跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/11 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張泓銘
研究生(外文):Hung-Ming Chang
論文名稱:溫度對卵磷脂與無機鹽類於低極性溶劑中自組裝結構與流變行為的影響
論文名稱(外文):Contrasting effects of temperature on the rheology and self-assembled structures of lecithin/inorganic salts mixtures in non-polar solvent.
指導教授:童世煌
指導教授(外文):Shih-Huang Tung
口試委員:邱文英廖文彬黃慶怡
口試委員(外文):Wen-Yen ChiuWen-Bin LiauChing-I Huang
口試日期:2018-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:82
中文關鍵詞:卵磷脂膽鹽無機鹽類氫鍵疏水作用力離子靜電作用力反式微胞蠕蟲狀微胞流變微結構分子間的作用力
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
卵磷脂在非極性有機溶劑中可以自組裝形成反球狀微胞,文獻記載添加適量的膽鹽或是特定種類的無機鹽類,可使卵磷脂在低極性溶劑中形成反式蠕蟲狀微胞,這種長鏈狀的微胞類似高分子鏈會在溶液中糾纏,造成溶液黏度大幅增加,甚至形成黏彈體或凝膠。過去已有學者探討過溫度對於疏水作用力及氫鍵誘導形成的蠕蟲微胞流變行為及其微結構的影響,結果顯示由於疏水作用力比氫鍵更不受溫度的影響,在微結構上,氫鍵所形成的蠕蟲微胞長度會隨著溫度上升而有急遽的縮短,反觀疏水作用力的蠕蟲微胞長度只會有些微的減短;在流變行為上,氫鍵作用力之蠕蟲微胞的高原模數、零剪切黏度和鬆弛時間皆會隨溫度有明顯的下降,反之,疏水作用力誘導的蠕蟲微胞,隨溫度上升,唯獨黏度和鬆弛時間會減少,但高原模數幾乎維持不變。而離子靜電作用力的強度正好介於疏水作用力及氫鍵之間,故本研究主要欲探討溫度對於離子作用力所誘導之反式蟲狀微胞的影響,我們主要挑選三種不同離子強度的鹽類作為我們實驗的對象,分別是氯化鋰LiCl (一價陽離子)、碘化鋰LiI (一價陽離子+電子密度較低陰離子)以及氯化鈣CaCl2 (二價陽離子),其離子作用力由高至低為CaCl2 > LiI >LiCl,此三種鹽類皆可誘導反球狀微胞形成反蠕蟲狀微胞,但由於作用力的強度不同,其誘導的能力也有差別,作用力越強越容易誘導反球狀微胞形成反蠕蟲狀微胞,在結果與討論的部分,我們額外也有將氫鍵所誘導形成的反式蠕蟲微胞加進來一起比較。我們使用流變儀和小角度X光散射技術去分析在不同溫度下流變性質與微結構的變化,並試圖從中找出不同種類的反式蠕蟲微胞與溫度的關係,流變行為方面,比較弱的離子作用力所形成的反式蠕蟲,(例如: LiI和LiCl),其流變參數(如高原模數、鬆弛時間與零剪切黏度)會隨著溫度上升而有明顯的降低;而離子作用力比較強的反式蠕蟲(例如: CaCl2),其鬆弛時間與零剪切黏度會隨溫度下降,但高原模數則維持不變;微結構的部分,三種鹽類形成的反式蠕蟲微胞,其長度皆會隨溫度上升而變短,離子作用力越弱的鹽類,其所形成的反式蠕蟲微胞的長度縮短的程度越顯著。
卵磷脂與鹽類的作用力是驅動形成反蠕蟲微胞的原因,因此為了釐清不同強度的離子作用力和溫度的關係,我們藉由傅立葉轉換紅外線光譜儀來研究卵磷脂與添加物之間的作用力對於溫度的變化,我們發現不管是哪種鹽類,主要都是與卵磷脂的磷酸根(PO4-)產生作用力,隨著溫度的上升,鹽類與卵磷脂間的作用力會因為溫度升高而有減弱的趨勢,導致某些特定官能基的吸收峰會產生位移。
Previous studies have shown that addition of bile salts or inorganic salts can transform lecithin organosols into viscoelastic fluids or even organogels in the low-polar solvents, where lecithin are induced to form wormlike micelles similar to long and entangled polymer chains. While the hydrophobic interaction is the driving force for the formation of micelles in water, the weak interactions, such as hydrogen binding and ionic interactions, are the driving forces for the amphiphilic molecules to self-assemble into reverse micelles in organic solvents. It has been reported that the effects of temperature on the rheological properties of hydrophobic interaction- and hydrogen bond-induced worm-like micelles in water and in low-polar solvent are different, which is due to the different responses of the hydrophobic interaction and hydrogen bond to temperature. For the worms driven by hydrophobic interaction, the plateau modulus Gp remains constant with temperature, and the relaxation time tR and zero-shear viscosity η0 drop exponentially. For the worms caused by hydrogen bonds, in addition to tR and η0, Gp also decreases exponentially with temperature. In this work, we studied the effects of temperature on the worms induced by ionic interactions which are stronger than hydrogen bonding. We focus on three inorganic metallic salts, including lithium chloride (LiCl), lithium iodide (LiI) and calcium chloride (CaCl2), all of which can transform lecithin organosols into organogels in low-polar solvents. The effectiveness of the salts to induce organogelation is positively correlated to the binding strength between salts and lecithin, in order of CaCl2 > LiI > LiCl. We found that the decay rates of Gp upon heating for the viscoelastic fluids induced by the three salts follow the same order CaCl2 > LiI > LiCl and all decay slower than that driven by hydrogen bonding, indicating that the dependence of the modulus on temperature can reflect the strength of the driving forces. The small angle X-ray scattering (SAXS) profiles support the effects of temperature on the rheological properties of these reverse worms by evidencing that the contour lengths of the LiCl- and LiI-induced reverse worms decrease dramatically with temperature, whereas the contour length of CaCl2-induced worms only decrease slightly within the same temperature ranges. We also used Fourier transform infrared spectroscopy (FTIR) to investigate the changes of the interactions with temperature and found that the interaction between lecithin and salts indeed vary upon heating.
