1.王一雄,1997,土壤環境污染與農業,明文書局印行,229-260頁。
2.王新傳,1981,鮑氏土壤機械分析法,台灣省農事所特刊十三號,27-29頁。
3.包國輝,2010,日本關西及臺灣東部地區蛇紋岩土壤性質比較,碩士論文,國立屏東科技大學環境工程與科學系。4.江漢全,1994,蘭陽平原地下水之主要化學成分,農業工程學報,第40卷,第4期,85-95頁。5.江漢全、董倫道、蔣立為、陸挽中、陳冠宇、陳子揚、林育誠,2012,濁水溪流域地下水補注區地下水質結垢傾向及結垢成份研析,環教永續與低碳論壇暨資源與環境學術研討會14屆,141-150頁。
6.行政院環保署,2013,地下水有害物質環境傳輸調查及管制標準檢討計畫(第二期),4-31頁。
7.行政院環保署,2013,花蓮土水污染調查與查證工作計畫。
8.行政院環保署,2013,農地土壤母質品質背景調查計畫。
9.行政院環境保護署,2008,十二縣市農地控制場址地力回復計畫,行政院環境保護署編印。
10.行政院環保署土壤及地下水管理資訊系統網址:http://sgw.epa.gov.tw/SGM/Anonymous/SgmLogin.aspx.
11.行政院環境保護署,土壤污染監測標準,行政院環境保護署,環環署土字第1000008485號。
12.行政院環境保護署,2011a,土壤污染監測基準,中華民國100年1月31日行政院環境保護署環署土字第1000008485號。
13.行政院環境保護署,2011b,土壤污染監測基準,中華民國100年1月31日行政院環境保護署環署土字第1000008495號。
14.行政院環保署環境檢驗所新知寶庫網址:http://www.niea.gov.tw/epaper/epeper_detail.asp?C_ID=444
15.何念祖、孟賜福,1971,植物營養原理,上海科學技術出版社,中國,344-363頁。
16.邵屏華,2010,臺灣的蛇紋岩,地質專刊,第29卷,第3期,33-37頁。
17.范心彤,2011,花蓮萬榮地區蛇紋岩水田土壤之理化特性與重金屬含量,碩士論文,國立屏東科技大學環境工程與科學系。18.翁序伯,2005,重金屬污染農地淋洗處理及其土壤性質改變之研究,碩士論文,國立屏東科技大學環境工程與科學系。19.許正一、蔡衡,2011,蛇紋岩土壤之特性及其重金屬含量偏高問題,臺灣礦業,第63卷,第1期,12-26頁。
20.許姝羚,2007,台灣中部地區地下水水質特性分析,碩士論文,國立交通大學工學院碩士在職專班永續環境科技組。21.陳元太,2012,蛇紋岩水田土壤中鎳含量與土壤性質間的關係,碩士論文,國立屏東科技大學環境工程與科學系。22.陳尊賢、駱尚廉、吳先琪,1994,桃園鎘污染農業土壤之綜合性再分析與評估,行政院科技顧問組委託研究計畫報告。
23.陳尊賢、陸瑩、黃東亮、吳芳娥,1992,臺灣地區主要農業土壤中重金屬之鹽酸抽出量與全量之相關性,第三屆土壤污染防治研討會論文集,125-140頁。
24.陳怡君,2005,臺灣東部池上地區蛇紋岩土壤中鉻與鎳之生物地質化學特徵,碩士論文,國立屏東科技大學環境工程與科學系。25.張英琇,2007,海岸山脈蛇紋岩土壤金屬元素之生物地質化學性質,碩士論文,國立屏東科技大學環境工程與科學系。26.黃禎虹,2008,台灣東部超基性與酸性母岩土壤中巨量、微量與稀有元素濃度之比較,碩士論文,國立屏東科技大學環境工程與科學系。27.黃克峻,2010,蛇紋岩礦區觀察礦物的好去處,地質專刊,第29卷,第3期,42-47頁。。
28.曾元新,2013,王水消化法與X-射線螢光光譜儀快速篩選法測定土壤鉻、鎳之比較,碩士論文,國立屏東科技大學環境工程與科學系。29.經濟部中央地質調查所地質資料整合查詢,網址:http://www.moeacgs.gov.tw/main.jsp.
