跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡政豪
研究生(外文):Cheng-Hao Tsai
論文名稱:結合探針天線及相位補償之三維微波全像術
論文名稱(外文):Three-Dimensional Microwave Holographic Imaging with Probe and Phase Compensations
指導教授:陳士元陳士元引用關係
口試委員:許博文瞿大雄陳念偉馬自莊張道治曾昭雄
口試日期:2017-11-20
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:148
中文關鍵詞:全像術逆散射微波成像探針補償
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了一個三維微波全像術,此演算法可配合單一探針或雙探針的配置來進行成像。在適當的條件下,即使使用單一探針,本演算法也可得到和其他雙探針演算法差不多的成像品質。所提出來的演算法可分為四個部分:首先,為了補償探針天線在發射或接收時的特性,我們從天線的開路電壓模型出發,經適當的理論推導並應用數值方法可得到一個與天線無關的最小平方法問題。不過,在僅使用一個探針天線的狀況下,此最小平方法問題有很嚴重的非良置傾向(雙探針配置則沒有此問題)。故第二部分,為了改善數值穩定性,吾人提出了輔助方程式(須假設介質無損)。第三部分,為了更精確的探測出物體的位置,吾人利用簡單的光束模型發展出相位補償法,僅需針對最小平方法的核心矩陣元素補償適當的相位。最後,考慮到有限大小的掃描孔徑及天線波束寬,吾人採用了一個數值低通濾波器以篩選出在空間頻率中需要求解的範圍,可減少無意義的計算並抑制高頻的雜訊。為了驗證所提出之演算法,我們分別透過模擬與實驗量測的方式來進行測試。測試物體的幾何形狀、位置、介電常數可以被求得。本論文所提出的方法所能達到橫向解析度與縱向解析度分別約為四分之一波長與十分之一波長。
A Novel 3-D microwave holographic imaging algorithm compatible with both single-probe and dual-probe scanning setups is proposed for imaging dielectric targets. In some cases, even with only one probe antenna, the quality of the images reconstructed using the proposed algorithm is comparable or even superior to those using dual-probe-based methods. The proposed algorithms can be divided into four parts. First, starting from the open-circuit voltage of an antenna, the proposed algorithm compensates for both transmitting and receiving properties of the probe antenna, leading to least squares problems to be determined. However, the problem tends to be ill-conditioned in the single-probe setup (irrelevant to the dual-probe one). Second, an auxiliary equation based on lossless condition of an unknown target is thus derived and exploited to effectively improve the numerical stability. Third, to accurately locate the unknown target in range direction, a phase compensation method that requires only phase correction to the associated entries of the kernel matrices is proposed based on a simple ray model. Last but not least, considering both a finite size of a scanning aperture and beamwidth of the probe antenna, a numerical low-pass filter in the spatial-frequency domain is devised to effectively locate the worth-solving area and thus reduce computational time substantially. For verification, a series of images reconstructed from the simulated and measured scattering data using the proposed algorithm are presented. Thanks to the enhanced image quality, the geometry, location, and dielectric constant of the target can readily be retrieved. The range and cross-range resolutions achieved are about /10 and /4,
致謝 ................................................................................................................................... i
中文摘要 .......................................................................................................................... ii
ABSTRACT .................................................................................................................... iii
CONTENT ....................................................................................................................... v
LIST OF FIGURES ......................................................................................................... ix
LIST OF TABLES ....................................................................................................... xvii
Chapter 1 Introduction .......................................................................................... 1
1.1 Research Background ................................................................................... 1
1.2 Motivation .................................................................................................... 4
1.3 Contribution .................................................................................................. 5
1.4 Chapter Outline ............................................................................................ 6
Chapter 2 Theory of Probe-Compensated Holographic Imaging ................................ 8
2.1 Introduction .................................................................................................. 8
2.2 Open-Circuit Voltage of Receiving Antenna Due to External Current Sources ................................................................................................................... 12
2.3 Formula Based on Open-Circuit Voltage of Probe Antenna in Single-Probe Scenario .................................................................................................................. 14
2.4 Formulae Based on Open-Circuit Voltages of Probe Antennas in Dual-Probe
Scenario .................................................................................................................. 21
