跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林東慶
研究生(外文):Tung-Ching Lin
論文名稱:高速光子晶體發光二極體應用於可見光通訊系統
論文名稱(外文):High-speed GaN-based Photonic Crystal Light-emitting Diodes for Visible Light Communication Applications
指導教授:黃建璋黃建璋引用關係
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:52
中文關鍵詞:可見光通訊頻率響應發光二極體光子晶體輻射復合數位調變正交分頻多工
外文關鍵詞:visible light communicationfrequency responselight emitting diodesphotonic crystalsradiative recombinationdigital modulationOFDM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於近日科技的進步,氮化鎵發光二極體已變成可見光通訊的物理傳輸層中,頗具發展潛力的光傳輸器,然而其調變頻寬通常受限於系統前端發光二極體中的多層量子井其較長的自發性輻射復合生命週期。目前有許多研究團隊正致力於元件結構的改善以解決較長輻射復合生命週期此一問題。在本論文中我們將闡述如何利用光子晶體結構的特性,在發光二極體中加入光子晶體的結構,探討光子晶體發光二極體於可見光通訊系統當中之應用。
在本篇論文的第一部份中,我們設計了四種不同光子晶體排列方式之光子晶體發光二極體,討論其小訊號行為的表現。可以發現到由於光子晶體奈米結構之特性,其元件中侷限的模態可產生較快的輻射性載子復合,因此達到更快的調變速度。另外在室溫下的時間解析光致螢光光譜及拉曼散射頻譜中,我們可以驗證光子晶體可造成更快速的暫態響應及高效率的偶合出光。最後在最佳化的光子晶體排列設計之下,我們可以得到光子晶體中有著較大的晶格周期及較大的空氣孔比例之光子晶體發光二極體可以達到347 MHz 的調變速度,相當於55%的普通發光二極體的頻寬增加量。
接下來第二部分的實驗中,我們著重於討論光子晶體發光二極體應用於可見光通訊系統之可行性。在可見光通訊的應用當中,往往必須在元件大小以及出光強弱之間取捨,越小的元件可以達到更高速的訊號傳輸,但是將會犧牲了出光的表現。在調變速度以及出光強度兩者的取捨之下,我們的研究顯示,使用光子晶體發光二極體於開關鍵控的調變之下,可以觀察到400Mbit/s傳輸速度之眼圖。此外,為了提升元件訊號傳輸量的表現,我們使用正交分頻多工的調變技術進行訊號的傳輸,在此調變方法之下,光子晶體發光二極體可以達到2Gbit/s的傳輸速度,並且誤碼率為3.8 x 10^(-3),這也表示著我們的光子晶體發光二極體具備極大的潛力應用於高速傳輸的可見光通訊系統當中。
Recently, GaN based light-emitting-diodes (LEDs) have attracted a lot of attention as they can be applied to visible light communication (VLC) as the transmitter. However, the modulation bandwidth of LEDs is usually limited by the spontaneous carrier lifetime in the multiple quantum wells. Nowadays, much research has been investigated to solve this problem. In this thesis, we discuss the photonic crystal (PhC) structure embedded in LED (PhCLED) which can improve the performance of the devices on high-speed operation due to its unique spatial and temporal management.
In the first part of this thesis, we compare four kind of various PhC structures with corresponding dynamic behaviors in the small signal modulation. Faster transient responses and higher efficiency of the out-coupled modes were obtained in the room-temperature time-resolved photoluminescence (TRPL) and Raman scattering measurement. For the best performance, an optimal design of PhCs, with a larger period and a larger air-hole portion characterizes PhCLEDs achieved the highest f-3dB bandwidth of 347 MHz, which corresponds a 55% enhancement of modulation bandwidth compared to a convention LED.
For LEDs on visible light communication applications, there is generally a trade-off of high-speed performance of the LEDs. By shrinking the mesa area, LEDs can achieve higher bandwidth but at the cost lower light output, which is unfavorable when the signal-to-noise ratio (SNR) is the concern for large-signal modulation. In the second part of our work, we demonstrated data transmission capability of our devices. The eye pattern up to 400Mb/s using on-off keying (OOK) modulation is observed. Moreover, VLC with 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) transmission capacity up to 2Gbit/s is achieved from the LEDs with PhC with an error vector magnitude (EVM) of 8.4%, signal-to-noise ratio (SNR) of 17.05dB and bit-error-rate (BER) of 3.8 x 10^(-3) passes the forward error correction (FEC) criterion. The results reveals the advantages of LEDs with PhC for achieving higher data rate transmission.