30.廖仲威,2014,台灣中段山區地下水水質特性與地質間之關係研析,碩士論文,國立宜蘭大學環境工程研究所。31.劉滄棽、郭鴻裕、朱戩良、連深,2007,臺灣東部蛇紋岩母質化育土壤地區重金屬特性之初探,臺灣農業研究,第56卷,第2期,65~78頁。
32.賴郡曄,2012,數值模擬二氧化碳-水-長石系統之化學及礦物反應變化,碩士論文,國立成功大學地球科學研究所。33.臺灣永續環境網址:http://www.epa.com.tw.
34.Alexander, E.B., Ellis, C.C., and Burke, R., 2007, A chronosequence of soils and vegetation on serpentine terraces in the Klamath Mountains. Soil Science, 172:565-576.
35.Alloway, B. J., 1995, Heavy metal in soils, 2nd ed., Blackie Academis and Professional, Glasgow, UK.
36.Alloway, B.J. 1990, Heavy metals in soil. John& Sons Inc. N.Y, p.339.
37.Amir, H., Pineau, R., 1998, Effects of metals on the germination and growth of fungal isolates from New Caledonian ultramafic soils. Soil Biology and Biochemistry, 30:2043-2054.
38.Anke M., Groppel, B., Kronemann, H., and Grun. M., 1984, Nickel-an essential element, IARC Sci Publ., 53:339-365.
39.Becquer, T., Petard, J., Duwig, C., Bourdon, E., Mourau, R., and Herbillon, A. J., 2001, Mineralogical, chemical and charge properties of Geric Ferralsols from New Caledonia. Geoderma, 103:291-306.
40.Becquer, T., Quantin, C., Rotte-Capet, S., Ghanbaja, J., Mustin, C., and Herbillon, A. J., 2006, Sources of trace metals in Ferralsols in New Caledonia. European Journal of Soil Science, 57:200-213.
41.Bonifacio, E., Zanini, E., and Boero, V., Franchini-Angela, M., 1997, Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma, 75:33-51.
42.Bulmer, C. E., and Lavkulich, L. M., 1994, Pedogenic and geochemical processes of ultramafic soils along a climatic gradient in southwestern British Columbia. Canadian Journal of Soil Science, 74:165-177.
43.Belkhiri, L., Boudoukha, A., Mouni, L., 2011, A multivariate statistical analysis of groundwater chemistry data. Int. J. Environ. Res. 5, 537–544.
44.Burt, R., Fillmore, M., Wilson, M. A., Gross, E. R., Langridge, R. W., and Lammers, D. A., 2001, Soil properties of selected pedons on ultramafic rocks in Klamath mountains, Oregon. Communications in Soil Science and Plant Analysis, 32:2145-2175.
45.Caillaud, J. Proust, D., Philippe, S., Fontaine, C., and Fialin, M., 2009, Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals, Geoderma. 149:199-208.
46.Calmano, W., J. Hong, and U. Förstner. 1993, Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox otential.Wat. Sci. Technol, 28:223-235.
47.Cangul, H., L. Broday, K. Salnikow, J. Sutherland, W. Peng, Q. Zhang, V. Poltaratsky, H. Yee, M.A. Zoroddu, and M. Costa., 2002, Molecular mechanisms of nickel carcinogenesis. Toxicology Letters, 127:69-75.
48.Cheng, C. H., Jien, S. H. Tsai, H., Chang, Y. H., Chen, Y. C., and Hseu, Z. Y., 2009, Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Science, 174:283-291.
