., Garric, J., Geffard, O., Ferrari, B. J. D., & Coquery, M. (2012). Coupling geochemical and biological approaches to assess the availability of cadmium in freshwater sediment. Science of the Total Environment, 424, 308-315.
Deruytter, D., Vandegehuchte, M. B., Garrevoet, J., De Laender, F., Vergucht, E., Delbeke, K., Janssen, C. R. (2015). Salinity and dissolved organic carbon both affect copper toxicity in mussel larvae: Copper speciation or competition cannot explain everything. Environmental Toxicology and Chemistry, 34(6), 1330-1336.
Eimers, M. C., Evans, R. D., & Welbourn, P. M. (2002). Partitioning and bioaccumulation of cadmium in artificial sediment systems: application of a stable isotope tracer technique. Chemosphere, 46(4), 543-551.
Lichtfouse,E., Schwarzbauer, J., Robert, D. (2013). Pollutant Diseases, Remediation and Recycling. 340-342.
Farwell, A., Nero, V., Croft, M., Bal, P., & Dixon, D. G. (2006). Modified Japanese medaka embryo-larval bioassay for rapid determination of developmental abnormalities. Archives of Environmental Contamination and Toxicology, 51(4), 600-607.
Furutani-Seiki, M., & Wittbrodt, J. (2004). Medaka and zebrafish, an evolutionary twin study. Mechanisms of Development, 121(7-8), 629-637.
Gaur, V. K., Gupta, S. K., Pandey, S. D., Gopal, K., & Misra, V. (2005). Distribution of heavy metals in sediment and water of river Gomti. Environmental Monitoring and Assessment, 102(1-3), 419-433.
Gee, G. W., and J.W. Bauder. (1986). Methods of soil analysis. In A. Klute (Ed.), Particle-size analysis (2nd ed., pp. 383–411). Madison, WI: Agron. Monogr. 9.
Grousset, F. E., Jouanneau, J. M., Castaing, P., Lavaux, G., & Latouche, C. (1999). A 70 year record of contamination from industrial activity along the Garonne River and its tributaries (SW France). Estuarine Coastal and Shelf Science, 48(3), 401-414.
Hall, L. W., Anderson, R. D., Lewis, B. L., & Arnold, W. R. (2008). The influence of salinity and dissolved organic carbon on the toxicity of copper to the estuarine copepod, Eurytemora affinis. Archives of Environmental Contamination and Toxicology, 54(1), 44-56.
He, Y., Guo, C. S., Lv, J. P., Hou, S., Zhang, Y., Zhang, Y., & Xu, J. (2018). Predicting trace metal bioavailability to chironomids in sediments by diffusive gradients in thin films. Science of the Total Environment, 636, 134-141.
Hem, J. (1976). Inorganic chemistry of lead in water.
Hernandez, P. P., Moreno, V., Olivari, F. A., & Allende, M. L. (2006). Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hearing Research, 213(1-2), 1-10.
Huo, S. L., Xi, B. D., Yu, X. J., Su, J., Zan, F. Y., & Zhao, G. C. (2013). Application of equilibrium partitioning approach to derive sediment quality criteria for heavy metals in a shallow eutrophic lake, Lake Chaohu, China. Environmental Earth Sciences, 69(7), 2275-2285.
Ingersoll, C. G., Ivey, C. D., Brunson, E. L., Hardesty, D. K., & Kemble, N. E. (2000). Evaluation of toxicity: Whole-sediment versus overlying-water exposures with amphipod Hyalella azteca. Environmental Toxicology and Chemistry, 19(12), 2906-2910.
Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282-291.
Iwamatsu, T. (1984). Effects of Ph on the Fertilization Response of the Medaka Egg. Development Growth & Differentiation, 26(6), 533-544.
Jackson, M. L. (1979). Soil Chemical Analysis - Advanced Course (2nd Edition ed.).