Chapter 3 Analysis of Proposed Probe-Compensated Holographic Imaging ..... 36
3.1 Introduction .........................................................
....................................... 36
3.2 Theory of Plane-Wave Expansion [21], [24].............................................. 38
3.3 Analysis of Proposed Probe-Compensated Holographic Imaging in Single-Probe Scenario ........................................................................................................ 42
3.3.1 Mechanism of Proposed Probe-Compensated Holographic Imaging. 42
3.3.2 Phase Compensation Method ............................................................. 48
3.3.3 Conditioning of Least-Squares Problems ........................................... 51
3.3.4 Numerical Low-Pass Filter in Spatial-Frequency Domain................. 56
3.3.5 Spatial and Frequency Sampling ........................................................ 60
3.3.6 Range and Cross-Range Resolutions .................................................. 61
3.4 Analysis of Proposed Probe-Compensated Holographic Imaging in Dual-Probe Scenario ........................................................................................................ 63
3.4.1 Mechanism of Proposed Probe-Compensated Holographic Imaging. 63
3.4.2 Phase Compensation Method ............................................................. 76
3.4.3 Conditioning of Least Squares Problems ........................................... 80
3.4.4 Numerical Low-Pass Filter in Spatial-Frequency Domain................. 88
3.4.5 Spatial and Frequency Sampling ........................................................ 95
3.4.6 Range and Cross-Range Resolutions .................................................. 96
Chapter 4 Simulation Results .............................................................................. 98
4.1 Introduction ................................................................................................ 98
4.2 Simulation Results of Single-Probe Scenario ............................................. 99
4.2.1 Comparison between Half-Wavelength Dipole and Microstrip Patch Antenna as Probe Antenna ............................................................... 101
4.2.2 Discussion about Influence of Spatial Filtering, Auxiliary Equation, and Phase Compensation ......................................................................... 108
4.2.3 Discussion about Influence of Low-Loss Dielectric ........................ 111
4.2.4 Discussion about Influence of Fractional Bandwidth on Numerical Sensitivity ......................................................................................... 113
4.3 Simulation Results of the Dual-Probe Scenario ....................................... 116
4.3.1 Discussion about Influence of S-Parameters S21 and S12 .................. 116
4.3.2 Discussion about Influence of Auxiliary Equation........................... 123
4.3.3 Discussion about Influence of Low-Loss Dielectric ........................ 127
4.4 Comparison with Single-Probe Algorithm and Dual-Probe One ............. 129
Chapter 5 Holographic Imaging System and Measurement Results ................. 133
5.1 Introduction .............................................................................................. 133
5.2 Holographic Imaging System ................................................................... 134
5.3 Measurement Results ................................................................................ 137
Chapter 6 Conclusions ...................................................................................... 143
References .................................................................................................................... 145
[1] D. Stuerga, "Microwave-Material Interactions and Dielectric Properties, Key Ingredients for Mastery of Chemical Microwave Processes," in Microwaves in Organic Synthesis2nd ed.: Wiley-VCH Verlag GmbH, 2008, pp. 1-61.
[2] C. F. Bohren and D. R. Huffman, "Classical Theories of Optical Constants," in Absorption and Scattering of Light by Small Particles1st ed.: Wiley-VCH Verlag GmbH, 2007, pp. 226-267.
[3] D. Demanet, F. Renardy, K. Vanneste, D. Jongmans, T. Camelbeeck, and M. Meghraoui, "The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium," GEOPHYSICS, vol. 66, no. 1, pp. 78-89, 2001.
[4] S. Kharkovsky and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances," IEEE Instrum. Meas. Mag., vol. 10, no. 2, pp. 26-38, 2007.
[5] L. Carin, J. Sichina, and J. F. Harvey, "Microwave underground propagation and detection," IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 945-952, 2002.
