跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/17 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:童順晨
研究生(外文):Shun-Chen Tong
論文名稱:PVP高分子淬火液參數及奈米顆粒添加物對鋼料淬火特性之影響
論文名稱(外文):The Effect of PVP Polymer Quenchant Parameters and Nano-Particle Additives on Quenching Characteristics for Steels
指導教授:曾春風曾春風引用關係
指導教授(外文):Chun-Feng Tseng
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:165
中文關鍵詞:PVP 高分子淬火液蒙脫土奈米顆粒濃度攪拌流速淬火變形量單位長度偏轉量
外文關鍵詞:PVP polymer quenchantconcentrationquenching characteristicsmontmorillonitequenching distortionfluid agitation velocitydeflection of unit length
相關次數:
  • 被引用被引用:1
  • 點閱點閱:754
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討PVP 高分子淬火液濃度、流速、溫度及奈米顆粒添加物等參數對數種鋼料淬火特性的影響。藉由改變PVP高分子淬火液參數以及添加蒙脫土奈米顆粒後,以了解這些參數對上述數種鋼料硬度分佈、硬化深度、淬火變形量及淬火組織的影響,並在硬化情況下尋找降低淬火變形量之最佳淬火液參數。最後與傳統油(油溫70°C)油淬火比較其淬火特性及淬火變形量的改善情形,以評估PVP 高分子淬火液取代傳統油淬火介質應用在鋼料淬火的可行性。
實驗結果顯示,淬火液溫度在室溫26°C下、攪拌流速固定,高分子濃度由10%提高至30%,各種鋼種硬度皆會降低。硬化能較好的JIS-SNCM439、JIS-SKD61其硬度下降趨勢並不大;中等硬化能的鋼 JIS-SCM440硬度降低趨勢較顯著;硬化能較差的鋼JIS-S45C硬度也會有顯著的降低。淬火液溫度在室溫26°C下、高分子濃度固定,隨著攪拌流速的增加,各鋼種硬度將隨之增加;對於硬化能較好的鋼JIS-SNCM439、JIS-SKD61硬度增加幅度不大;對於中等硬化能以及硬化能較差的鋼JIS-SCM440、JIS-S45C隨著流速增加可大幅提升其硬化深度。淬火液溫度由室溫26°C上升到40°C時,將造成試棒淬火後的硬度下降,硬化能越差的鋼影響越大;在高分子淬火液中添加蒙脫土奈米顆粒後,對硬化能較好的鋼JIS-SNCM439、JIS-SKD61試樣淬火後硬度略微降低,顯然此蒙脫土奈米顆粒有阻隔熱傳的效果。
淬火液溫度在室溫26°C下、攪拌流速固定,隨著高分子濃度由10%提高至30%,硬化能較好的鋼JIS-SNCM439、JIS-SKD61及硬化能中等的鋼JIS-SCM440試棒單位長度最大偏轉量將會降低,但是濃度增加至20%以後效果則不顯著;對於硬化能較差的鋼JIS-S45C,高分子濃度由10%提高至20%,試棒單位長度最大偏轉量將隨之降低,但是濃度增加至20%時,試棒橫截面硬度無法達到硬化標準。適當的攪拌流速下可降低淬火變形量,對於各鋼種而言,流速在0.3m/sec,可使試棒單位長度最大偏轉量降至最低;淬火液溫度由室溫26°C提升到40°C時,可使試棒單位長度最大偏轉量降低。在高分子淬火液中添加蒙脫土奈米顆粒後,能有效的降低硬化能較好的鋼JIS-SNCM439、JIS-SKD61試棒單位長度最大偏轉量。
本研究中各鋼種在高分子淬火液最佳參數及傳統油淬參數下淬
火得相近的淬火硬度,PVP高分子淬火液適用於JIS-SNCM439、JIS-SKD61,但不適用於JIS-SCM440、JIS-S45C之淬火硬化。本研究中JIS-SNCM439及JIS-SKD61、JIS-SCM440、JIS-S45C等四種鋼料降低淬火變形量之淬火液參數是在室溫下、攪拌流速0.3m/sec,高分子濃度分別為20%(並添加4%蒙脫土奈米顆粒)、20%、15%。


The purpose of this article is to investigate the effect of PVP type polymer quenchant parameters including concentration, fluid agitation velocity, temperature, and nano-particle additives on quenching characteristics for several selected steels. By changing the parameters of PVP polymer quenchant and adding montmorillonite nano-particle additives, we reveal the effect of these parameters on the hardness distribution, hardening depth, quenching distortion and microstructures for several selected steels, and also look for the optimum quenchant parameters to reduce the quenching distortion based on hardenable condition. Finally, a comparison was conducted on the quenching characteristics and the improvement condition of quenching distortion between polymer quenchant quenching and conventional oil (temperature at 70 ° C) quenching in order to estimate the feasibility of PVP polymer quenching media to replace conventional mineral oil on quenching application for steels.
