跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡展壹
研究生(外文):Tsai, Chan-Yi
論文名稱:新穎多晶矽無面電晶體的多種微縮方式之評估
論文名稱(外文):Evaluation of the Various Scaling Routes on Novel Poly-Si Junctionless Transistors
指導教授:趙天生
指導教授(外文):Chao, Tien-Shang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:65
中文關鍵詞:多晶矽電晶體無街面奈米通道
外文關鍵詞:poly-Sitransistorjunctionlessnano-channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體產業的需求以及發展 ,元件尺寸 必須 不斷地向下微縮, 不斷地向下微縮, 我們在本篇論文 我們在本篇論文 中探討以不同方式來 微縮 多晶矽 無接面電晶體 通道 的優劣,分別為傳統物理 的優劣,分別為傳統物理 的優劣,分別為傳統物理 的優劣,分別為傳統物理 微縮、新 微縮、新 微縮、新 穎的電性微縮 、以及結合了全覆式 閘極構奈米尺度通道的終微縮方。
傳統的物理微縮方式是直接上通道厚度,如此 傳統的物理微縮方式是直接上通道厚度,如此 傳統的物理微縮方式是直接上通道厚度,如此 可以有效的提升 可以有效的提升 無接面電 晶體 的開關特性,但是隨著通道尺寸縮小其串聯電阻將會之上升而 的開關特性,但是隨著通道尺寸縮小其串聯電阻將會之上升而 的開關特性,但是隨著通道尺寸縮小其串聯電阻將會之上升而 的開關特性,但是隨著通道尺寸縮小其串聯電阻將會之上升而 的開關特性,但是隨著通道尺寸縮小其串聯電阻將會之上升而 的開關特性,但是隨著通道尺寸縮小其串聯電阻將會之上升而 導致電流下降。 導致電流下降。 電性微縮的 方式則是在通道下加入一層反向摻雜矽基底,利用 矽基底,利用 矽基底,利用 P/N接面產生體積空 乏的效果,藉此 乏的效果,藉此 乏的效果,藉此 微縮通道厚 度,但伴隨而來的是在後續熱製程中所造成雜質擴散因 度,但伴隨而來的是在後續熱製程中所造成雜質擴散因 度,但伴隨而來的是在後續熱製程中所造成雜質擴散因 度,但伴隨而來的是在後續熱製程中所造成雜質擴散因 度,但伴隨而來的是在後續熱製程中所造成雜質擴散因 此同時 探討元件中 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 主動層和反向摻雜的基底之間 插入了一層 奈米尺度的擴散停止入了一層 奈米尺度的擴散停止抑 制雜質擴散 。研究 。研究 結果發現 結果發現 相較於物理微縮, 相較於物理微縮, 使用 電性微縮的方式 確實 可以獲得提升開 關速度和電流大小,不過 關速度和電流大小,不過 關速度和電流大小,不過 關速度和電流大小,不過 元件的特性對於通道與 基底的濃度和尺寸非常敏感,必須小心 基底的濃度和尺寸非常敏感,必須小心 基底的濃度和尺寸非常敏感,必須小心 設計才能達到有效地提升。然而 設計才能達到有效地提升。然而 設計才能達到有效地提升。然而 ,過高的摻雜濃度會造成嚴重漏電流 過高的摻雜濃度會造成嚴重漏電流 ,以及 隨著元件 通道長度改變其臨界電壓會大幅,這都造成了在 通道長度改變其臨界電壓會大幅,這都造成了在 通道長度改變其臨界電壓會大幅,這都造成了在 通道長度改變其臨界電壓會大幅,這都造成了在 實際電路 應用上的困難,因此提出 應用上的困難,因此提出 應用上的困難,因此提出 使用基極偏壓 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 的方式來應用此類型電晶體, 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 透過基極偏壓可以有效調整元件電性 (ϒ=0.306 ),因此在認為 ,因此在認為 ,因此在認為 電性微縮結合 基極偏壓是 更合適 的應用。 的應用。 終極微縮方式 中,元 件結合全覆式閘極與奈米尺度的通道, 件結合全覆式閘極與奈米尺度的通道, 展現最佳 的開關特性 (S.S. ≈66mV/dec )及電流大小 (ION ≈79 µA/µm A/µm)。因此,全覆式閘極結構依舊是 因此,全覆式閘極結構依舊是 最
For the demands and developments of semiconductor industry, the device dimension is scaled down continuously. In this dissertation, we investigate the pros and cons of the multi-gate poly-Si junctionless transistors in the various scaling routes. The routes are conventionally physical scaling, novel electrical scaling, and ultimate scaling, respectively.