口試委員會審定書 i
致謝 ii
摘要 iii
Abstrast v
Table of content vii
List of figures ix
List of tables xii
Chapter 1. Introduction 1
1.1 Introduction 1
1.2 Motivation 3
Chapter 2. Background 4
2.1 Self-assembly of amphiphilic molecules and wormlike micelles 4
2.2 Self-assembly of amphiphilic molecules and salts in water 7
2.3 Self-assembly of lecithin in organic solvent 8
2.4 Rheology 9
2.5 Maxwell model 12
2.6 The Effects of Temperature on the Rheology of Normal and Reverse Wormlike Micelles 15
2.7 Small-angle X-ray scattering (SAXS) 20
Chapter 3. experiments 23
3.1 Materials. 23
3.2 Experimental procedure 26
3.2.1 Sample Preparation 26
3.2.2 Instrument analysis 27
Chapter 4. Results and Discussion 33
4.1 Reverse worms driven by hydrogen bonding 33
4.1.1 Rheology Data as f (T) for hydrogen bonding. 33
4.1.2 Microstructure of the bile salt/lecithin mixtures from SAXS. 35
4.1.3 Interaction between lecithin and bile salt from FTIR. 37
4.2 Reverse worms driven by ionic interaction 41
4.2.1 Lecithin/Lithium Chloride (LiCl)- monovalent salt with chlorine 41
4.2.1.1 Rheology Data as f(T) for LiCl 41
4.2.1.2 Microstructure of lecithin and LiCl mixtures from SAXS. 46
4.2.1.3 Interaction between lecithin and LiCl from FTIR. 48
4.2.2 Lecithin/Lithium Iodide (LiI)- monovalent salt with iodine 51
4.2.2.1 Rheology Data as f(T) for LiI 51
4.2.2.2 Microstructure of the lecithin and Lithium iodide mixtures from SAXS. 56
4.2.2.3 Interaction between lecithin and Lithium Iodide from FTIR 58
4.2.3 Lecithin/ Calcium Chloride (CaCl2)- Divalent salts 61
4.2.3.1 Rheology Data as f(T) for CaCl2 61
4.2.3.2 Microstructure of the lecithin and calcium chloride mixtures from SAXS. 66
4.2.3.3 Interaction between lecithin and calcium chloride from FTIR 68
4.3 Summary 71
4.3.1 Rheology 71
4.3.2 SAXS 72
4.3.3 FTIR 73
Chapter 5. Conclusions 75
References 77
1. Scartazzini, R., Luisi, P. L., Organogels from Lecithins. J. Phys. Chem. 1988, 92, 829-833.
2. Schurtenberger, P., Scartazzini, R., Luisi, P. L., Viscoelastic Properties of Polymer-Like Reverse Micelles. Rheol. Acta, 989, 28, 372-381.
3. Luisi, P. L., Scartazzini, R.., Haering, G., Schurtenberger, P., Organogels from water-in-oil microemulsions. Colloid Polym. Sci. 1990, 268, 356-374.
4. Schurtenberger, P., Scartazzini, R., Magid, L. J., Leser, M. E., Luisi, P. L. J., Structural and dynamic properties of polymer-like reverse micelles. Phys. Chem. 1990, 94, 3695-3701.
5. Schurtenberger, P., Magid, L. J., King, S. M., Lindner, P. J., Cylindrical structure and flexibility of polymerlike lecithin reverse micelles. Phys. Chem. 1991, 95, 4173-4176.