49.Cheng, C. H., Jien, S. H. Tsai, H., Lizuka, Y., Chang, Y. H., Chen, Y. C., and Hseu, Z. Y., 2011, Pedogenic Chromium and Nickel Partitioning in Serpentine Soils along a Toposequence. Soil Science Society of America Journal, 75:659-668.
50.Cleaves, E. T., Fisher, D. W., and Bricker, O. P., 1974, Chemical weathering of serpentinite in the eastern Piedmont of Maryland, Geological Society of America Bulletin, 85:437-444.
51.Coleman, R. G., 1997, Ophiolites: Ancient Oceanic Lithosphere. Springer-Verlag, New York. p.3-45.
52.Cooper, G. R., 1987, Greenhouse experiments with maize grown in ultramafic soils. Soil Science, 165:152-157.
53.Crooke, W.M., and Knight, A.H., 1956, Interaction between Nickel and Calcium in Plants. Nature, 178:220-220.
54.Díez Lázaro, J., Kidd, P.S., and Monterroso Martínez, C., 2006, A phytogeochemical study of the Trás-os-Montes region (NE Portugal): Possible species for plant-based soil remediation technologies. Science of The Total Environment, 354:265–277.
55.Dixon, J.B., 1989, Kaolin and serpentine group minerals, In: Dixon, J. B., and Weed, S.B., Minerals in soil environments, 2nd Edition, Soil Science Society of America Book Series No. 1. Soil Science Society of America, p.467-526.
56.Garnier, J., Quantin, C., Martins, E.S., and Becquer, T., 2006, Solid speciation and availability of chromium in ultramafic soils from Niquelândia, Brazil. Journal of Geochemical Exploration, 88:206-209.
57.Garnier, J., Quantin, C., Guimaraes, E., and Becquer, T., 2008, Can chromite weathering be a source of Cr in soils? Mineralogical Magazine, 72:49-53.
58.Garnier, J., Quantin, C., Martins, E.S., and Becquer, T., 2006, Solid speciation and availability of chromium in ultramafic soils from Niquelândia, Brazil. Journal of Geochemical Exploration, 88:206-209.
59.Ghaderian, S. M., Mohtadi, A., Rahiminejad, M. R., and Baker, A. J. M., 2007, Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environment Pollution 145:293-298.
60.Govett, G.J.S., 1983, Handbook of Exploration Geochemistry. 3. Elsevier, Amsterdam, p.461.
61.Goldscheider, N., Mádl-Szo˝nyi, J., Ero˝ ss, A., Schill, E., 2010, Review: thermal water resources in carbonate rock aquifers. Hydrogeol. J. 18, 1303–1318.
62.Güler, C., Thyne, G.D., McCray, J.E., Turner, A.K., 2002, Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 10, 455–474.
63.Hseu, Z. Y., 2006, Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil Science, 171:341-353.
64.Halim C.E., Short, S.A., Scott, J.A., Amal R., and Low, G., 2005, Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC. Journal of Hazardous Materials, 125:45-61.
65.Heike, B.B., 2004, Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interf. Sci, 277:1-18.
66.Huillier, L., and Edighoffer, S., 1996, Extractability of Nickel and its New Caledonia. Plant and Soil, 186:255-264.
67.Johnston, W. R. and Proctor, J., 1981, Growth of serpentine and non-serpentine races of Festuca rubra in solutions simulating the chemical conditions in a toxic serpentine soil. Journal of Ecology, 69:855-869.
68.Kaupenjohann, M., and Wilcke, W., 1995, Heavy metal release from a serpentine soil using a pH-salt technique. Soil Science Society of America Journal, 59:1027-1031.
69.Kaprara, E., Kazakis N., Simeonidis K., Coles S., Zouboulis A.I., Samaras P., Mitrakas M., 2015, Occurrence of Cr(VI) in drinking water of Greece and relation to thegeological background. Journal of Hazardous Materials, 281:2-11.
70.Kierczak, J., Neel, C., Bril, H., Puziewicz, J., 2007, Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma, 142:165-177.
