跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:留宏騏
研究生(外文):HONG-CI LIOU
論文名稱:研究Neocallimastix frontalis J11 β-葡萄糖苷酶之功能及結構模擬分析
論文名稱(外文):Functional and structural modelling analysis of glycoside hydrolase family 3 β-glucosidase from Neocallimastix frontalis J11
指導教授:蔡麗珠蔡麗珠引用關係
口試委員:蔡麗珠鄭貽生徐麗芬夏國強
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:液相層析法薄層層析法酵素動力學模擬beta-葡萄糖苷酶糖苷水解酶第三家族
外文關鍵詞:LC-RITLCEnzyme kineticsbeta-glucosidaseGlycoside Hydrolase Family 3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從Neocallimastix frontalis(NfrBGS)篩選出來的纖維雙糖酶,屬於糖苷水解酶第三家族(GH 3),其胺基酸有769個且該酵素之分子量為84.246 kDa,能夠將纖維雙糖水解成葡萄糖之功能。以纖維雙糖做為受質,在0.1M磷酸緩衝溶液(pH 6)及溫度40°C下,反應10分鐘至48小時後,利用LC-RI進行產物分析。發現在反應時間16小時之後,纖維雙糖已全部被水解成葡萄糖。由LC-RI分析葡萄糖濃度,並換算得到kcat為1275.87±33.97s-1、Km為4.62±0.23 mg·ml-1。本實驗也利用BLAST (Basic Local Alignment Search Tool)進行序列分析,將NfrBGS的胺基酸序列和GH3家族已知結構且屬於β-glucosidase (EC 3.2.1.21)的蛋白質做序列比對,得知β-glucosidase of Trichoderma reesei QM9414 (PDB:3ZYZ)的序列與NfrBGS最相似。再以其做結構模擬,並分析活性區域;結果顯示NfrBGS是由兩個受質催化結構域(Glyco_Hydro_3(殘基:68-342)、Glyco_Hydro_3C(殘基:343-570)以及一個受質吸附模塊sigma70(殘基:704-765)組成。經由結構模擬,推測NfrBGS的主要功能性胺基酸是以Glu446作為質子受體,Asp244作為親核性胺基酸,在活性催化區域進行水解反應。此論文將討論NfrBGS催化纖維雙糖的實驗與結構模擬分析。
The β-glucosidase identify from Neocallimastix frontalis (NfrBGS), belongs to the glycoside hydrolase family three (GH3), and has 769 amino acids with the molecular weight of 84.246 kDa, which hydrolyzes the cellobiose into glucose. The enzymatic products were analyzed by using liquid chromatography with refractive index detector (LC-RI). The reaction time was 10 minutes to 48 hours in pH 6.0, 0.1M sodium phosphate buffer solution at 40°C. It was found that cellobiose had been hydrolyzed to glucose after 16 hours of reaction time. Based on the amount of glucose from the LC-RI product, we analyzed the Km was 4.62±0.23 mg·ml-1 and the kcat was 1275.87±33.97 s-1.
In addition, we built a structural model of NfrBGS based on the results from sequence alignment analyses analyzed by BLAST (Basic Local Alignment Search Tool), using β-glucosidase of Trichoderma reesei QM9414 (pdb: 3ZYZ) as a model. The modeled NfrBGS structure is composed mainly of three domains, two derived catalytic modules (Glyco_Hydro_3: 68-342 , Glyco_Hydro_3C : 343-570 ) and an acceptor module (sigma70 : 704-765 ). Homologous structural modeling of NfrBGS suggested that Glu446 as proton acceptor and Asp244 as nucleophilic amino acid are at the cleft site located between the two derived catalytic modules, which are the putative substrate-binding site and catalytic center. We also discussed the hydrolysis of lactose by NfrBGS .
目錄

摘 要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 纖維素 3
1.3 纖維素酶 4
1.4 雙糖水解酶 9
1.5 文獻回顧 12
1.6 纖維素酶與雙糖酶的應用 12
1.7 研究動機與目的 13
第二章 材料與儀器 15
2.1 材料 15
2.2 儀器 18
第三章 實驗方法 19
3.1 NfrBGS的菌種保存 19
3.2 NfrBGS的培養 19
3.3 水解產物分析方法 21
3.4 酵素動力學 22
3.5 軟體結構模擬分析 23
第四章 實驗結果 25
4.1 NfrBGS的表現及純化 25
4.2 NfrBGS的水解產物分析 26
4.3 NfrBGS的酵素動力學分析 29
4.4 NfrBGS的序列與模擬結構分析 32
第五章 討論與結論 41
參考文獻 43
附錄 47
附錄一 GH3與NfrBGS蛋白質活性區域胺基酸分析整理 47
附錄二 DNS染色法酵素動力學分析資料 48
附錄三 LC-RI分析系統酵素動力學分析資料 50
1.Buchanan, Bob B., Wilhelm Gruissem, and Russell L. Jones, Biochemistry and Molecular Biology of Plants. 2nd ed. 2015: Chichester, West Sussex, UK ; Hoboken, NJ : John Wiley & Sons Inc., 2015. ©2015.