6. Shchipunov, Y. A., Lecithin organogel-A micellar system with unique properties. Colloid Surface A 2001, 183, 541-554.
7. Willard, D. M., Riter, R. E., Levinger, N. E., Dynamics of Polar Solvation in Lecithin/Water/Cyclohexane Reverse Micelles. J. Am. Chem. Soc. 1998, 120, 4151-4160.
8. Tung, S.H., Huang, Y.E., Raghavan, S.R., A new reverse wormlike micellar system: Mixtures of bile salt and lecithin in organic liquids. J. Am. Chem. Soc., 2006, 128, 5751-5756.
9. Lee, H. Y., Diehn, K. K., Ko, S. W., Tung, S. H., Raghavan, S. R., Can simple saltsinfluence self-assembly in oil? Multivalent cations as efficient gelators of lecithin organosols. Langmuir 2010, 26, 13831− 13838.
10. Lin, S. T., Lin, C. S., Chang, Y. Y., Andrew, E. W., Tung, S. H., Effects of Alkali Cations and Halide Anions on the Self-Assembly of Phosphatidylcholine in Oils. Langmuir, 2016, 32 (46), pp 12166–12174
11. Tung, S. H., Huang, Y. E., and Raghavan, S. R., Contrasting Effects of Temperature on the Rheology of Normal and Reverse Wormlike Micelles. Langmuir 2007, 23, 372-376
12. Israelachvili, J. N., Intermolecular and surface forces; 3rd ed.; Academic Press: San Diego, 2011.
13. Ezrahi, S., Tuval, E, Aserin, A., Properties, main applications and perspectives of worm micelles. Advances in Colloid and Interface Science 2006, 128-130, 77-102
14. Cates, M.E., Candau, S.J., Statics and Dynamics of Worm-Like Surfactant Micelles. J. Phys-Condens Mat. 1990, 2, 6869-6892.
15. Hoffmann, H., Herb, C. A., Prud’homme, R. K., Eds., In Structure and Flow in Surfactant Solutions. American Chemical Society, Washington, DC, 1994; p. 2-31.
16. Raghavan, S. R., Kaler, E. W., Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 2001, 17, 300-306.
17. Dreiss, C. A., Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 2007, 3, 956-970.
18. Israelachvili, J., Intermolecular and Surface Forces. Academic Press: San Diego, 1991.
19. Evans, D. F., Wennerstrom, H., The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. Wiley-VCH: New York, 2001.
20. Shrestha, L. K., Sato, T., Dulle, M., Glatter, O., Aramaki, K., Effect of lipophilic tail architecture and solvent engineering on the structure of trehalose-based nonionic surfactant reverse micelles. J. Phys. Chem. B 2010, 114, 12008−12017.
21. Shrestha, L. K., Shrestha, R. G., Abe, M., Ariga, K., Reverse micelle microstructural transformations induced by oil and water. Soft Matter 2011, 7, 10017−10024.