Lacoue-Labarthe, T., Warnau, M., Metian, M., Oberhansli, F., Rouleau, C., & Bustamante, P. (2009). Biokinetics of Hg and Pb accumulation in the encapsulated egg of the common cuttlefish Sepia officinalis: Radiotracer experiments. Science of the Total Environment, 407(24), 6188-6195.
Li, L. Y., Hall, K., Yuan, Y., Mattu, G., McCallum, D., & Chen, M. (2009). Mobility and Bioavailability of Trace Metals in the Water-Sediment System of the Highly Urbanized Brunette Watershed. Water Air and Soil Pollution, 197(1-4), 249-266.
McComb, A. J.. (1975). Eutrophic Shallow Estuaries and Lagoons. In A. J. McComb (Ed.), The role of sediments (pp. 205–223). Boca Raton: CRC Press.
Mcgeer, J. H., Gerry; Lanno, Roman; Fisher, Nicholas; Sappington, Keith; Drexler, John (2004). Issue paper on the bioavailability and bioaccumulation of metals.
McLean, E. O. (1982). Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. In R. H. M. A.L. Page, D.R. Keeney (Ed.), Soil pH and lime requirement (2nd ed. ed.). Madison, WI, USA: American Society of Agronomy.
Michibata, H. (1981). Uptake and Distribution of Cadmium in the Egg of the Teleost, Oryzias-Latipes. Journal of Fish Biology, 19(6), 691-696.
Monteiro, S. M., dos Santos, N. M. S., Calejo, M., Fontainhas-Fernandes, A., & Sousa, M. (2009). Copper toxicity in gills of the teleost fish, Oreochromis niloticus: Effects in apoptosis induction and cell proliferation. Aquatic Toxicology, 94(3), 219-228.
Mouneyrac, C., Mastain, O., Amiard, J. C., Amiard-Triquet, C., Beaunier, P., Jeantet, A. Y., Rainbow, P. S. (2003). Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment. Marine Biology, 143(4), 731-744.
Nelson, D. W. a. S., L.E. (1982). Total Carbon, Organic Carbon and Organic Matter. In A. L. Page, Miller, R.H. and Keeney, D.R. (Ed.), Methods of Soil Analysis: Chemical and Microbiological Properties (pp. 539-579). Madison, Wisconsin: American Society of Agronomy.
O''Gara, B. A., Bohannon, V. K., Teague, M. W., & Smeaton, M. B. (2004). Copper-induced changes in locomotor behaviors and neuronal physiology of the freshwater oligochaete, Lumbriculus variegatus. Aquatic Toxicology, 69(1), 51-66.
Offem, B. O., & Ayotunde, E. O. (2008). Toxicity of lead to freshwater invertebrates (Water fleas; Daphnia magna and Cyclop sp) in fish ponds in a tropical floodplain. Water Air and Soil Pollution, 192(1-4), 39-46.
Pertsemli, E., & Voutsa, D. (2007). Distribution of heavy metals in lakes doirani and kerkini, northern Greece. Journal of Hazardous Materials, 148(3), 529-537.
Pietrantonio, M., Calace, N., Petronio, B. M., & Pietroletti, M. (2003). Laboratory-polluted soils: a methodological approach to establish equilibrium conditions for different metal chemical forms in soils. Journal of Environmental Monitoring, 5(3), 451-454.
Pueyo, M., Mateu, J., Rigol, A., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, 152(2), 330-341.
Rhoades, J. D. (1982). Methods of soil analysis. Part 2. Chemical and Microbiological Properties Monograph Number 9. In R. H. M. a. D. R. K. A.L. Page (Ed.), (2nd ed ed., pp. 167–179). Madison, WI.: American Society of Agronomy.
Ritz, C., & Streibig, J. C. (2005). Bioassay analysis using R. Journal of Statistical Software, 12(5), 1-22.
