跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林冠宇
研究生(外文):Guan-Yu Lin
論文名稱:花蓮縣蛇紋石鉻、鎳高污染風險區域土壤及地下水化學性質研究
論文名稱(外文):A study on soil and groundwater chemical properties of chromium and nickel high pollution risk areas derived from serpentine in Hualien
指導教授:江漢全江漢全引用關係
指導教授(外文):Hann-Chyuan Chiang
口試委員:許文昌張益誠周錦東蘇銘千
口試日期:2015-07-09
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:74
中文關鍵詞:蛇紋岩重金屬序列萃取水化學模擬
外文關鍵詞:serpentineheavy metalchromium and nickelsequential extractionhydrochemical modeling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:502
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
臺灣花東地區位於歐亞大陸板塊與菲律賓海板塊交接處,由於板塊碰撞伴隨著火山活動,形成蛇紋岩地質,此種地質與地形經長時間風化後,易形成鉻、鎳含量較高之土壤,國外更有因前述地質影響,導致地下水鉻(VI)含量超出世界衛生組織所訂之飲用水管制標準(50μg/L)。本論文係針對環保署繪製之花蓮縣鉻鎳高風險潛勢區域進行土壤及地下水鉻鎳化學性質調查,釐清研究區域鉻鎳對環境之危害性,並建置土壤鉻鎳背景含量資料,以作為研究區域內日後產業開發使用之依據。
本研究係選定花蓮縣鉻鎳高風險潛勢區域,萬榮鄉萬榮村3個測點及鳳林鎮長橋里24個測點作為研究樣品來源,研析區域內土壤鉻鎳化學性質,另外,因花蓮縣環保局於卓溪鄉卓清國小設置地下水監測井,鑽井所採集之土壤共18個樣品則作為本研究土壤地質化學性質參考比較。
實驗結果顯示,萬榮村土壤3個樣體王水消化結果,Ca/Mg均小於1,鉻鎳濃度與環保署調查結果相符合。長橋里部分,XRF篩測(24個樣品)出的6個土壤研究樣品中,有5個土壤樣體全量Ca/Mg小於1,符合蛇紋岩土壤之特徵,鉻鎳王水消化結果均符合土壤污染管制標準,但有部分樣體濃度略高於臺灣農田重金屬自然含量,顯示本區域受到蛇紋岩影響較小,尚無鉻鎳污染之慮。卓清國小部分,部分樣體王水消化結果已超出土壤污染管制標準,且受蛇紋岩影響越大時,其鉻鎳濃度亦會升高,Ca/Mg值會越小。
各土壤研究樣品依照序列萃取法,可分為可交換態、碳酸鹽結合態、鐵錳氧化物結合態、有機質結合態及殘餘態五種分布型態,結果顯示鉻在土壤中之結合型態主要以殘餘態為主,所占百分率約達85 %以上,鎳的部分,可發現鎳在殘餘態以外之百分率可達50%,顯示鎳的移動性與危害性皆比鉻要來得要大。
為釐清研究區高鉻鎳土壤對地下水質重金屬含量的影響,本研究利用地下水監測站水質調查資料(鳳仁國小及光復國中),以進行水質統計及地下水化學模式之模擬。Piper圖結果顯示,研究區域地下水水質型態主要為Ca-HCO3及Mg-HCO3型,屬第I區(鹼土碳酸氫鹽類),無受農業污染情形。地下水化學模擬結果顯示,研究區域含鐵礦物SI值偏高,沉澱成分含鐵化合物高於鈣及鉻化合物,含鎳礦物SI值遠小於0,不易有沉澱,含鉻礦物SI值大部分大於0,顯示有沉澱現象,且沉澱相會以Cr2O3為主。

In eastern Taiwan, serpentine is generally founded because of collision accompanied by volcanic activity. Such topography after weathering, easy to form a high chromium and nickel content of the soil. As a result, there are some places chromium(VI) concentration will exceeds the control standard for drinking water (50 μg/L) by the WHO. This study is aim at chromium and nickel high risk potential areas in Hualien where demonstrated by EPA for investigation to soil and groundwater chemical properties, and established a background content of chromium and nickel in soil to clarify the study area for hazardous environment of chromium and nickel as according to the study area in the future use.