22. Njauw, C. W., Cheng, C. Y., Ivanov, V. A., Khokhlov, A. R., Tung, S. H., Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization. Langmuir 2013, 29, 3879-3888.
23. Shrestha, L.K., Yamamoto, M., Arima, S., Aramaki, K., Charge-Free Reverse Wormlike Micelles in Nonaqueous Media. Langmuir 2011, 27, 2340-2348.
24. Berret, J. F., Weiss, R. G., Terech, P., In Molecular Gels, Eds., Springer. Dordrecht, The Netherlands, 2005; p 235.
25. Cates, M. E., Candau, S. J., Statics and dynamics of worm-like surfactant micelles. J Phys-Condens Mat 1990, 2(33):6869-6892.
26. Cates, M. E., Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules, 1987, 20 (9), pp 2289–2296
27. Cates, M. E., Dynamics of living polymers and flexible surfactant micelles : scaling laws for dilution. J. Phys. France 49, 1593-1600 (1988)
28. Granek, S. R., Kaler, E. W., Highly Viscoelastic Wormlike Micellar Solutions Formed by Cationic Surfactants with Long Unsaturated Tails. Langmuir 2001, 17, 300-306
29. Cates, M. E., Theoretical Modeling of Viscoelastic Phases. Structure and Flow in Surfactant Solutions 1994, 578:32-50.
30. Kern, F., Zana, R., Candau, S. J., Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate and sodium chloride. Langmuir 1991, 7, 1344.
31. Fischer, P., Rehage, H., Rheological Master Curves of Viscoelastic Surfactant Solutions by Varying the Solvent Viscosity and Temperature. Langmuir 1997, 13, 7012.
32. Ce´cile, A. Dreiss, Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 2007, 3, 956-970.
33. Kline, S., Reduction and analysis of SANS and USANS data using IGOR Pro. Journal of Applied Crystallography 2006, 39, 895-900.
34. Pedersen, J. S., Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Advances in Colloid and Interface Science 1997, 70, 171-210.
35. Pedersen, J. S., Schurtenberger, P., Scattering functions of semiflexible polymers with and without excluded volume effects. Macromolecules 1996, 29, 7602-7612.
36. Chen, W. R., Butler, P. D., Magid, L. J., Incorporating intermicellar interactions in the fitting of SANS data from cationic wormlike micelles. Langmuir 2006, 22, 6539-6548.
37. Cheng, C. Y., Tung, S. H., Mixtures of Lecithin and Bile Salt Can Form Highly Viscous Wormlike Micellar Solutions in Water. Langmuir, 2014, 30 (34), pp 10221–10230
38. Arnaudov, M., Ivanova, B., Dinkov, S., A reducing-difference IR-spectral study of 4-aminopyridine, Central European Journal of Chemistry (2004) 2, 589-597.
39. J. Elwood, Zull, Susan, Greanoff, and Hugh K. Adam, Interaction of egg lecithin with cholesterol in the solid state. Biochemistry, 1968, 7 (12), pp 4172–4176.
40. Max, J. J., Chapados, C., Infrared spectroscopy of acetonehexane liquid mixtures. J. Chem. Phys. 2007, 126, 154511.
41. Max, J. J., Chapados, C., Infrared spectroscopy of acetonemethanol liquid mixtures: hydrogen bond network. J. Chem. Phys. 2005, 122, 14504.
42. Njauw, C. W., Cheng, C. Y., Tung, S. H., Molecular Interactions between Lecithin and Bile Salts/Acids in Oils and Their Effects on Reverse Micellization. Langmuir, 2013, 29 (12), pp 3879–3888
43. Bockmann, R. A., Grubmuller, H. Angew., Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study. Chem.-Int. Ed. 2004, 43, 1021-1024.
44. Shchipunov, Y. A., Colloids and Surfaces A: Physicochemical and Engineering Aspects. Colloids Surf., A 2001, 183, 541.
45. Carreau, P.J., De Kee, D.C.R., Chhabra, O.R.P., Chhabra. Rheology of polymeric systems : principles and applications. Hanser, Munich, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