|
[1]K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” IEEE Conf. Computer Vision (ICCV), pp. 1026-1034, 2015 [2]N. Datal and Bill Triggs, “Histograms of oriented gradients for human detection,” IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 886-893, 2005 [3]D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Computer Vision (IJCV), pp. 91-110, 2004. [4]C. Adam, and N. Y. Andrew, “Learning feature representations with K-means,” Neural Networks: Tricks of the Trade, Springer, pp. 561-580, 2012. [5]W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Section 16.1. Gaussian mixture models and K-means clustering, Numerical Recipes: The Art of Scientific Computing 3rd. New York: Cambridge University Press, 2007. [6]Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. the IEEE, pp. 2278-2324, 1998. [7]A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep convolutional neural networks,” in Proc. Conf. Neural Information Processing Syst. (NIPS), pp. 1-9, 2012. [8]K. Simonyan, and A. Zisserman. “Very deep convolutional networks for large-scale image recognition,” Int. Conf. Learning Representations, pp. 1-14, 2015. [9]C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. “Going deeper with convolutions,” IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1-9, 2015. [10]J. Redmon, S. Divvala, R. Girshick and A. Farhadi. “You Only Look Once: Unified, Real-Time Object Detection,” IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 779-788, 2016. [11]W. Liu, D. Anguelov, D. Erhan, S. Christian, S. Reed, C. Y. Fu, and A. C. Berg. “SSD: single shot multibox detector,” in Proc. Eur. Conf. Computer Vision, pp. 1-17, 2016. [12]S. Ren, K. He, R. Girshick, and J. Sun. “Faster R-CNN: Towards real-time object detection with region proposal networks,” IEEE Trans. Pattern Analysis and Machine Intelligence, pp. 1-14, 2016. [13]J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic segmentation,” IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 3431-3440, 2015 [14]V. Badrinarayanan, A. Kendall, R. Cipolla, and S. Member. “SegNet: a deep convolutional encoder-decoder architecture for image segmentation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 39, no. 13, pp. 2481-2495, 2017. [15]H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. “Pyramid scene parsing network,” IEEE Conf. Computer Vision (ICCV), pp. 6230-6239, 2017. [16]K. He, G. Gkioxari, P. Dollar, and R. Girshick. “Mask R-CNN,” IEEE Conf. Computer Vision (ICCV), pp. 2980-2988, 2017. [17]A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” CoRR, abs/1704.04861, 2017. [18]V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature, vol. 518, pp. 529-533, 2016. [19]D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D. Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature, vol. 529, no.1, pp. 484-489, 2016. [20]S. David, L. Guy, H. Nicolas, D. Thomas, W. Daan, and R. Martin, “Deterministic policy gradient algorithms,” Int. Conf. Machine Learning (ICML), pp. 387-395, 2014. [21]T. P. Lillicrap, J. J. Hunt, A. Pritzel, and N. Heess, “Continuous control with deep reinforcement learning,” in Proc. Int. Conf. Learning Representations (ICLR), 2016. [22]J. Schulman, S. Levine, P. Abbeel, M. I Jordan, and P. Moritz, “Trust region policy optimization,” Int. Conf. Machine Learning (ICML), pp. 1889-1897, 2015. [23]J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and Oleg Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017. [24]B. Zoph, and Q. V. Le. “Neural architecture search with reinforcement learning. In International Conference on Learning Representations,” in Proc. Int. Conf. Learning Representations (ICLR), 2017. [25]D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, The MIT Press, 2001. [26]D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal representations by error propagation, The MIT Press, 1986. [27]D. P. Kingma, and M. Welling, “Auto-encoding variational bayes.” in Proc. Int. Conf. Learning Representations (ICLR), 2014. [28]I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. Conf. Neural Information Processing Syst. (NIPS), pp. 2672-2680, 2014. [29]A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial autoencoders,” in Proc. Int. Conf. Learning Representations (ICLR), 2016. [30]X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” Int. Conf. Artificial Intelligence and Statistics, pp. 315-323, 2011. [31]B. Xu, N. Wang, T. Chen, M. Li, “Empirical evaluation of rectified activations in convolutional network,” arXiv preprint arXiv:1505.00853, 2015. [32]S. Hochreiter, and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, pp.1735-1780, 1997. [33]J. Chung, C. Gulcehre, K.Cho and Y. Bengio, “Empirical evalutioan of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014. [34]R. E. Caflisch, "Monte Carlo and quasi-Monte Carlo methods". Acta Numerica. Cambridge University Press, pp. 1-49, 1998. [35]R. Sutton, and A. Barto, Reinforcement Learning: an Introduction, The MIT Press, 1998. [36]G. E. P. Box, and Mervin E. Muller, “A note on the generation of random normal deviates,” The Annals of Mathematical Statistics, pp. 610-611, 1958. [37]J. Zhang, A. Messac, J. Zhang, and S. Chowdhury, “Improving the accuracy of surrogate models using inverse transform sampling,” AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. , pp. 1-16, 2012. [38]J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using generalized advantage estimation,” in Proc. Int. Conf. Learning Representations (ICLR), 2016. [39]P. Vincent, “A connection between score matching and denoising autoencoders,” J. Neural Computation, vol. 23, no. 7, pp. 1661-1674, 2011. [40]S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in Proc. Conf. Neural Information Processing Syst. (NIPS), 2017. [41]I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf, “Wasserstein auto-encoders,” arXiv preprint arXiv:1711.01558, 2017. [42]G. Grimmett, D. Stirzaker, Probability and Random Processes, Oxford, England: Oxford University Press, 2009.
|