|
1. Scartazzini, R., Luisi, P. L., Organogels from Lecithins. J. Phys. Chem. 1988, 92, 829-833. 2. Schurtenberger, P., Scartazzini, R., Luisi, P. L., Viscoelastic Properties of Polymer-Like Reverse Micelles. Rheol. Acta, 989, 28, 372-381. 3. Luisi, P. L., Scartazzini, R.., Haering, G., Schurtenberger, P., Organogels from water-in-oil microemulsions. Colloid Polym. Sci. 1990, 268, 356-374. 4. Schurtenberger, P., Scartazzini, R., Magid, L. J., Leser, M. E., Luisi, P. L. J., Structural and dynamic properties of polymer-like reverse micelles. Phys. Chem. 1990, 94, 3695-3701. 5. Schurtenberger, P., Magid, L. J., King, S. M., Lindner, P. J., Cylindrical structure and flexibility of polymerlike lecithin reverse micelles. Phys. Chem. 1991, 95, 4173-4176. 6. Shchipunov, Y. A., Lecithin organogel-A micellar system with unique properties. Colloid Surface A 2001, 183, 541-554. 7. Willard, D. M., Riter, R. E., Levinger, N. E., Dynamics of Polar Solvation in Lecithin/Water/Cyclohexane Reverse Micelles. J. Am. Chem. Soc. 1998, 120, 4151-4160. 8. Tung, S.H., Huang, Y.E., Raghavan, S.R., A new reverse wormlike micellar system: Mixtures of bile salt and lecithin in organic liquids. J. Am. Chem. Soc., 2006, 128, 5751-5756. 9. Lee, H. Y., Diehn, K. K., Ko, S. W., Tung, S. H., Raghavan, S. R., Can simple saltsinfluence self-assembly in oil? Multivalent cations as efficient gelators of lecithin organosols. Langmuir 2010, 26, 13831− 13838. 10. Lin, S. T., Lin, C. S., Chang, Y. Y., Andrew, E. W., Tung, S. H., Effects of Alkali Cations and Halide Anions on the Self-Assembly of Phosphatidylcholine in Oils. Langmuir, 2016, 32 (46), pp 12166–12174 11. Tung, S. H., Huang, Y. E., and Raghavan, S. R., Contrasting Effects of Temperature on the Rheology of Normal and Reverse Wormlike Micelles. Langmuir 2007, 23, 372-376 12. Israelachvili, J. N., Intermolecular and surface forces; 3rd ed.; Academic Press: San Diego, 2011. 13. Ezrahi, S., Tuval, E, Aserin, A., Properties, main applications and perspectives of worm micelles. Advances in Colloid and Interface Science 2006, 128-130, 77-102 14. Cates, M.E., Candau, S.J., Statics and Dynamics of Worm-Like Surfactant Micelles. J. Phys-Condens Mat. 1990, 2, 6869-6892. 15. Hoffmann, H., Herb, C. A., Prud’homme, R. K., Eds., In Structure and Flow in Surfactant Solutions. American Chemical Society, Washington, DC, 1994; p. 2-31. 16. Raghavan, S. R., Kaler, E. W., Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 2001, 17, 300-306. 17. Dreiss, C. A., Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 2007, 3, 956-970. 18. Israelachvili, J., Intermolecular and Surface Forces. Academic Press: San Diego, 1991. 19. Evans, D. F., Wennerstrom, H., The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. Wiley-VCH: New York, 2001. 20. Shrestha, L. K., Sato, T., Dulle, M., Glatter, O., Aramaki, K., Effect of lipophilic tail architecture and solvent engineering on the structure of trehalose-based nonionic surfactant reverse micelles. J. Phys. Chem. B 2010, 114, 12008−12017. 21. Shrestha, L. K., Shrestha, R. G., Abe, M., Ariga, K., Reverse micelle microstructural transformations induced by oil and water. Soft Matter 2011, 7, 10017−10024. 22. Njauw, C. W., Cheng, C. Y., Ivanov, V. A., Khokhlov, A. R., Tung, S. H., Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization. Langmuir 2013, 29, 3879-3888. 