Sanchez-Marin, P., Santos-Echeandia, J., Nieto-Cid, M., Alvarez-Salgado, X. A., & Beiras, R. (2010). Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae. Aquatic Toxicology, 96(2), 90-102.
Sandstead, H. H. (1995). Requirements and Toxicity of Essential Trace-Elements, Illustrated by Zinc and Copper. American Journal of Clinical Nutrition, 61(3), 621s-624s.
Schintu, M., Kudo, A., Sarritzu, G., & Contu, A. (1991). Heavy-Metal Distribution and Mobilization in Sediments from a Drinking-Water Reservoir near a Mining Area. Water Air and Soil Pollution, 57-8, 329-338.
Seefeldt, S. S., Jensen, J. E., & Fuerst, E. P. (1995). Log-Logistic Analysis of Herbicide Dose-Response Relationships. Weed Technology, 9(2), 218-227.
Siaka, M., Owens, C. M., & Birch, G. F. (1998). Evaluation of some digestion methods for the determination of heavy metals in sediment samples by flame-AAS. Analytical Letters, 31(4), 703-718.
Sin, S. N., Chua, H., Lo, W., & Ng, L. M. (2001). Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environment International, 26(5-6), 297-301.
Stauber, J. L., & Florence, T. M. (1987). Mechanism of Toxicity of Ionic Copper and Copper-Complexes to Algae. Marine Biology, 94(4), 511-519.
Takeno, N. (2005). Atlas of Eh-pH diagrams.
Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential Extraction Procedure for the Speciation of Particulate Trace-Metals. Analytical Chemistry, 51(7), 844-851.
Varol, M. (2013). Dissolved heavy metal concentrations of the Kralkizi, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere, 93(6), 954-962.
Calmano, W., Wolfgang A., Forstner, U. (1990). Exchange of heavy metals between sediment components and water. In S. G. e. J.A.C. Broekaert, F. Adams (Ed.), Metal speciation in the environment : [proceedings of the NATO Advanced Study Institute on Metal Speciation in the Environment, Cesme, Turkey, 1989] (Vol. G 23, pp. 503–522). Springer-Verlag, Berlin.
Wang, X., & Wang, W. X. (2016). Homeostatic regulation of copper in a marine fish simulated by a physiologically based pharmacokinetic model. Environmental Pollution, 218, 1245-1254.
Watanabe, H., Nakajima, F., Kasuga, I., & Furumai, H. (2013). Application of whole sediment toxicity identification evaluation procedures to road dust using a benthic ostracod Heterocypris incongruens. Ecotoxicology and Environmental Safety, 89, 245-251.
Windom, H. L., Niencheski, L. F., & Smith, R. G. (1999). Biogeochemistry of nutrients and trace metals in the estuarine region of the Patos Lagoon (Brazil). Estuarine Coastal and Shelf Science, 48(1), 113-123.
Wojtkowska, M., Bogacki, J., & Witeska, A. (2016). Assessment of the hazard posed by metal forms in water and sediments. Science of the Total Environment, 551, 387-392.
Xu, X. R., Huang, R. L., Liu, J. G., & Shu, Y. H. (2019). Fractionation and release of Cd, Cu, Pb, Mn, and Zn from historically contaminated river sediment in Southern China: Effect of time and pH. Environmental Toxicology and Chemistry, 38(2), 464-473.
Zahra, A., Hashmi, M. Z., Malik, R. N., & Ahmed, Z. (2014). Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment, 470, 925-933.
Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of Single Extraction Methods to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice. Communications in Soil Science and Plant Analysis, 41(7), 820-831.
Zheng, N., Wang, Q. C., Liang, Z. Z., & Zheng, D. M. (2008). Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution, 154(1), 135-142.
Zitko, P., Carson, W. V., & Carson, W. G. (1973). Prediction of Incipient Lethal Levels of Copper to Juvenile Atlantic Salmon in Presence of Humic Acid by Cupric Electrode. Bulletin of Environmental Contamination and Toxicology, 10(5), 265-271.