|
1.Buchanan, Bob B., Wilhelm Gruissem, and Russell L. Jones, Biochemistry and Molecular Biology of Plants. 2nd ed. 2015: Chichester, West Sussex, UK ; Hoboken, NJ : John Wiley & Sons Inc., 2015. ©2015. 2.Barkalow, David G and Roy L Whistler, Cellulose. AccessScience. 2014. 3.Naumoff, Daniil G., Hierarchical classification of glycoside hydrolases. Biochemistry (Mosc). 2011. 76(6): p. 622-635. 4.Din, Neena, Howard G. Damude, Neil R. Gilkes, Jr. Robert C. Miller, R. Antony J. Warren, and Douglas G. Kilburn, C1-Cx revisited: intramolecular synergism in a cellulase. Proc. Nati. Acad. Sci. USA, 1994. 91(24): p. 11383-11387. 5.Reese, Elwyn T., Ralph G. H. Siu, and Hillel S. Levinson, The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol, 1950. 59(4): p. 485-497. 6.Horn, Svein Jarle, Gustav Vaaje-Kolstad, Bjørge Westereng, and Vincent GH Eijsink, Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 2012. 2(45). 7.McIntosh, Lawrence P., Greg Hand, Philip E. Johnson, Manish D. Joshi, Michael Körner, Leigh A. Plesniak, Lothar Ziser, Warren W. Wakarchuk, and Stephen G. Withers, The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase. Biochemistry, 1996. 35(31): p. 9958-9966. 8.Guimarães, Beatriz G., Hélène Souchon, Betsy L. Lytle, J. H. David Wu, and Pedro M. Alzari, The Crystal Structure and Catalytic Mechanism of Cellobiohydrolase CelS, the Major Enzymatic Component of the Clostridium thermocellum Cellulosome. Journal of Molecular Biology, 2002. 320(3): p. 587-596. 9.Koivula, Anu, Laura Ruohonen, Gerd Wohlfahrt, Tapani Reinikainen, Tuula T. Teeri, Kathleen Piens, Marc Claeyssens, Martin Weber, Andrea Vasella, Dieter Becker, Michael L. Sinnot, Jin-yu Zou, Gerard J. Kleywegt, Michael Szardenings, Jerry Ståhlberg, and T. Alwyn Jones, The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. J. Am. Chem. Soc., 2002. 124(34): p. 10015-10024. 10.Eriksson, Karl-Erik and Bert Pettersson, Extracellular Enzyme System Utilized by the Fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the Breakdown of Cellulose. Eur. J. Biochem., 1975. 51(1): p. 213-218. 11.Saharay, Moumita, Hong Guo, and Jeremy C. Smith, Catalytic Mechanism of Cellulose Degradation by a Cellobiohydrolase, CelS. PLoS One., 2010. 5(10): p. e12947. 12.Davies, Gideon J., A. Marek Brzozowski, Miroslawa Dauter, Annabelle Varrot, and Martin Schülein, Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 A resolution. Biochemical Journal, 2000. 348(1): p. 201-207. 13.Varrot, Annabelle, Sabine Leydier, Gavin Pell, James M. Macdonald, Robert V. Stick, Bernard Henrissat, Harry J. Gilbert, and Gideon J. Davies, Mycobacterium tuberculosis strains possess functional cellulases. J Biol Chem, 2005. 280(21): p. 20181-20184. 14.Karkehabadi, Saeid, Kate E. Helmich, Thijs Kaper, Henrik Hansson, Nils-Egil Mikkelsen, Mikael Gudmundsson, Kathleen Piens, Meredith Fujdala, Goutami Banerjee, John S. Scott-Craig, Jonathan D. Walton, Jr. George N. Phillips, and Mats Sandgren, Biochemical characterization and crystal structures of a fungal family 3 beta-glucosidase, Cel3A from Hypocrea jecorina. J Biol Chem, 2014. 289(45): p. 31624-31637. 15.Gudmundsson, Mikael, Henrik Hansson, Saeid Karkehabadi, Anna Larsson, Ingeborg Stals, Steve Kim, Sergio Sunux, Meredith Fujdala, Edmund Larenas, Thijs Kaper, and Mats Sandgrena, Structural and functional studies of the glycoside hydrolase family 3 beta-glucosidase Cel3A from the moderately thermophilic fungus Rasamsonia emersonii. Acta Crystallogr D Struct Biol, 2016. 72(7): p. 860-870. 