跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:古嘉琪
論文名稱:二氧化鈦奈米管負載銀與氫化處理之光催化應用
論文名稱(外文):The Application of Ag-Loaded on highly ordered TiO2 Nanotubes with hydrogenation treatment for Photocatalytsis
指導教授:林健正林健正引用關係李信義李信義引用關係
口試委員:林明璋林昆霖
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:64
中文關鍵詞:二氧化鈦奈米管負載銀氫化處理光催化
外文關鍵詞:TiO2 nanotubesAg-loadinghydrogenation treatmentPhotocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本實驗利用兩次電化學陽極處理,以高純度的純鈦片做為基材製備出高品質的二氧化鈦奈米管,分別使用光沉積法負載金屬銀和氫化處理等改質方式改善光電轉換效率。
  以SEM/EDS 觀察表面形貌、X-ray分析二氧化鈦的晶體結構和XPS分析表面化學鍵結,更運用同步輻射中心(NSRRC)光束線17B和24分析負載金屬銀的二氧化鈦奈米管,以AM1.5太陽光模擬器做為光源,量測光電流密度和光電轉換效率並加以討論。
  相較未改質的二氧化鈦奈米管,經過負載銀和氫化處理皆可以提升光電流密度和光電轉換效率,其中以二階陽極處理負載銀達到光電流密度0.52 mA/cm2 和光電轉換效率 0.64%表現較佳,而經過氫化處理後可以達到光電流密度0.79 mA/cm2 和光電轉換效率 0.87%,相較改質前整體表現提升了2.07倍為本研究最佳參數,本研究將會探討負載銀和氫化處理對二氧化鈦奈米管之光催化影響。
  Highly ordered TiO2 nanotube arrays are fabricated via electrochemical anodization of high purity titanium metal sheet in fluorine containing electrolytes. The microstructures were characterized by GIXRD, XPS, SEM, synchrotron radiation beam line 17B and beam line 24 analyses. Using a solar simulator measurement, the photocurrent density and photoelectric conversion of the TiO2 nanotubes was evaluated and discussed. The photoconversion efficiency of silver loading TiO2 nanotubes following hydrogenation treatment at 300°C for 3hs was found to be improved comparing with the highly ordered TiO2 nanotubes arrays. With silver loading, the TiO2 nanotubes can achieve 0.64% in efficiency with 0.52 mA/cm2 in photocurrent density for hydrogen production; after the hydrogenation treatment, the efficiency and photocurrent density increase to 0.87% and 0.79 mA/cm2, respectively. The efficiency of the silver-loaded TiO2 nanotubes and hydrogenation treatment also will be discussed.
摘要 i
Abstract ii
誌謝 iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1前言 1
1-2研究動機 2
第二章 原理與文獻回顧 4
2-1 奈米材料 4
2-2 二氧化鈦 4
2-2-1 二氧化鈦基本性質 4
2-2-2 二氧化鈦光催化水裂解 5
2-2-2 二氧化鈦奈米鈦管 6
2-3-1二氧化鈦改質提升光催化反應 8
2-3-2 二氧化鈦之氫化處理 8
2-3-3 金屬原子負載二氧化鈦 9
第三章 實驗步驟與方法 11
3-1 實驗藥品與儀器 11
3-2 光催化材料製備 11
3-2-1二氧化鈦奈米管製備 11
3-2-2 二氧化鈦奈米管改質處理 15
3-2-3 水裂解之光電轉換效率量測 16
第四章 實驗儀器與原理 18
4-1國家同步輻射研究中心(NSRRC) 18
4-1-1 BL17B1 X光繞射儀 19
4-1-2 BL24A1 X光光電子能譜 20
4-2 分析儀器與原理 20
4-2-1 X光繞射分析儀(X-ray diffraction,XRD) 20
4-2-2 熱場發射掃描式電子顯微鏡(Thermal Field Emission Scanning Electron Microscope,TFSEM) 21
4-2-4歐傑電子能譜儀(Auger Electron Spectroscopy,AES) 22
4-2-5太陽光模擬器(Solar Simulator AM 1.5) 22
第五章 結果與討論 24
5-1 一階二氧化鈦奈米管 24
5-2 二階二氧化鈦奈米管 24
5-3 氫化處理 25
5-4 二氧化鈦奈米管負載銀 26
5-4-1一階二氧化鈦奈米管氫化和負載銀 28
5-4-2二階二氧化鈦奈米管氫化和負載銀 29
第六章 結論 32
參考文獻 34
1. R. H. Austin and S.-f. Lim, "The Sackler Colloquium on promises and perils in nanotechnology for medicine," Proceedings of the National Academy of Sciences, 105[45] 17217-21 (2008).
