|
1. R. H. Austin and S.-f. Lim, "The Sackler Colloquium on promises and perils in nanotechnology for medicine," Proceedings of the National Academy of Sciences, 105[45] 17217-21 (2008). 2. A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238[5358] 37-38 (1972). 3. A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chem Soc Rev, 38[1] 253-78 (2009). 4. S. Iijima, "Helical microtubules of graphitic carbon," Nature, 354[6348] 56-58 (1991). 5. H. Nakamura and Y. Matsui, "Silica gel nanotubes obtained by the sol-gel method," Journal of the American Chemical Society, 117[9] 2651-52 (1995). 6. B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, and C. N. R. Rao, "Oxide nanotubes prepared using carbon nanotubes as templates," Journal of Materials Research, 12[3] 604-06 (2011). 7. A. B. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, "ZnO nanotube based dye-sensitized solar cells," Nano letters, 7[8] 2183-87 (2007). 8. M. Zhang, Y. Bando, and K. Wada, "Sol-gel template preparation of TiO2 nanotubes and nanorods," Journal of Materials Science Letters, 20[2] 167-70 (2001). 9. K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A. Grimes, "Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells," Nanotechnology, 18[6] 065707 (2007). 10. S. K. Mohapatra, M. Misra, V. K. Mahajan, and K. S. Raja, "Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode," The Journal of Physical Chemistry C, 111[24] 8677-85 (2007). 11. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "Enhanced photocleavage of water using titania nanotube arrays," Nano letters, 5[1] 191-95 (2005). 12. Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, "The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation," Journal of Materials Research, 20[1] 230-36 (2011). 13. Q. Cai, L. Yang, and Y. Yu, "Investigations on the self-organized growth of TiO 2 nanotube arrays by anodic oxidization," Thin Solid Films, 515[4] 1802-06 (2006). 14. K. S. Raja, M. Misra, and K. Paramguru, "Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium," Electrochimica Acta, 51[1] 154-65 (2005). 15. J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, "TiO2 nanotubes: Self-organized electrochemical formation, properties and applications," Current Opinion in Solid State and Materials Science, 11[1] 3-18 (2007). 16. J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao, and L. Zou, "The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte," Journal of Materials Science, 43[6] 1880-84 (2008). 17. Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai, and M. H. Whangbo, "Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity," Chem Commun (Camb), 48[46] 5733-5 (2012). 18. C.-C. Chuang, C.-K. Lin, T. T. Wang, V. Srinivasadesikan, P. Raghunath, and M. C. Lin, "Computational and experimental studies on the effect of hydrogenation of Ni-doped TiO2anatase nanoparticles for the application of water splitting," RSC Adv., 5[99] 81371-77 (2015). 19. D. Yang, Y. Sun, Z. Tong, Y. Tian, Y. Li, and Z. Jiang, "Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion," The Journal of Physical Chemistry C, 119[11] 5827-35 (2015). 20. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromism of TiO2 films loaded with silver nanoparticles," Nat Mater, 2[1] 29-31 (2003). 21. I. Paramasivam, J. M. Macak, and P. Schmuki, "Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles," Electrochemistry Communications, 10[1] 71-75 (2008). 22. T. T. Y. Tan, C. K. Yip, D. Beydoun, and R. Amal, "Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions," Chemical Engineering Journal, 95[1] 179-86 (2003). 23. 張仕欣, "鎳摻雜及氫化之二氧化鈦奈米管對光裂解水之影響," pp. 1-69. in 材料科學與工程系所. 交通大學, 2016. 24. Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, "Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting," Nano letters, 13[1] 14-20 (2012). 25. P. Raghunath, W. Huang, and M. Lin, "Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals," The Journal of chemical physics, 138[15] 154705 (2013). 26. 李鎮全, "氫化之二氧化鈦奈米管於光裂解水製氫之應用." 國立交通大學, (2012). 27. Y. Choi, H.-i. Kim, G.-h. Moon, S. Jo, and W. Choi, "Boosting up the Low Catalytic Activity of Silver for H2Production on Ag/TiO2Photocatalyst: Thiocyanate as a Selective Modifier," ACS Catalysis, 6[2] 821-28 (2016).
|