The experimental results show that quenched hardness of all selected steels in this study is decreased as the polymer concentration of quenchant is increased from 10% to 30% with fixed fluid agitation velocity at room temperature (26°C). Hardness decline of JIS-SNCM439 and JIS-SKD61 steels with high hardenability is not large; hardness downward tendency of middle hardenability steel JIS-SCM440 is obvious; and hardness of lower hardenability steel JIS-S45C will be significantly reduced, too. The hardness of all selected steels will increase as fluid agitation velocity of quenchant increases at room temperature (26°C); hardness increment margin is low for high hardenability steels JIS-SNCM439 and JIS-SKD61, and hardening depth of middle hardenability steel JIS-SCM440 and lower hardenability steel JIS-S45C can be significantly enhanced as fluid agitation velocity is increased. Hardness of quenched specimen will be reduced as quenchant temperature was raised from room temperature (26° C) to 40°C; the lower is the steel hardenability, the higher will be the effect result. Hardness of quenched specimens for high hardenability steels JIS-SNCM439 and JIS-SKD61 will decrease slightly as PVP polymer quenchant was added the additives of montmorillonite nano-particle; it is quite obvious that montmorillonite nano-particle has a barrier effect of heat transfer.
When polymer concentration is increased from 10% to 30% and fluid agitation velocity of quenchant is constant at room temperature (26 ° C), the maximum deflections of unit length of high hardenability steels JIS-SNCM439, JIS-SKD61 and middle hardenability steel JIS-SCM440 will reduce; but the effect is not obvious significantly as polymer concentration exceeds about 20%. Maximum deflection of unit length for lower hardenability steel JIS-S45C will decrease as the polymer concentration is increased from 10% to 20%; but cross-section hardness of specimen cannot achieve hardening standards as the concentration is increased to 20%. Proper fluid agitation velocity can reduce quenching distortion of specimen; maximum deflection of unit length for specimen can be reduced to minimum as fluid agitation velocity is at 0.3m/sec for above-mentioned several selected steels. When quenchant temperature was raised from room temperature (26°C) to 40°C, maximum deflection of unit length for specimen will be decreased. Maximum deflection of unit length for high hardenability steels JIS-SNCM439 and JIS-SKD61 can be effectively reduced as montmorillonite nano-particle was added to PVP type polymer quenchant.
The selected steels were quenched by using optimum polymer quenchant parameter and conventional oil quenchant parameter in this study, quenched steels will obtain approximate hardness. PVP type polymer quenchant is applicable to quenching hardening for JIS-SNCM439 and JIS-SKD61, but is not applicable for quenching of JIS-SCM440 and JIS-S45C. In this study, quenchant parameters of reducing quenching distortion for JIS-SNCM439 and JIS-SKD61, JIS-SCM440, JIS-S45C is respectively polymer concentration at 20% (and adding 4% montmorillonite nano- particle), 20%, 15% with fluid agitation velocity 0.3m/sec at room temperature (26 ° C).