This study selected a region of chromium and nickel high risk potential area in Hualien, and chose three soil from Wanrong village and twenty four soil from Zhangqiao village with chemical properties of chromium and nickel. We also selected eighteen samples drilling by collection of soil from Hualien EPB set a groundwater monitoring well at Zhuoqing Elementary School as this research soil geological chemical properties reference compared.
Experimental results indicated that three of soil samples from Wanrong village with total Ca/Mg ratio is much lower than 1.0 and Cr and Ni concentrations were consistent with EPA findings. There are five of soils selected of six soils by XRF screen from Zhangqiao village with total ratio is much lower than 1.0 that confirm characteristics of serpentine soil, and total Cr and Ni are consistent with the soil pollution control standards but some of sample concentration slightly higher than the natural content of heavy metals of farmland in Taiwan. This shows there is no worry of Cr and Ni contamination that effected smaller by serpentine in Zhangqiao village. There are some soils that concentration of total Cr and Ni are much higher than the soil pollution control standards in Zhuoqing Elementary School. There is a characteristic with soil derived from serpentine that is total Ca/Mg ratio will decrease when the concentration to rise of total Cr and Ni.
The soils in study with sequence extraction method can be divided into exchangeable form, carbonate bonding form, iron and manganese oxide bonding form, organic bonding form, and residual form five species distribution type. The results indicated that the chemical form of chromium in soils mainly in residual form (at least 85%). Nickel can be found outside of the percentage of residual form is up to 50%, this result indicating that the mobility and harmfulness of Ni are more dangerous than Cr.
This study conduct water quality statistics and simulation of groundwater chemical models with groundwater monitoring stations water quality investigate data and clarifying effect with high Cr and Ni content of heavy metals in soil to groundwater. The Piper diagram indicates that in most part of study area, the chemical character of water is dominated by two types, Ca-HCO3 and Mg-HCO3. The groundwater chemistry simulation results show that the study area of nickel mineral will not precipitation showed with saturation index is much less than 0 and chromium mineral will precipitation showed with saturation index is greater than 0 and sedimentation were mainly of Cr2O3.

中文摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 X