71.Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios-Rybicka, E., Bril, H., Puziewicz, J., 2008, Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Journal of Chemosphere, 73:776-784.
72.Kotas, J., and Stasicka, Z., 2000, Chromiu, occurrence in the exvironment and methods of its speciation. Environ, Pollut, 107:263-283.
73.Krauskopf, K.B, 1979, Introduction to geochemistry, McGraw Hill, p.617.
74.Kumar, P.J., Jegathambal, P., James, E.J., and Sreejesh Nair., 2015, Temperature and pH dependent geochemical modeling of fluoride mobilization in the groundwater of a crystalline aquifer in southern India. Sci, Journal of Geochemical Exploration, 156:1-9.
75.Kupper, H., Kroneck, P. H. M., 2007, Nickel in the Environment and its role in the metabolism of Plants and Cyanobacteria. In: Metals Ions in Life Sciences, p.31-62.
76.Lee, B.D., Graham, R.C., Laurent, T.E., Amrhein, C., Creasy, R.M., 2001, Spatial distribution of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Science Society of American Journal, 65:1183-1196.
77.Lee, B. D., Graham, R.C., Laurent, T. E., and Amrhein, C., 2004, Pedogenesis in a wetland meadow and surrounding serpentine landslide terrain, northem Califormia. Geoderma, 118:303-320.
78.Mason, Brian, and Moore, Carleton, 1982, Pinciples of geochemistry.John Wiley & Sons, p.344.
79.Massoura, S.T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., and Morel, J.L., 2006, Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma, 136:28-37.
80.McGrath, S.P. 1995, Chromium and nickel. In heavy metals in soils, p.152-178.
81.Megremi, I., Vasilatos, Ch., Economou-Eliopoulos, M., and Mitsis, I., 2012, On the speciation and the sources of chromium ingroundwater in eastern sterea Hellas, Greece. Protection and restoration of the environment XI. p.491-500.
82.Miranda, M., Benedito, J. L., Blanco-Penedo, I., and López-Lamas, C., 2009, Metal accumulation in cattle raised in a serpentine-soil area: Relationship between metal concentrations in soil, forage and animal tissues, Journal of Trace Elements in Medicine and Biology, 23:231-238.
83.Morrison, J.M, Goldhaber, M.B., Lee, L., Holloway, J.M., Wanty, R.B., Wolf, R.E., Ranville, J.F. 2009,A regional-scale study of chromium and nickel in soils of northern California, USA. Applied Geochemistry, 24:500-1511.
84.Munoz, M.S., Rodrguez, C.M., Ridnikas, A.G., and Rizo, O.D., 2015, Physicochemical characterization, elemental speciation and hydrogeochemical modeling of river and peloid sediments used for therapeutic uses. Applied Clay Sci, 104:36-47.
85.Noble, A.D., and Hughes, J.C., 1991, Sequential fractionation of chromium and nickel from some serpentinite-derived soils from the eastern Transvaal. Soil Science and Plant Nutrition, 22:1963-1973.
86.Nriagu, J. O., and Pacyna, J. M. 1988, Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333:134-139.
87.Oze, C., Coleman, D.K., Fendorf, S. 2007, Genesis of hexavalent chromium from natural sources insoil and groundwater. Proceedings of the National Academy of Sciences of the United States of America, 7:6544-6549.
88.Oze, C., Fendorf, S., Bird, D. K., and Coleman, R. G., 2004a, Chromium geochemistry of serpentine soils, International Geology Review, 46:97-126.
89.Oze, C., Fendorf, S., Bird, D. K., and Coleman, R. G., 2004b,Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California, American Journal of Science, 304:67-101.
90.Oze, C., Skinner, C., Schroth, A. W., and Coleman, R.G., 2008, Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California. Journal of Applied Geochemistry, 23,3391-3403.
91.Parkhurst, D.L., and Appelo, C.A.J., 1999. User’s guide to PHREEQC (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259, p.312.
92.Parkhurst, D.L., 2005, A program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions. Goldschmidt Conference Avstracts, Reactive-Transport, p.156.