中文摘要...i
英文摘要...iv
誌謝...vii
目錄...viii
表目錄...xii
圖目錄...xiii
第一章 緒論...1
1.1前言...1
1.2淬火介質種類...2
1.2.1常見傳統淬火介質...2
1.2.2高分子淬火介質...4
1.3淬火介質淬火性能之比較...5
1.4研究動機、目的及本論文研究主題...7
1.5國內外有關之研究概況及文獻回顧...9
第二章 基礎理論...16
2.1高分子淬火液冷卻機制...16
2.2高分子淬火液的參數及維護...18
2.2.1高分子淬火液參數...18
2.2.2高分子淬火液的維護...25
2.3影響鋼料硬化能的因素...26
2.3.1內在因素...26
2.3.2外在因素...33
2.4影響淬火變形的因素...36
2.5連續冷卻變態曲線(CCT曲線)...40
第三章 實驗方法...43
3.1實驗流程...43
3.2實驗參數...44
3.3實驗材料...45
3.3.1淬火介質...45
3.3.2實驗鋼材...50
3.4實驗設備...52
3.4.1高分子及傳統油淬火系統...52
3.4.2量測及其他相關實驗設備...56
3.5機械性質測試及顯微組織分析...61
3.5.1硬度試驗...61
3.5.2變形量量測...64
3.5.3顯微組織觀察及分析...65
第四章 實驗結果與討論...66
4.1高分子淬火液濃度對硬度分佈之影響...66
4.2高分子淬火液攪拌流速對硬度分佈的影響...72
4.3高分子淬火液溫度對硬度分佈的影響...78
4.4高分子淬火液添加蒙脫土奈米粉末顆粒對硬度分佈影響...82
4.5高分子淬火液濃度對淬火變形量的影響...86
4.6高分子淬火液攪拌流速對淬火變形量的影響...92
4.7高分子淬火液溫度對淬火變形量的影響...98
4.8高分子淬火液添加蒙脫土奈米顆粒對淬火變形量的影響...104
4.9高分子淬火液與傳統油淬之硬度分佈及淬火變形量比較...111
4.9.1硬度分佈曲線...112
4.9.2淬火變形量...115
4.9.3應用之評估...121
4.10顯微組織觀察...123
4.10.1 φ30x35試棒...123
4.10.2 φ10x100試棒...134
4.11 X-光繞射分析及彩色金相分析...144
第五章 結論...152
參考文獻...155
Extended Abstract...160
簡歷(CV)...165


[1] 李新中、馬寧元, “高分子淬火劑簡介”,金屬熱處理,第90期,
(2006),頁43~52。
[2] 姚繼洪, “鋼的淬火冷卻與淬火介質的選用”,熱處理,第26卷第2期,(2011),頁52~58。
[3] 楊桂生、劉麥秋、胡紹文, “淬火油的冷卻性能”,熱處理技術與裝備,第28卷第3期,(2007),頁 29~34。
[4] 秦勇, “熱處理淬火介質的發展”,煤礦機械,第3期,(2001),頁 3~4。
[5] Li-Fang Ge,Hui-Jian Shang,Li-Min Peng,Xue-Ming Zheng, “ Polymer Quenching Medium and Its Development” , Hebei Journal of Industrial Science and Technology,Vol.23,No.4, (2006),pp. 257-260.
[6] 胡紹文、李衛明, “水溶性淬火介質”,熱加工工藝,第35卷第16期,(2006),頁 75~77。
[7] 楊桂生、劉麥秋、胡紹文, “淬火油的使用和维護”,熱處理技
術與裝備,第28卷第4期,(2007),頁56~60。
[8] 蘇世中, “高分子淬火液的選擇及維護、控制”,金屬熱處理,
第74期,(2002),頁 31~42。
[9] 何昌達,“水性高分子淬火液的演進與應用” ,國立虎尾科技大
學、高分子淬火液應用技術研討會,(2014)。
[10] 熊道田、曲傳江, “影響水溶性聚合物淬火介質冷卻性能穩定性的因素”,第十四屆華北地區、熱處理技術交流會,(2008),頁 219~222。
[11] K. Narayan Prabhu , Peter Fernandes, “Effect of surface roughness on metal/quenchant interfacial heat”, Materials and Design 28 (2007), pp. 544-550.
[12] 曾春風、郭文法、何昌達、李景恆、施永村、黃貞瑜、潘力維,
“PVP 高分子淬火液應用於鋼料淬火之研究”,中國材料科學學會
2012年年會論文,(2012)。
[13] 朱祖昌, “聚合物冷卻介質和熱處理冷卻技術(二)”,熱處理,第3期,(2001),頁 1~7。
[14] 陳春懷、朱祖昌, “鋼的淬火介質的冷卻機制”,熱處理,第26卷第4期,(2011),頁 70~75。
[15] Chang-Ying Zhang, “Technology of Reducing Heat Treatment
Distortion for Part Made of GCr15SiMn Steel” Hot Working
Technology Vol.35,No.16, (2006), pp. 55-56.