[6] E. J. Baranoski, "Through-wall imaging: Historical perspective and future directions," J. of the Franklin Institute, vol. 345, no. 6, pp. 556-569, 2008.
[7] D. M. Sheen, D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection " IEEE Trans. Microw.Theory Tech., vol.
49, no. 9, pp. 1581–1592, Sep. 2001.
[8] L. Xu, E. J. Bond, B. D. V. Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas Propag. Mag., vol. 47, no. 1, pp. 19-34, 2005.
[9] D. Colton and R. Kress, "Ill-Posed Problems," in Inverse Acoustic and Electromagnetic Scattering Theory3rd ed. New York, NY: Springer New York, 2013, pp. 95-118.
[10] W. C. Chew, Waves and Fields in Inhomogeneous Media. IEEE Press, 1996.
[11] D. Gabor, "A new microscopic principle," Nature, vol. 161, no. 4098, pp. 777-778, 1948.
[12] G. Tricoles and N. H. Farhat, "Microwave holography: Applications and techniques," Proc. IEEE, vol. 65, pp. 108-121, 1977.
[13] R. K. Amineh, M. Ravan, A. Khalatpour, and N. K. Nikolova, "Three-dimensional near-field microwave holography using reflected and transmitted signals," IEEE Trans. Antennas Propag., vol. 59, no. 12, pp. 4777–4789, Dec. 2011.
[14] M. Ravan, R. K. Amineh, and N. K. Nikolova, "Two-dimensional near-field microwave holography," Inverse Problems, vol. 26, no. 5, p. 055011, 2010.
[15] D. Sheen, D. McMakin, and T. Hall, "Near-field three-dimensional radar imaging techniques and applications," Applied Optics, vol. 49, no. 19, pp. E83-E93, 2010.
[16] R. K. Amineh, A. Khalatpour, and N. K. Nikolova, "Three-dimensional microwave holographic imaging using co- and cross-polarized data," IEEE Trans. Antennas Propag., vol. 60, no. 7, pp. 3526–3531, Jul. 2012.
[17] R. K. Amineh, A. Khalatpour, H. Xu, Y. Baskharoun, and N. K. Nikolova, "Three-dimensional near-field microwave holography for tissue imaging," Journal of Biomedical Imaging, vol. 2012, pp. 1-11, 2012.
[18] R. K. Amineh, J. J. McCombe, A. Khalatpour, and N. K. Nikolova, "Microwave holography using point-spread functions measured with calibration objects," IEEE Trans. Instrum. Meas., vol. 64, no. 2, pp. 403-417, 2015.
[19] C. C. Chang and S. Y. Chen, "Probe-compensated microwave holographic imaging," in IEEE AP-S International Symposium and URSI Radio Science Meeting, Memphis, Tennessee, July 2014, pp. 1099-1100.
[20] M. Pastorino, "Electromagnetic Scattering," in Microwave Imaging1st ed.: John Wiley & Sons, Inc., 2010, pp. 4-19.
[21] R. E. Collin, Antennas and Radiowave Propagation. Manhattan, NJ, USA: McGraw-Hill, 1985.
[22] C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. Wiley, 2012.
[23] M. T. Heath, Scientific Computing: An Introductory Survey, 2nd ed. McGraw-Hill, 2005.
[24] D. Paris, W. Leach, and E. Joy, "Basic theory of probe-compensated near-field measurements," IEEE Trans. Antennas Propag., vol. 26, no. 3, pp. 373-379, 1978.
[25] J. W. Goodman, Introduction to Fourier Optics, 3rd ed. W. H. Freeman, 2005.
[26] R. S. Elliott, Antenna Theory & Design. Wiley, 2003.
[27] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, 4th ed. Pearson Education, 2003.
[28] FEKO - EM Simulation Software. Available: http://www.feko.info
[29] Agilent PNA Help. Available: http://na.tm.agilent.com/pna/help/latest/help.htm
[30] Two-Axis/Four-Axis Stage Controller, SHOT-202 & SHOT-204MS User Manual. Available: www.sigma-koki.com/pages/support/motorize/manual_en/SHOT-202_204MS.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top