口試委員會審定書 II
誌謝 III
摘要 IV
ABSTRACT VI
CONTENTS VIII
LIST OF FIGURES X
LIST OF TABLES XIII
1. INTRODUCTION 1
1.1 Overview of Visible Light Communication 1
1.2 Review of Photonic Crystal LEDs 4
1.3 Research Motivation 6
1.4 Thesis Outline 9
2. HIGH SPEED MODULATION OF PHCLEDS 10
2.1 Introduction 10
2.1.1 Small Signal Modulation 10
2.1.2 Two port network 11
2.1.3 SOLT De-embedding 12
2.2 Process Flow of High-speed PhCLEDs 14
2.3 DC Characteristics 18
2.4 Optical Frequency Response 20
2.5 Transient Behavior of PhCLEDs 24
2.5.1 Spontaneous Response Lifetime 24
2.5.2 Strain Analysis 25
2.6 Summary 27
3. DATA TRANMISSION OF PHCLEDS ON VISIBLE LIGHT COMMUNICATION 28
3.1 Modulation Techniques 28
3.1.1 On-off keying (OOK) 28
3.1.2 Orthogonal Frequency Division Multiplexing (OFDM) 28
3.2 Process Flow of High-speed PhCLEDs 31
3.3 DC Characteristics 32
3.4 Optical Frequency Response 33
3.5 Signal Integrity with Digital Modulation 35
3.5.1 Eye Diagram Measurement 35
3.5.2 OFDM Data Transmission 37
3.6 Summary 45
4. CONCLUSION 46
REFERENCE 48
[1]"Cisco Visual Networking Index: Forecast and Methodology, 2016 - 2021," Cisco, USA, June, 2017.
[2]F. Deicke, W.-J. Fisher, and M. Faulwaßer, "Optical wireless communication to eco-system," in Future Network & Mobile Summit (FutureNetw), 2012, 2012, pp. 1-8: IEEE.
[3]L. De Nardis and M.-G. Di Benedetto, "Overview of the IEEE 802.15. 4/4a standards for low data rate Wireless Personal Data Networks," in Positioning, Navigation and Communication, 2007. WPNC''07. 4th Workshop on, 2007, pp. 285-289: IEEE.
[4]A. Kerans, D. Vo, P. Conder, and S. Krusevac, "Pricing of spectrum based on physical criteria," in New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2011 IEEE Symposium on, 2011, pp. 223-230: IEEE.
[5]J. J. McKendry et al., "Visible-light communications using a CMOS-controlled micro-light-emitting-diode array," Journal of lightwave technology, vol. 30, no. 1, pp. 61-67, 2012.
[6]D. Tsonev et al., "A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED," IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637-640, 2014.
[7]H. Haas, L. Yin, Y. Wang, and C. Chen, "What is LiFi?," Journal of Lightwave Technology, vol. 34, no. 6, pp. 1533-1544, 2016.
[8]S. Rajbhandari et al., "A Multi-Gigabit/sec Integrated Multiple Input Multiple Output VLC Demonstrator," Journal of Lightwave Technology, 2017.
[9]M. G. Craford, "Visible light-emitting diodes: past, present, and very bright future," MRS bulletin, vol. 25, no. 10, pp. 27-31, 2000.
[10]A. David et al., "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Applied physics letters, vol. 87, no. 10, p. 101107, 2005.
[11]K. McGroddy et al., "Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes," Applied physics letters, vol. 93, no. 10, p. 103502, 2008.
[12]S. Takahashi, M. Fujita, T. Asano, Y. Tanaka, and S. Noda, "Simultaneous inhibition and redistribution of spontaneous emission in 2D photonic crystal slabs," in Proceedings of SPIE, the International Society for Optical Engineering, 2006, pp. 612718.1-612718.11: Society of Photo-Optical Instrumentation Engineers.
[13]E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical review letters, vol. 58, no. 20, p. 2059, 1987.
[14]S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical review letters, vol. 58, no. 23, p. 2486, 1987.
[15]J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light. Princeton university press, 2011.
[16]A. D''Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, "Photonic crystal drop filter exploiting resonant cavity configuration," IEEE transactions on nanotechnology, vol. 7, no. 1, pp. 10-13, 2008.
[17]A. Z. Rashed, "Novel Design and Modeling of High Performance Broadband integrated GaAs Electro-Optic Absorption Modulators in Advanced High Speed Switching Optical Communication Systems," International Journal of Advanced Electrical Engineering Research (IJAEER), vol. 1, no. 1, 2013.
[18]C.-Y. Wang et al., "GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength," Optics Express, vol. 16, no. 14, pp. 10549-10556, 2008.
[19]J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, "High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures," IEEE Electron Device Letters, vol. 29, no. 2, pp. 158-160, 2008.
[20]J. J. McKendry et al., "High-speed visible light communications using individual pixels in a micro light-emitting diode array," IEEE Photonics Technology Letters, vol. 22, no. 18, pp. 1346-1348, 2010.
[21]R. G. Baets, D. Delbeke, R. Bockstaele, and P. Bienstman, "Resonant-cavity light-emitting diodes: a review," in Proceedings of SPIE, 2003, vol. 4996, pp. 74-86.
[22]K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, "70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL," Journal of Lightwave Technology, vol. 33, no. 7, pp. 1395-1401, 2015.
[23]X. Li et al., "Wireless visible light communications employing feed-forward pre-equalization and PAM-4 modulation," Journal of Lightwave Technology, vol. 34, no. 8, pp. 2049-2055, 2016.