[16] Xia Guang-jun,“Study on deformation of 18Cr2Ni4W after heat
treatment”,NOV (2004), pp.321-326.
[17] Chen Rui,Luo Xin-min, “Control of Distortion Due to Quenching
Process of Steel Parts” Heat Treatment Technology and
Equipment,vol27,No1, (2006), pp. 18-22.
[18] V. B. John, Introduction to Engineering Materials, 3 ed. London,
Macmillan, (1992).
[19] K. Babu,T.S. Prasanna Kumar, “Effect of CNT concentration and agitation on surface heat flux during quenching in CNT nanofluids”, International Journal of Heat and Mass Transfer(2011)Vol.54,Pages 106~117.
[20] Josip Župan, Tomislav Filetin, Darko Landek, “ Cooling characteristics of the water based nanofluids in quenching” ,International conference on materials, tribology(2011), pp.575-584.
[21] Peter Fernandes, K. Narayan Prabhu, “ Effect of section size and
agitation on heat transfer during quenching of AISI 1040 steel” ,Journal
of Materials Processing Technology,Vol.183, (2007), pp.1-5.
[22] 曾春風、郭央諶、巫季剛、郭柏辰、謝家興、邱傳凱、陳祖豪、童順晨, “PVP 高分子淬火液應用於降低鋼料淬火變形之研究”,中國材料科學學會2013年年學會論文,(2013)。
[23] Imre Felde, Tamas Reti, “Evaluation Of Hardening Performance of
Cooling Media by Using Inverse Heat Conduction Methods and Property
Prediction”,Journal of Mechanical Engineering,Vol.56, (2010),pp. 77-83.
[24] Malgorzata Przylecka,Wojciech Gestwa, “ The Possibility of
Correlation of Hardening Power for Oils and Polymers of Quenching
Mediums”, Hindawi Publishing Corporation, Advances in Materials
Science and Engineering,(2009) ,pp.1-7.
[25] G.E. Tollen, Steel Heat Treatment Handbook, 2nd ed. Boca Raton:Taylorv& Francis(2007).
[26] UCON Quenchants User’s Manual,Dow chemical company,pp.8-9.
[27] 大和久重雄著,王龍祥譯,S曲線熱處理恆溫變態曲線,正言
出版社,66年5月初版。
[28] 陳文照、曾春風、林淳杰、劉偉隆,物理冶金,全華科技圖書
股份有限公司,第三版修訂版,民國88年。
[29] Steel Castings Handbook Supplement 11,Hardenability and Heat
Treatment.
[30] 黃振賢,機械材料,新文京開發出版股份有限公司,修訂二版。
[31] 鄭文彬、華子傑、陳永傳, “爐氣碳勢對碳工具鋼熱處理性質的影響”,台灣金屬熱處理學會96年年會論文,(2007),頁1~2。
[32] D. Huang, K. Arimoto, K. Lee, and D. Lambert, “Prediction of
Quench Distortion on Steel Shaft with Keyway by Computer.
Simulation”,Heat Treating Conference & Exposition,on October, (2000)
,pp. 9 -12.
[33] 徐煥騰編著,金屬熱處理學,六合出版社發行,79 年3 月二版。
[34] R.W.K. Honeycombe, “Steels Microstructure and Properties”,
Edward Arnold(1981).
[35] Karl-Erik Thelning: Steel and its heat treatment, second edition,
Butterworths Published,(1984),pp.352-354.
[36] 廖桓震,”深冷處理對AISI D2 冷作模具鋼變形量及磨耗行為之
影響”, 大同大學材料工程研究所碩士論文(2012)。
[37] 曾春風,李景恆,郭央諶, “高分子淬火槽循環攪拌冷卻之設計
及淬火液參數對預硬型塑膠模具鋼淬火特性之影響”,財團法人工業
技術研究院研究計畫報告,102。
[38] R.George,A.Bardelcik,M.J.Worswick, “Hot forming of boron steels
using heated and cooled tooling for tailored properties” Journal of
Materials Processing Technology,(2012), pp.2386-2399.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top