2.Barkalow, David G and Roy L Whistler, Cellulose. AccessScience. 2014.
3.Naumoff, Daniil G., Hierarchical classification of glycoside hydrolases. Biochemistry (Mosc). 2011. 76(6): p. 622-635.
4.Din, Neena, Howard G. Damude, Neil R. Gilkes, Jr. Robert C. Miller, R. Antony J. Warren, and Douglas G. Kilburn, C1-Cx revisited: intramolecular synergism in a cellulase. Proc. Nati. Acad. Sci. USA, 1994. 91(24): p. 11383-11387.
5.Reese, Elwyn T., Ralph G. H. Siu, and Hillel S. Levinson, The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol, 1950. 59(4): p. 485-497.
6.Horn, Svein Jarle, Gustav Vaaje-Kolstad, Bjørge Westereng, and Vincent GH Eijsink, Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 2012. 2(45).
7.McIntosh, Lawrence P., Greg Hand, Philip E. Johnson, Manish D. Joshi, Michael Körner, Leigh A. Plesniak, Lothar Ziser, Warren W. Wakarchuk, and Stephen G. Withers, The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase. Biochemistry, 1996. 35(31): p. 9958-9966.
8.Guimarães, Beatriz G., Hélène Souchon, Betsy L. Lytle, J. H. David Wu, and Pedro M. Alzari, The Crystal Structure and Catalytic Mechanism of Cellobiohydrolase CelS, the Major Enzymatic Component of the Clostridium thermocellum Cellulosome. Journal of Molecular Biology, 2002. 320(3): p. 587-596.
9.Koivula, Anu, Laura Ruohonen, Gerd Wohlfahrt, Tapani Reinikainen, Tuula T. Teeri, Kathleen Piens, Marc Claeyssens, Martin Weber, Andrea Vasella, Dieter Becker, Michael L. Sinnot, Jin-yu Zou, Gerard J. Kleywegt, Michael Szardenings, Jerry Ståhlberg, and T. Alwyn Jones, The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. J. Am. Chem. Soc., 2002. 124(34): p. 10015-10024.
10.Eriksson, Karl-Erik and Bert Pettersson, Extracellular Enzyme System Utilized by the Fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the Breakdown of Cellulose. Eur. J. Biochem., 1975. 51(1): p. 213-218.
11.Saharay, Moumita, Hong Guo, and Jeremy C. Smith, Catalytic Mechanism of Cellulose Degradation by a Cellobiohydrolase, CelS. PLoS One., 2010. 5(10): p. e12947.
12.Davies, Gideon J., A. Marek Brzozowski, Miroslawa Dauter, Annabelle Varrot, and Martin Schülein, Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 A resolution. Biochemical Journal, 2000. 348(1): p. 201-207.
13.Varrot, Annabelle, Sabine Leydier, Gavin Pell, James M. Macdonald, Robert V. Stick, Bernard Henrissat, Harry J. Gilbert, and Gideon J. Davies, Mycobacterium tuberculosis strains possess functional cellulases. J Biol Chem, 2005. 280(21): p. 20181-20184.
14.Karkehabadi, Saeid, Kate E. Helmich, Thijs Kaper, Henrik Hansson, Nils-Egil Mikkelsen, Mikael Gudmundsson, Kathleen Piens, Meredith Fujdala, Goutami Banerjee, John S. Scott-Craig, Jonathan D. Walton, Jr. George N. Phillips, and Mats Sandgren, Biochemical characterization and crystal structures of a fungal family 3 beta-glucosidase, Cel3A from Hypocrea jecorina. J Biol Chem, 2014. 289(45): p. 31624-31637.
15.Gudmundsson, Mikael, Henrik Hansson, Saeid Karkehabadi, Anna Larsson, Ingeborg Stals, Steve Kim, Sergio Sunux, Meredith Fujdala, Edmund Larenas, Thijs Kaper, and Mats Sandgrena, Structural and functional studies of the glycoside hydrolase family 3 beta-glucosidase Cel3A from the moderately thermophilic fungus Rasamsonia emersonii. Acta Crystallogr D Struct Biol, 2016. 72(7): p. 860-870.
16.Yoshida, Erina, Masafumi Hidaka, Shinya Fushinobu, Takashi Koyanagi, Hiromichi Minami, Hisanori Tamaki, Motomitsu Kitaoka, Takane Katayama, and Hidehiko Kumagai, Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 beta-glucosidase from Kluyveromyces marxianus. Biochem J, 2010. 431(1): p. 39-49.