第1章 緒論 1
1-1 研究動機 1
1-2 研究目的 1
1-3 研究流程圖 2
第2章 文獻回顧 4
2-1 土壤重金屬來源與含量 4
2-1.1 自然環境土壤重金屬含量 5
2-1.2 蛇紋岩土壤重金屬含量 9
2-2 蛇紋岩土壤分布及特性 10
2-2.1 蛇紋岩母質土壤分布 11
2-2.2 蛇紋岩土壤特性 13
2-3 重金屬鉻、鎳基本化性 14
2-3.1 土壤環境中鉻及鎳之型態 14
2-3.2 重金屬鉻與鎳危害 15
2-4 土壤重金屬序列萃取 17
2-4.1 重金屬於土壤中之結合型態 18
2-4.2 萃取劑種類與特性 18
2-5地下水水質圖及水化學模擬 20
2-5.1 Piper水質菱形圖 20
2-5.2 地下水水化學模擬 20
第3章 材料與方法 22
3-1 研究區域概況 22
3-1.1 地形與地質 23
3-1.2 地下水 24
3-2 樣品採樣及前處理 26
3-2.1 研究樣品來源 26
3-2.2 土壤採集及前處理 27
3-2.3 地下水資料蒐集 29
3-3 實驗設備與材料 30
3-4 土壤物化性質分析 33
3-4.1 X-射線螢光分析方法 33
3-4.2 土壤酸鹼值測定方法-電極法 34
3-4.3 土壤質地分析 34
3-4.4 土壤水分含量測定方法-重量法 36
3-4.5 陽離子交換容量 37
3-4.6 交換性鉀、鈉、鈣及鎂測定 37
3-4.7 土壤中重金屬檢測方法-王水消化法 38
3-4.8 重金屬單一化學試劑抽出 39
3-4.9 土壤Tessier序列萃取法 39
3-5 地下水水質分析方法 42
3-6 地下水化學模擬 42
第4章 結果與討論 44
4-1土壤性質分析 44
4-1.1 土壤基本性質 46
4-1.2 土壤全量分析 49
4-2 土壤重金屬分布型態 51
4-2.1 研究區域不同型態鉻分布情形 51
4-2.2 研究區域不同型態鎳分布情形 51
4-3.2土壤鉻鎳化學型態 57
4-4 地下水水質與水化學模擬 57
4-4.1 地下水水質Piper圖 61
4-4.2 地下水水化學模擬結果 61
第5章 結論與建議 65
5-1 結論 65
5-2 建議 66
參考文獻 67

1.王一雄,1997,土壤環境污染與農業,明文書局印行,229-260頁。
2.王新傳,1981,鮑氏土壤機械分析法,台灣省農事所特刊十三號,27-29頁。
3.包國輝,2010,日本關西及臺灣東部地區蛇紋岩土壤性質比較,碩士論文,國立屏東科技大學環境工程與科學系。
4.江漢全,1994,蘭陽平原地下水之主要化學成分,農業工程學報,第40卷,第4期,85-95頁。
5.江漢全、董倫道、蔣立為、陸挽中、陳冠宇、陳子揚、林育誠,2012,濁水溪流域地下水補注區地下水質結垢傾向及結垢成份研析,環教永續與低碳論壇暨資源與環境學術研討會14屆,141-150頁。
6.行政院環保署,2013,地下水有害物質環境傳輸調查及管制標準檢討計畫(第二期),4-31頁。
7.行政院環保署,2013,花蓮土水污染調查與查證工作計畫。
8.行政院環保署,2013,農地土壤母質品質背景調查計畫。
9.行政院環境保護署,2008,十二縣市農地控制場址地力回復計畫,行政院環境保護署編印。
10.行政院環保署土壤及地下水管理資訊系統網址:http://sgw.epa.gov.tw/SGM/Anonymous/SgmLogin.aspx.
11.行政院環境保護署,土壤污染監測標準,行政院環境保護署,環環署土字第1000008485號。
12.行政院環境保護署,2011a,土壤污染監測基準,中華民國100年1月31日行政院環境保護署環署土字第1000008485號。
13.行政院環境保護署,2011b,土壤污染監測基準,中華民國100年1月31日行政院環境保護署環署土字第1000008495號。
14.行政院環保署環境檢驗所新知寶庫網址:http://www.niea.gov.tw/epaper/epeper_detail.asp?C_ID=444
15.何念祖、孟賜福,1971,植物營養原理,上海科學技術出版社,中國,344-363頁。
16.邵屏華,2010,臺灣的蛇紋岩,地質專刊,第29卷,第3期,33-37頁。
17.范心彤,2011,花蓮萬榮地區蛇紋岩水田土壤之理化特性與重金屬含量,碩士論文,國立屏東科技大學環境工程與科學系。
18.翁序伯,2005,重金屬污染農地淋洗處理及其土壤性質改變之研究,碩士論文,國立屏東科技大學環境工程與科學系。
19.許正一、蔡衡,2011,蛇紋岩土壤之特性及其重金屬含量偏高問題,臺灣礦業,第63卷,第1期,12-26頁。
20.許姝羚,2007,台灣中部地區地下水水質特性分析,碩士論文,國立交通大學工學院碩士在職專班永續環境科技組。
21.陳元太,2012,蛇紋岩水田土壤中鎳含量與土壤性質間的關係,碩士論文,國立屏東科技大學環境工程與科學系。
22.陳尊賢、駱尚廉、吳先琪,1994,桃園鎘污染農業土壤之綜合性再分析與評估,行政院科技顧問組委託研究計畫報告。
23.陳尊賢、陸瑩、黃東亮、吳芳娥,1992,臺灣地區主要農業土壤中重金屬之鹽酸抽出量與全量之相關性,第三屆土壤污染防治研討會論文集,125-140頁。
24.陳怡君,2005,臺灣東部池上地區蛇紋岩土壤中鉻與鎳之生物地質化學特徵,碩士論文,國立屏東科技大學環境工程與科學系。
25.張英琇,2007,海岸山脈蛇紋岩土壤金屬元素之生物地質化學性質,碩士論文,國立屏東科技大學環境工程與科學系。
26.黃禎虹,2008,台灣東部超基性與酸性母岩土壤中巨量、微量與稀有元素濃度之比較,碩士論文,國立屏東科技大學環境工程與科學系。
27.黃克峻,2010,蛇紋岩礦區觀察礦物的好去處,地質專刊,第29卷,第3期,42-47頁。。
28.曾元新,2013,王水消化法與X-射線螢光光譜儀快速篩選法測定土壤鉻、鎳之比較,碩士論文,國立屏東科技大學環境工程與科學系。
29.經濟部中央地質調查所地質資料整合查詢,網址:http://www.moeacgs.gov.tw/main.jsp.