93.Proctor, J., and Woodell, S., 1975, The ecology of serpentine soils. Advances in Ecological Research, 9:255-366.
94.Pueyo, M., Lopez-Sanchez, J. F., and Rauret, G., 2004, Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractanility in contaminated soils Analytica Chimica Acta, 504:217-226.
95.Quantin, C., Becqure, T., and Berthelin, J., 2002a, Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. Comptes Rendus de l'Acadâemie des sciences, 334:273-278.
96.Quantin, C., Ettler, V., Garnier, J., and Sebek O., 2008, Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Comptes Rendus Geoscience, 340:872-882.
97.Rabenhorst, M. C., Foss, J. E. and Fanning, D. S., 1982, Genesis of Maryland soils formed from serpentinite, Soil Science Society of America Journal, 46:607-616.
98.Rajapaksha, A. U., Vithanage, M., Oze, C., 2011, Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Journal of Geoderma, p.189-190.
99.Reed, M., Spycher, N., 1984, Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochim. Cosmochim. Acta 48, 1479–1492.
100.Reeves, R.D., Baker, A.J.M., and Romero, R., 2007, The ultramafic flora of the Santa Elena peninsula, Costa Rica: A biogeochemical reconnaissance. Journal of Geochemical Exploration, 93:153-159.
101.Robinson, B.H., Brooks, R.R., and Clothier, B.E., 1999, Soil Amendments affecting nickel and cobalt uptake by Berkheya coddii: Potential use for phytomining and phytoremediation. Annals of botany, 84:689-694.
102.Schreier, H., Omuenti, J. A., and Lavkulich, L. M., 1987, Weathering processes of asbestos-rich serpentinitic sediments. Soil Science Society of America Journal, 51:993-999.
103.Sen, P., and Costa, M., 1985, Induction of chromosomal damage in chinese hamster ovary cells by soluble and particulate nickel compounds: preferential fragmentation of the heterochromatic long arm of the x-chromosome by carcinogenic crystalline NiS particles. Cancer Res., 45:2320-2325.
104.Shanker, A.K., Cervantes, C., 2005, Chromium toxicity in plants.Environ. Intern. 31:739-753.
105.Siegel, F.R., 1974, Applied Geochemistry. John Wiley&Sons, p.139-141.
106.Tan, L. P. and Yu, B. S., 1994, Tectonic setting and geochemical characteristics of the Chinkuashih copper-gold deposits, Taiwan. 9th Inter. Assoc. on the Genesis of Ore Deposits Symposium, Beijing, Aug. 12-18. Abstract with Programs. 2:839.
107.Tessier, A, P. G. C. Campbell and M. B., 1979, Sequential extraction procedure for the speciation particulate trace metals. Analy. Chem. 51:844-850.
108.Ton, S., Delfino, J. J., and Odum, H. T., Wetland retention of lead from a hazardous site, B. Environ. Contan. Tox., 51:430-437.
109.Wang, J., Jin, M., Jia, B., amd Kang, F., 2015, Hydrochemical characteristics and geothermometry applications of thermal groundwater in northern Jinan, Shandong, China. Sci. Geothermics. 57:185-195.
110.Wang, Y., Xu, W., Luo, Y., Ma, L. Li, Y., Yang, S., Huang, K. 2009, Bioeffects of chromium(III) on the growth of Spirulina platensis and its biotransformation. J. Sci. Food Agric. 6:947-952.
111.Wildman, W.E., Jackson, M.L., and Whittig, L.D., 1968, Iron-rich montnorillonite formation in soils derived from serpentinite. Soil Science Society of America Journal, 32:787-794.
112.World Health Organization, 2011, IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. p.4-5.
113.Yang, X., Baligar, V.C., Martens, D.C., 1996, Plant tolerance to nickel toxicity: II Nickel effects on influx and transport of mineral nutrients in four plant species. Journal of Plant Nutrition 19:265-279.