23. Shrestha, L.K., Yamamoto, M., Arima, S., Aramaki, K., Charge-Free Reverse Wormlike Micelles in Nonaqueous Media. Langmuir 2011, 27, 2340-2348. 24. Berret, J. F., Weiss, R. G., Terech, P., In Molecular Gels, Eds., Springer. Dordrecht, The Netherlands, 2005; p 235. 25. Cates, M. E., Candau, S. J., Statics and dynamics of worm-like surfactant micelles. J Phys-Condens Mat 1990, 2(33):6869-6892. 26. Cates, M. E., Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules, 1987, 20 (9), pp 2289–2296 27. Cates, M. E., Dynamics of living polymers and flexible surfactant micelles : scaling laws for dilution. J. Phys. France 49, 1593-1600 (1988) 28. Granek, S. R., Kaler, E. W., Highly Viscoelastic Wormlike Micellar Solutions Formed by Cationic Surfactants with Long Unsaturated Tails. Langmuir 2001, 17, 300-306 29. Cates, M. E., Theoretical Modeling of Viscoelastic Phases. Structure and Flow in Surfactant Solutions 1994, 578:32-50. 30. Kern, F., Zana, R., Candau, S. J., Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate and sodium chloride. Langmuir 1991, 7, 1344. 31. Fischer, P., Rehage, H., Rheological Master Curves of Viscoelastic Surfactant Solutions by Varying the Solvent Viscosity and Temperature. Langmuir 1997, 13, 7012. 32. Ce´cile, A. Dreiss, Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 2007, 3, 956-970. 33. Kline, S., Reduction and analysis of SANS and USANS data using IGOR Pro. Journal of Applied Crystallography 2006, 39, 895-900. 34. Pedersen, J. S., Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Advances in Colloid and Interface Science 1997, 70, 171-210. 35. Pedersen, J. S., Schurtenberger, P., Scattering functions of semiflexible polymers with and without excluded volume effects. Macromolecules 1996, 29, 7602-7612. 36. Chen, W. R., Butler, P. D., Magid, L. J., Incorporating intermicellar interactions in the fitting of SANS data from cationic wormlike micelles. Langmuir 2006, 22, 6539-6548. 37. Cheng, C. Y., Tung, S. H., Mixtures of Lecithin and Bile Salt Can Form Highly Viscous Wormlike Micellar Solutions in Water. Langmuir, 2014, 30 (34), pp 10221–10230 38. Arnaudov, M., Ivanova, B., Dinkov, S., A reducing-difference IR-spectral study of 4-aminopyridine, Central European Journal of Chemistry (2004) 2, 589-597. 39. J. Elwood, Zull, Susan, Greanoff, and Hugh K. Adam, Interaction of egg lecithin with cholesterol in the solid state. Biochemistry, 1968, 7 (12), pp 4172–4176. 40. Max, J. J., Chapados, C., Infrared spectroscopy of acetonehexane liquid mixtures. J. Chem. Phys. 2007, 126, 154511. 41. Max, J. J., Chapados, C., Infrared spectroscopy of acetonemethanol liquid mixtures: hydrogen bond network. J. Chem. Phys. 2005, 122, 14504. 42. Njauw, C. W., Cheng, C. Y., Tung, S. H., Molecular Interactions between Lecithin and Bile Salts/Acids in Oils and Their Effects on Reverse Micellization. Langmuir, 2013, 29 (12), pp 3879–3888 43. Bockmann, R. A., Grubmuller, H. Angew., Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study. Chem.-Int. Ed. 2004, 43, 1021-1024. 44. Shchipunov, Y. A., Colloids and Surfaces A: Physicochemical and Engineering Aspects. Colloids Surf., A 2001, 183, 541. 45. Carreau, P.J., De Kee, D.C.R., Chhabra, O.R.P., Chhabra. Rheology of polymeric systems : principles and applications. Hanser, Munich, 1997.
|