30.廖仲威,2014,台灣中段山區地下水水質特性與地質間之關係研析,碩士論文,國立宜蘭大學環境工程研究所。
31.劉滄棽、郭鴻裕、朱戩良、連深,2007,臺灣東部蛇紋岩母質化育土壤地區重金屬特性之初探,臺灣農業研究,第56卷,第2期,65~78頁。
32.賴郡曄,2012,數值模擬二氧化碳-水-長石系統之化學及礦物反應變化,碩士論文,國立成功大學地球科學研究所。
33.臺灣永續環境網址:http://www.epa.com.tw.
34.Alexander, E.B., Ellis, C.C., and Burke, R., 2007, A chronosequence of soils and vegetation on serpentine terraces in the Klamath Mountains. Soil Science, 172:565-576.
35.Alloway, B. J., 1995, Heavy metal in soils, 2nd ed., Blackie Academis and Professional, Glasgow, UK.
36.Alloway, B.J. 1990, Heavy metals in soil. John& Sons Inc. N.Y, p.339.
37.Amir, H., Pineau, R., 1998, Effects of metals on the germination and growth of fungal isolates from New Caledonian ultramafic soils. Soil Biology and Biochemistry, 30:2043-2054.
38.Anke M., Groppel, B., Kronemann, H., and Grun. M., 1984, Nickel-an essential element, IARC Sci Publ., 53:339-365.
39.Becquer, T., Petard, J., Duwig, C., Bourdon, E., Mourau, R., and Herbillon, A. J., 2001, Mineralogical, chemical and charge properties of Geric Ferralsols from New Caledonia. Geoderma, 103:291-306.
40.Becquer, T., Quantin, C., Rotte-Capet, S., Ghanbaja, J., Mustin, C., and Herbillon, A. J., 2006, Sources of trace metals in Ferralsols in New Caledonia. European Journal of Soil Science, 57:200-213.
41.Bonifacio, E., Zanini, E., and Boero, V., Franchini-Angela, M., 1997, Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma, 75:33-51.
42.Bulmer, C. E., and Lavkulich, L. M., 1994, Pedogenic and geochemical processes of ultramafic soils along a climatic gradient in southwestern British Columbia. Canadian Journal of Soil Science, 74:165-177.
43.Belkhiri, L., Boudoukha, A., Mouni, L., 2011, A multivariate statistical analysis of groundwater chemistry data. Int. J. Environ. Res. 5, 537–544.
44.Burt, R., Fillmore, M., Wilson, M. A., Gross, E. R., Langridge, R. W., and Lammers, D. A., 2001, Soil properties of selected pedons on ultramafic rocks in Klamath mountains, Oregon. Communications in Soil Science and Plant Analysis, 32:2145-2175.
45.Caillaud, J. Proust, D., Philippe, S., Fontaine, C., and Fialin, M., 2009, Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals, Geoderma. 149:199-208.
46.Calmano, W., J. Hong, and U. Förstner. 1993, Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox otential.Wat. Sci. Technol, 28:223-235.
47.Cangul, H., L. Broday, K. Salnikow, J. Sutherland, W. Peng, Q. Zhang, V. Poltaratsky, H. Yee, M.A. Zoroddu, and M. Costa., 2002, Molecular mechanisms of nickel carcinogenesis. Toxicology Letters, 127:69-75.