[24]R. P. Green, J. J. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, "Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes," Applied Physics Letters, vol. 102, no. 9, p. 091103, 2013.
[25]K. H. K. Yau, "On the metrology of nanoscale silicon transistors above 100 GHz," 2011.
[26]K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, "Design parameters of frequency response of GaAs—(Ga, Al) As double heterostructure LED''s for optical communications," IEEE Transactions on Electron Devices, vol. 24, no. 7, pp. 1001-1005, 1977.
[27]R. Windisch et al., "Large-signal-modulation of high-efficiency light-emitting diodes for optical communication," IEEE journal of quantum electronics, vol. 36, no. 12, pp. 1445-1453, 2000.
[28]S. Gaponenko, "Effects of photon density of states on Raman scattering in mesoscopic structures," Physical Review B, vol. 65, no. 14, p. 140303, 2002.
[29]Y. Wang, S. Chua, S. Tripathy, M. Sander, P. Chen, and C. Fonstad, "High optical quality GaN nanopillar arrays," Applied Physics Letters, vol. 86, no. 7, p. 071917, 2005.
[30]I. Tiginyanu et al., "Fröhlich modes in GaN columnar nanostructures," Physical Review B, vol. 64, no. 23, p. 233317, 2001.
[31]T. L. Williamson, D. J. Dı́az, P. W. Bohn, and R. J. Molnar, "Structure–property relationships in porous GaN generated by Pt-assisted electroless etching studied by Raman spectroscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 22, no. 3, pp. 925-931, 2004.
[32]Y.-Y. Huang et al., "Investigation of low-temperature electroluminescence of InGaN/GaN based nanorod light emitting arrays," Nanotechnology, vol. 22, no. 4, p. 045202, 2010.
[33]V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, "Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well," Journal of Applied Physics, vol. 107, no. 11, p. 114303, 2010.
[34]C. Xu, X. Liu, L. F. Mollenauer, and X. Wei, "Comparison of return-to-zero differential phase-shift keying and on-off keying in long-haul dispersion managed transmission," IEEE photonics technology letters, vol. 15, no. 4, pp. 617-619, 2003.
[35]R. Zayani, R. Bouallegue, and D. Roviras, "Crossover neural network predistorter for the compensation of crosstalk and nonlinearity in MIMO OFDM systems," in Personal Indoor and Mobile Radio Communications (PIMRC), 2010 IEEE 21st International Symposium on, 2010, pp. 966-970: IEEE.
[36]Y. Wu and W. Y. Zou, "Orthogonal frequency division multiplexing: A multi-carrier modulation scheme," IEEE Transactions on Consumer Electronics, vol. 41, no. 3, pp. 392-399, 1995.
[37]Y.-F. Yin, W.-Y. Lan, Y.-H. Hsu, Y.-F. Hsu, C.-H. Wu, and J. Huang, "High-speed modulation from the fast mode extraction of a photonic crystal light-emitting diode," Journal of Applied Physics, vol. 119, no. 1, p. 013103, 2016.
[38]Y.-F. Yin, Y.-C. Lin, T.-H. Tsai, Y.-C. Shen, and J. Huang, "Far-field self-focusing and-defocusing radiation behaviors of the electroluminescent light sources due to negative refraction," Optics letters, vol. 38, no. 2, pp. 184-186, 2013.
[39]Y.-F. Yin, W.-Y. Lan, T.-C. Lin, C. Wang, M. Feng, and J.-J. Huang, "High-Speed Visible Light Communication Using GaN-Based Light-emitting Diodes With Photonic Crystals," Journal of Lightwave Technology, vol. 35, no. 2, pp. 258-264, 2017.
[40]Y.-W. Cheng, S.-C. Wang, Y.-F. Yin, L.-Y. Su, and J. Huang, "GaN-based LEDs surrounded with a two-dimensional nanohole photonic crystal structure for effective laterally guided mode coupling," Optics letters, vol. 36, no. 9, pp. 1611-1613, 2011.
[41]Modern Measurement Techniques for Testing Advanced Military Communications and Radars, 2nd Edition Agilent Technologies [Online]. Available.
[42]R. Schmogrow et al., "Error vector magnitude as a performance measure for advanced modulation formats," IEEE Photonics Technology Letters, vol. 24, no. 1, pp. 61-63, 2012.
[43]R. A. Shafik, M. S. Rahman, and A. R. Islam, "On the extended relationships among EVM, BER and SNR as performance metrics," in Electrical and Computer Engineering, 2006. ICECE''06. International Conference on, 2006, pp. 408-411: IEEE.
[44]J. Lu, K. B. Letaief, J.-I. Chuang, and M. L. Liou, "M-PSK and M-QAM BER computation using signal-space concepts," IEEE Transactions on communications, vol. 47, no. 2, pp. 181-184, 1999.
[45]C.-T. Tsai et al., "Multi-Mode VCSEL Chip with High-Indium-Density InGaAs/AlGaAs Quantum-Well Pairs for QAM-OFDM in Multi-Mode Fiber," IEEE Journal of Quantum Electronics, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