17.Schiweck, Hubert, Margaret Clarke, and Günter Pollach, Sugar. Ullmanns Encyclopedia of Industrial Chemistry. 2007: Wiley-VCH Verlag GmbH & Co. KGaA.
18.Savaiano, Dennis A., Milk Intolerance and Microbe-Containing Dairy Foods. Journal of Dairy Science, 1987. 70(2): p. 397-406.
19.H, Skovbjerg, Sjöström H, and Norén O, Purification and characterisation of amphiphilic lactase/phlorizin hydrolase from human small intestine. Eur J Biochem, 1981. 114(3): p. 653-661.
20.Sørensen, Susanne Hedeager, Ove Norén, Hans Sjöström, and E. Michael Danielsen, Amphiphilic Pig Intestinal Microvillus Maltase/Glucoamylase. Eur. J. Biochem., 1982. 126(3): p. 559-568.
21.Hehre, Edward J., Teruo Sawai, Curtis F. Brewer, Masatoshi Nakano, and Takahisa Kanda, Trehalase: stereocomplementary hydrolytic and glucosyl transfer reactions with .alpha.- and .beta.-D-glucosyl fluoride. Biochemistry, 1982. 21(13): p. 3090-3097.
22.Xie, Jin, Kun Cai, Hai-Xi Hu, Yong-Liang Jiang, Feng Yang, Peng-Fei Hu, Dong-Dong Cao, Wei-Fang Li, Yuxing Chen, and Cong-Zhao Zhou, Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase. J Biol Chem, 2016. 291(49): p. 25667-25677.
23.Chen, Hsin-Liang, Yo-Chia Chen, Mei-Yeh Jade Lu, Jui-Jen Chang, Hiaow-Ting Christine Wang, Huei-Mien Ke, Tzi-Yuan Wang, Sz-Kai Ruan, Tao-Yuan Wang, Kuo-Yen Hung, Hsing-Yi Cho, Wan-Ting Lin, Ming-Che Shih, and Wen-Hsiung Li, A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnology for Biofuels, 2012. 5(24).
24.尚维, 杨福祺, 刘群, and 唐耘, 纤维素酶在清香型优质白酒中应用初探. Liquor Making, 1996.
25.席兴军, 韩鲁佳, 原慎一郎, and 野中和久, 添加乳酸菌和纤维素酶对玉米秸秆青贮饲料品质的影响. Journal of China Agricultural University, 2003.
26.王紫薇 and 张腾飞, 浅谈纤维素酶在纺织行业的应用. Science and Technology innovation Herald, 2011.
27.赵玉林, 陈中豪, and 王福君, 纤维素酶在造纸工业中的应用研究进展. Paper and Paper Making, 2002.
28.Zhu, J. Y., X. J. Pan, G. S. Wang, and R. Gleisner, Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol, 2009. 100(8): p. 2411-2418.
29.Litzinger, Silke, Stefanie Fischer, Patrick Polzer, Kay Diederichs, Wolfram Welte, and Christoph Mayer, Structural and kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp-His dyad mechanism. J Biol Chem, 2010. 285(46): p. 35675-35684.
30.John-PaulBacik, Garrett E.Whitworth, Keith A.Stubbs, David J.Vocadlo, and Brian L.Mark, Active site plasticity within the glycoside hydrolase NagZ underlies a dynamic mechanism of substrate distortion. Chem Biol, 2012. 19(11): p. 1471-1482.
31.Acebrón, Iván, Kiran V. Mahasenan, Stefania De Benedetti, Mijoon Lee, Cecilia Artola-Recolons, Dusan Hesek, Huan Wang, Juan A. Hermoso, and Shahriar Mobashery, Catalytic Cycle of the N-Acetylglucosaminidase NagZ from Pseudomonas aeruginosa. J Am Chem Soc, 2017. 139(20): p. 6795-6798.
32.Agirre, Jon, Antonio Ariza, Wendy A. Offen, Johan P. Turkenburg, Shirley M. Roberts, Stuart McNicholas, Paul V. Harris, Brett McBrayer, Jan Dohnalek, Kevin D. Cowtan, Gideon J. Davies, and Keith S. Wilsona, Three-dimensional structures of two heavily N-glycosylated Aspergillus sp. family GH3 beta-D-glucosidases. Acta Crystallogr D Struct Biol, 2016. 72(2): p. 254-265.
33.Tamura, Koichiro, Glen Stecher, Daniel Peterson, Alan Filipski, and Sudhir Kumar, MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol, 2013. 30(12): p. 2725-2729.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top