48.Cheng, C. H., Jien, S. H. Tsai, H., Chang, Y. H., Chen, Y. C., and Hseu, Z. Y., 2009, Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Science, 174:283-291.
49.Cheng, C. H., Jien, S. H. Tsai, H., Lizuka, Y., Chang, Y. H., Chen, Y. C., and Hseu, Z. Y., 2011, Pedogenic Chromium and Nickel Partitioning in Serpentine Soils along a Toposequence. Soil Science Society of America Journal, 75:659-668.
50.Cleaves, E. T., Fisher, D. W., and Bricker, O. P., 1974, Chemical weathering of serpentinite in the eastern Piedmont of Maryland, Geological Society of America Bulletin, 85:437-444.
51.Coleman, R. G., 1997, Ophiolites: Ancient Oceanic Lithosphere. Springer-Verlag, New York. p.3-45.
52.Cooper, G. R., 1987, Greenhouse experiments with maize grown in ultramafic soils. Soil Science, 165:152-157.
53.Crooke, W.M., and Knight, A.H., 1956, Interaction between Nickel and Calcium in Plants. Nature, 178:220-220.
54.Díez Lázaro, J., Kidd, P.S., and Monterroso Martínez, C., 2006, A phytogeochemical study of the Trás-os-Montes region (NE Portugal): Possible species for plant-based soil remediation technologies. Science of The Total Environment, 354:265–277.
55.Dixon, J.B., 1989, Kaolin and serpentine group minerals, In: Dixon, J. B., and Weed, S.B., Minerals in soil environments, 2nd Edition, Soil Science Society of America Book Series No. 1. Soil Science Society of America, p.467-526.
56.Garnier, J., Quantin, C., Martins, E.S., and Becquer, T., 2006, Solid speciation and availability of chromium in ultramafic soils from Niquelândia, Brazil. Journal of Geochemical Exploration, 88:206-209.
57.Garnier, J., Quantin, C., Guimaraes, E., and Becquer, T., 2008, Can chromite weathering be a source of Cr in soils? Mineralogical Magazine, 72:49-53.
58.Garnier, J., Quantin, C., Martins, E.S., and Becquer, T., 2006, Solid speciation and availability of chromium in ultramafic soils from Niquelândia, Brazil. Journal of Geochemical Exploration, 88:206-209.
59.Ghaderian, S. M., Mohtadi, A., Rahiminejad, M. R., and Baker, A. J. M., 2007, Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environment Pollution 145:293-298.
60.Govett, G.J.S., 1983, Handbook of Exploration Geochemistry. 3. Elsevier, Amsterdam, p.461.
61.Goldscheider, N., Mádl-Szo˝nyi, J., Ero˝ ss, A., Schill, E., 2010, Review: thermal water resources in carbonate rock aquifers. Hydrogeol. J. 18, 1303–1318.
62.Güler, C., Thyne, G.D., McCray, J.E., Turner, A.K., 2002, Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 10, 455–474.
63.Hseu, Z. Y., 2006, Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil Science, 171:341-353.
64.Halim C.E., Short, S.A., Scott, J.A., Amal R., and Low, G., 2005, Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC. Journal of Hazardous Materials, 125:45-61.
65.Heike, B.B., 2004, Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interf. Sci, 277:1-18.
66.Huillier, L., and Edighoffer, S., 1996, Extractability of Nickel and its New Caledonia. Plant and Soil, 186:255-264.
67.Johnston, W. R. and Proctor, J., 1981, Growth of serpentine and non-serpentine races of Festuca rubra in solutions simulating the chemical conditions in a toxic serpentine soil. Journal of Ecology, 69:855-869.
68.Kaupenjohann, M., and Wilcke, W., 1995, Heavy metal release from a serpentine soil using a pH-salt technique. Soil Science Society of America Journal, 59:1027-1031.
69.Kaprara, E., Kazakis N., Simeonidis K., Coles S., Zouboulis A.I., Samaras P., Mitrakas M., 2015, Occurrence of Cr(VI) in drinking water of Greece and relation to thegeological background. Journal of Hazardous Materials, 281:2-11.