16.Yoshida, Erina, Masafumi Hidaka, Shinya Fushinobu, Takashi Koyanagi, Hiromichi Minami, Hisanori Tamaki, Motomitsu Kitaoka, Takane Katayama, and Hidehiko Kumagai, Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 beta-glucosidase from Kluyveromyces marxianus. Biochem J, 2010. 431(1): p. 39-49. 17.Schiweck, Hubert, Margaret Clarke, and Günter Pollach, Sugar. Ullmanns Encyclopedia of Industrial Chemistry. 2007: Wiley-VCH Verlag GmbH & Co. KGaA. 18.Savaiano, Dennis A., Milk Intolerance and Microbe-Containing Dairy Foods. Journal of Dairy Science, 1987. 70(2): p. 397-406. 19.H, Skovbjerg, Sjöström H, and Norén O, Purification and characterisation of amphiphilic lactase/phlorizin hydrolase from human small intestine. Eur J Biochem, 1981. 114(3): p. 653-661. 20.Sørensen, Susanne Hedeager, Ove Norén, Hans Sjöström, and E. Michael Danielsen, Amphiphilic Pig Intestinal Microvillus Maltase/Glucoamylase. Eur. J. Biochem., 1982. 126(3): p. 559-568. 21.Hehre, Edward J., Teruo Sawai, Curtis F. Brewer, Masatoshi Nakano, and Takahisa Kanda, Trehalase: stereocomplementary hydrolytic and glucosyl transfer reactions with .alpha.- and .beta.-D-glucosyl fluoride. Biochemistry, 1982. 21(13): p. 3090-3097. 22.Xie, Jin, Kun Cai, Hai-Xi Hu, Yong-Liang Jiang, Feng Yang, Peng-Fei Hu, Dong-Dong Cao, Wei-Fang Li, Yuxing Chen, and Cong-Zhao Zhou, Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase. J Biol Chem, 2016. 291(49): p. 25667-25677. 23.Chen, Hsin-Liang, Yo-Chia Chen, Mei-Yeh Jade Lu, Jui-Jen Chang, Hiaow-Ting Christine Wang, Huei-Mien Ke, Tzi-Yuan Wang, Sz-Kai Ruan, Tao-Yuan Wang, Kuo-Yen Hung, Hsing-Yi Cho, Wan-Ting Lin, Ming-Che Shih, and Wen-Hsiung Li, A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnology for Biofuels, 2012. 5(24). 24.尚维, 杨福祺, 刘群, and 唐耘, 纤维素酶在清香型优质白酒中应用初探. Liquor Making, 1996. 25.席兴军, 韩鲁佳, 原慎一郎, and 野中和久, 添加乳酸菌和纤维素酶对玉米秸秆青贮饲料品质的影响. Journal of China Agricultural University, 2003. 26.王紫薇 and 张腾飞, 浅谈纤维素酶在纺织行业的应用. Science and Technology innovation Herald, 2011. 27.赵玉林, 陈中豪, and 王福君, 纤维素酶在造纸工业中的应用研究进展. Paper and Paper Making, 2002. 28.Zhu, J. Y., X. J. Pan, G. S. Wang, and R. Gleisner, Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol, 2009. 100(8): p. 2411-2418. 29.Litzinger, Silke, Stefanie Fischer, Patrick Polzer, Kay Diederichs, Wolfram Welte, and Christoph Mayer, Structural and kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp-His dyad mechanism. J Biol Chem, 2010. 285(46): p. 35675-35684. 30.John-PaulBacik, Garrett E.Whitworth, Keith A.Stubbs, David J.Vocadlo, and Brian L.Mark, Active site plasticity within the glycoside hydrolase NagZ underlies a dynamic mechanism of substrate distortion. Chem Biol, 2012. 19(11): p. 1471-1482. 31.Acebrón, Iván, Kiran V. Mahasenan, Stefania De Benedetti, Mijoon Lee, Cecilia Artola-Recolons, Dusan Hesek, Huan Wang, Juan A. Hermoso, and Shahriar Mobashery, Catalytic Cycle of the N-Acetylglucosaminidase NagZ from Pseudomonas aeruginosa. J Am Chem Soc, 2017. 139(20): p. 6795-6798. 32.Agirre, Jon, Antonio Ariza, Wendy A. Offen, Johan P. Turkenburg, Shirley M. Roberts, Stuart McNicholas, Paul V. Harris, Brett McBrayer, Jan Dohnalek, Kevin D. Cowtan, Gideon J. Davies, and Keith S. Wilsona, Three-dimensional structures of two heavily N-glycosylated Aspergillus sp. family GH3 beta-D-glucosidases. Acta Crystallogr D Struct Biol, 2016. 72(2): p. 254-265. 33.Tamura, Koichiro, Glen Stecher, Daniel Peterson, Alan Filipski, and Sudhir Kumar, MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol, 2013. 30(12): p. 2725-2729.
|