2. A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238[5358] 37-38 (1972).
3. A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chem Soc Rev, 38[1] 253-78 (2009).
4. S. Iijima, "Helical microtubules of graphitic carbon," Nature, 354[6348] 56-58 (1991).
5. H. Nakamura and Y. Matsui, "Silica gel nanotubes obtained by the sol-gel method," Journal of the American Chemical Society, 117[9] 2651-52 (1995).
6. B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, and C. N. R. Rao, "Oxide nanotubes prepared using carbon nanotubes as templates," Journal of Materials Research, 12[3] 604-06 (2011).
7. A. B. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, "ZnO nanotube based dye-sensitized solar cells," Nano letters, 7[8] 2183-87 (2007).
8. M. Zhang, Y. Bando, and K. Wada, "Sol-gel template preparation of TiO2 nanotubes and nanorods," Journal of Materials Science Letters, 20[2] 167-70 (2001).
9. K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A. Grimes, "Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells," Nanotechnology, 18[6] 065707 (2007).
10. S. K. Mohapatra, M. Misra, V. K. Mahajan, and K. S. Raja, "Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting:  Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode," The Journal of Physical Chemistry C, 111[24] 8677-85 (2007).
11. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "Enhanced photocleavage of water using titania nanotube arrays," Nano letters, 5[1] 191-95 (2005).
12. Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, "The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation," Journal of Materials Research, 20[1] 230-36 (2011).
13. Q. Cai, L. Yang, and Y. Yu, "Investigations on the self-organized growth of TiO 2 nanotube arrays by anodic oxidization," Thin Solid Films, 515[4] 1802-06 (2006).
14. K. S. Raja, M. Misra, and K. Paramguru, "Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium," Electrochimica Acta, 51[1] 154-65 (2005).
15. J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, "TiO2 nanotubes: Self-organized electrochemical formation, properties and applications," Current Opinion in Solid State and Materials Science, 11[1] 3-18 (2007).
16. J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao, and L. Zou, "The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte," Journal of Materials Science, 43[6] 1880-84 (2008).
17. Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai, and M. H. Whangbo, "Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity," Chem Commun (Camb), 48[46] 5733-5 (2012).
18. C.-C. Chuang, C.-K. Lin, T. T. Wang, V. Srinivasadesikan, P. Raghunath, and M. C. Lin, "Computational and experimental studies on the effect of hydrogenation of Ni-doped TiO2anatase nanoparticles for the application of water splitting," RSC Adv., 5[99] 81371-77 (2015).
19. D. Yang, Y. Sun, Z. Tong, Y. Tian, Y. Li, and Z. Jiang, "Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion," The Journal of Physical Chemistry C, 119[11] 5827-35 (2015).
20. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromism of TiO2 films loaded with silver nanoparticles," Nat Mater, 2[1] 29-31 (2003).
21. I. Paramasivam, J. M. Macak, and P. Schmuki, "Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles," Electrochemistry Communications, 10[1] 71-75 (2008).
22. T. T. Y. Tan, C. K. Yip, D. Beydoun, and R. Amal, "Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions," Chemical Engineering Journal, 95[1] 179-86 (2003).
23. 張仕欣, "鎳摻雜及氫化之二氧化鈦奈米管對光裂解水之影響," pp. 1-69. in 材料科學與工程系所. 交通大學, 2016.
24. Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, "Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting," Nano letters, 13[1] 14-20 (2012).
25. P. Raghunath, W. Huang, and M. Lin, "Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals," The Journal of chemical physics, 138[15] 154705 (2013).
26. 李鎮全, "氫化之二氧化鈦奈米管於光裂解水製氫之應用." 國立交通大學, (2012).
27. Y. Choi, H.-i. Kim, G.-h. Moon, S. Jo, and W. Choi, "Boosting up the Low Catalytic Activity of Silver for H2Production on Ag/TiO2Photocatalyst: Thiocyanate as a Selective Modifier," ACS Catalysis, 6[2] 821-28 (2016).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