70.Kierczak, J., Neel, C., Bril, H., Puziewicz, J., 2007, Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma, 142:165-177.
71.Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios-Rybicka, E., Bril, H., Puziewicz, J., 2008, Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Journal of Chemosphere, 73:776-784.
72.Kotas, J., and Stasicka, Z., 2000, Chromiu, occurrence in the exvironment and methods of its speciation. Environ, Pollut, 107:263-283.
73.Krauskopf, K.B, 1979, Introduction to geochemistry, McGraw Hill, p.617.
74.Kumar, P.J., Jegathambal, P., James, E.J., and Sreejesh Nair., 2015, Temperature and pH dependent geochemical modeling of fluoride mobilization in the groundwater of a crystalline aquifer in southern India. Sci, Journal of Geochemical Exploration, 156:1-9.
75.Kupper, H., Kroneck, P. H. M., 2007, Nickel in the Environment and its role in the metabolism of Plants and Cyanobacteria. In: Metals Ions in Life Sciences, p.31-62.
76.Lee, B.D., Graham, R.C., Laurent, T.E., Amrhein, C., Creasy, R.M., 2001, Spatial distribution of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Science Society of American Journal, 65:1183-1196.
77.Lee, B. D., Graham, R.C., Laurent, T. E., and Amrhein, C., 2004, Pedogenesis in a wetland meadow and surrounding serpentine landslide terrain, northem Califormia. Geoderma, 118:303-320.
78.Mason, Brian, and Moore, Carleton, 1982, Pinciples of geochemistry.John Wiley & Sons, p.344.
79.Massoura, S.T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., and Morel, J.L., 2006, Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma, 136:28-37.
80.McGrath, S.P. 1995, Chromium and nickel. In heavy metals in soils, p.152-178.
81.Megremi, I., Vasilatos, Ch., Economou-Eliopoulos, M., and Mitsis, I., 2012, On the speciation and the sources of chromium ingroundwater in eastern sterea Hellas, Greece. Protection and restoration of the environment XI. p.491-500.
82.Miranda, M., Benedito, J. L., Blanco-Penedo, I., and López-Lamas, C., 2009, Metal accumulation in cattle raised in a serpentine-soil area: Relationship between metal concentrations in soil, forage and animal tissues, Journal of Trace Elements in Medicine and Biology, 23:231-238.
83.Morrison, J.M, Goldhaber, M.B., Lee, L., Holloway, J.M., Wanty, R.B., Wolf, R.E., Ranville, J.F. 2009,A regional-scale study of chromium and nickel in soils of northern California, USA. Applied Geochemistry, 24:500-1511.
84.Munoz, M.S., Rodrguez, C.M., Ridnikas, A.G., and Rizo, O.D., 2015, Physicochemical characterization, elemental speciation and hydrogeochemical modeling of river and peloid sediments used for therapeutic uses. Applied Clay Sci, 104:36-47.
85.Noble, A.D., and Hughes, J.C., 1991, Sequential fractionation of chromium and nickel from some serpentinite-derived soils from the eastern Transvaal. Soil Science and Plant Nutrition, 22:1963-1973.
86.Nriagu, J. O., and Pacyna, J. M. 1988, Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333:134-139.
87.Oze, C., Coleman, D.K., Fendorf, S. 2007, Genesis of hexavalent chromium from natural sources insoil and groundwater. Proceedings of the National Academy of Sciences of the United States of America, 7:6544-6549.
88.Oze, C., Fendorf, S., Bird, D. K., and Coleman, R. G., 2004a, Chromium geochemistry of serpentine soils, International Geology Review, 46:97-126.
89.Oze, C., Fendorf, S., Bird, D. K., and Coleman, R. G., 2004b,Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California, American Journal of Science, 304:67-101.
90.Oze, C., Skinner, C., Schroth, A. W., and Coleman, R.G., 2008, Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California. Journal of Applied Geochemistry, 23,3391-3403.
91.Parkhurst, D.L., and Appelo, C.A.J., 1999. User’s guide to PHREEQC (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259, p.312.
92.Parkhurst, D.L., 2005, A program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions. Goldschmidt Conference Avstracts, Reactive-Transport, p.156.
93.Proctor, J., and Woodell, S., 1975, The ecology of serpentine soils. Advances in Ecological Research, 9:255-366.
94.Pueyo, M., Lopez-Sanchez, J. F., and Rauret, G., 2004, Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractanility in contaminated soils Analytica Chimica Acta, 504:217-226.
95.Quantin, C., Becqure, T., and Berthelin, J., 2002a, Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. Comptes Rendus de l'Acadâemie des sciences, 334:273-278.
96.Quantin, C., Ettler, V., Garnier, J., and Sebek O., 2008, Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Comptes Rendus Geoscience, 340:872-882.
97.Rabenhorst, M. C., Foss, J. E. and Fanning, D. S., 1982, Genesis of Maryland soils formed from serpentinite, Soil Science Society of America Journal, 46:607-616.
98.Rajapaksha, A. U., Vithanage, M., Oze, C., 2011, Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Journal of Geoderma, p.189-190.
99.Reed, M., Spycher, N., 1984, Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochim. Cosmochim. Acta 48, 1479–1492.
100.Reeves, R.D., Baker, A.J.M., and Romero, R., 2007, The ultramafic flora of the Santa Elena peninsula, Costa Rica: A biogeochemical reconnaissance. Journal of Geochemical Exploration, 93:153-159.
101.Robinson, B.H., Brooks, R.R., and Clothier, B.E., 1999, Soil Amendments affecting nickel and cobalt uptake by Berkheya coddii: Potential use for phytomining and phytoremediation. Annals of botany, 84:689-694.
102.Schreier, H., Omuenti, J. A., and Lavkulich, L. M., 1987, Weathering processes of asbestos-rich serpentinitic sediments. Soil Science Society of America Journal, 51:993-999.
103.Sen, P., and Costa, M., 1985, Induction of chromosomal damage in chinese hamster ovary cells by soluble and particulate nickel compounds: preferential fragmentation of the heterochromatic long arm of the x-chromosome by carcinogenic crystalline NiS particles. Cancer Res., 45:2320-2325.
104.Shanker, A.K., Cervantes, C., 2005, Chromium toxicity in plants.Environ. Intern. 31:739-753.
105.Siegel, F.R., 1974, Applied Geochemistry. John Wiley&Sons, p.139-141.
106.Tan, L. P. and Yu, B. S., 1994, Tectonic setting and geochemical characteristics of the Chinkuashih copper-gold deposits, Taiwan. 9th Inter. Assoc. on the Genesis of Ore Deposits Symposium, Beijing, Aug. 12-18. Abstract with Programs. 2:839.
107.Tessier, A, P. G. C. Campbell and M. B., 1979, Sequential extraction procedure for the speciation particulate trace metals. Analy. Chem. 51:844-850.
108.Ton, S., Delfino, J. J., and Odum, H. T., Wetland retention of lead from a hazardous site, B. Environ. Contan. Tox., 51:430-437.
109.Wang, J., Jin, M., Jia, B., amd Kang, F., 2015, Hydrochemical characteristics and geothermometry applications of thermal groundwater in northern Jinan, Shandong, China. Sci. Geothermics. 57:185-195.
110.Wang, Y., Xu, W., Luo, Y., Ma, L. Li, Y., Yang, S., Huang, K. 2009, Bioeffects of chromium(III) on the growth of Spirulina platensis and its biotransformation. J. Sci. Food Agric. 6:947-952.
111.Wildman, W.E., Jackson, M.L., and Whittig, L.D., 1968, Iron-rich montnorillonite formation in soils derived from serpentinite. Soil Science Society of America Journal, 32:787-794.
112.World Health Organization, 2011, IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. p.4-5.
113.Yang, X., Baligar, V.C., Martens, D.C., 1996, Plant tolerance to nickel toxicity: II Nickel effects on influx and transport of mineral nutrients in four plant species. Journal of Plant Nutrition 19:265-279.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top