In the conventional physical scaling route, thinning down the channel of junctionless transistor is able to enhance the switching ability, but its series resistance arise to cause the current declines as the channel dimension scaling down. In the electrical scaling route, the inverse doped poly-Si body is inserted under the channel. The P/N junction supports the volume depletion to scale the channel down, but there is dopant diffusion after the subsequent thermal process. Therefore, we also investigate the impacts of the insertion of a nano-scale dielectric for suppressing diffusion. Consequently, the switching characteristic and current level actually are improved by electrical scaling, but the channel and body concentration is a critical factor to the electrical characteristic. However, too heavy doping concentration leading serious leakage and VT roll-off as channel length increases are still unsolved issues, which make the devices hard to apply on the real circuits. Body bias can adjust the electrical characteristic efficiently (ϒ=0.306) and extend the device application. In the ultimate scaling route, the device combined with the GAA architecture and nano-scale channels shows the superior S.S (≈66mV/dec). and current level (ION ≈79 µA/µm). As a result, the GAA architecture is still the best choice in the various scaling routes.
摘要 i
Abstract ii
致謝 iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 General Background 1
1.1.1 Polycrystalline Silicon Thin-film Transistors 1
1.1.2 Junctionless Transistors 2
1.1.3 Multi-gate Architecture 3
1.1.4 Inverse Doped Layer below the Channels 4
1.2 Motivation 5
1.3 Organization of the Research 6
Chapter 2 Investigation of the Various Scaling Routes on n-type Multi-gate Poly-Si Junctionless Transistors 12
2.1 Literature Review 12
2.2 Experimental Procedure 12
2.3 Results and Discussion 14
2.3.1 SEM and TEM images 14
2.3.2 Physical Scaling Route 14
2.3.3 Electrical Scaling Route 15
2.3.3.1 VD-JLTs with Dopant Diffusion 15
2.3.3.2 The Impacts of the Diffusion Stop Layer 17
2.3.4 Comparison with the Various Scaling Routes 18
2.4 Summary 19
Chapter 3 Investigation of the Electrical Scaling Route on n-/p-type Multi-gate Poly-Si Junctionless Transistors 36
3.1 Introduction and Motivation 36
3.2 Experimental Procedure 36
3.3 Results and Discussion 38
3.3.1 SEM and TEM images 38
3.3.2 NMOS in the Various Scaling Routes 39
3.3.3 Comparison of Different Type VD-FinFET 40
3.3.4 The Drawbacks of the Electrical Scaling Route and the Extensive Application 43
3.4 Summary 44
Chapter 4 Conclusion and Future Works 58
4.1 Conclusion 58
4.2 Future Works 59
References 61
Publication List 65
[1] C. Zhu, S. Zhang, J. K. O. Sin, and P. K. T. Mok, "Ultra-Thin Elevated Channel Low Temperature Poly-Si TFTs for Fully-Integrated AMLCD Systems on Glass," in 29th European Solid-State Device Research Conference, 1999, vol. 1, pp. 708-711.
[2] Y. R. Chen, J. T. Lin, T. F. Chang, Y. C. Eng, P. H. Lin, and C. H. Chen, "Design, simulation, and fabrication of a new poly-Si based capacitor-less 1T-DRAM cell," in 2012 28th International Conference on Microelectronics Proceedings, 2012, pp. 85-88.
[3] C. W. Lin, C. H. Ho, C. Lu, M. C. T. Chao, and K. Roy, "A process/device/circuit/system compatible simulation framework for poly-Si TFT based SRAM design," in 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2013, pp. 440-443.
[4] T. Hashimoto, M. Aoki, T. Yamanaka, Y. Kamigaki, and T. Nishida, "1/f noise in poly-Si MOSFET and strong correlation with oxide traps and grain boundaries," in Proceedings of 1994 VLSI Technology Symposium, 1994, pp. 87-88.
[5] S. C. Lo, S. K. Yeh, J. J. Wang, M. Wu, R. Chen, and W. Fang, "Bandwidth and SNR enhancement of MEMS microphones using two poly-Si micromachining processes," in 2018 IEEE Micro Electro Mechanical Systems (MEMS), 2018, pp. 1064-1067.
[6] S. Seki, O. Kogure, and B. Tsujiyama, "Effects of crystallization on trap state densities at grain boundaries in polycrystalline silicon," IEEE Electron Device Letters, vol. 8, no. 8, pp. 368-370, 1987.
[7] S. Maeda et al., "An analytical method of evaluating variation of the threshold voltage shift caused by the negative-bias temperature stress in poly-Si TFTs," IEEE Transactions on Electron Devices, vol. 45, no. 1, pp. 165-172, 1998.
[8] K. K. Ng, G. K. Celler, E. I. Povilonis, R. C. Frye, H. J. Leamy, and S. M. Sze, "Effects of grain boundaries on laser crystallized poly-Si MOSFET's," IEEE Electron Device Letters, vol. 2, no. 12, pp. 316-318, 1981.
[9] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, "Characteristics of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method," IEEE Transactions on Electron Devices, vol. 41, no. 10, pp. 1876-1879, 1994.
[10] S. In-Hyuk, K. Su-Hyuk, N. Woo-Jin, and H. Min-Koo, "A high-performance multichannel dual-gate poly-Si TFT fabricated by excimer laser irradiation on a floating a-Si thin film," IEEE Electron Device Letters, vol. 24, no. 9, pp. 580-582, 2003.
[11] L. Hsiao-Yi et al., "Low-temperature and low thermal budget fabrication of polycrystalline silicon thin-film transistors," IEEE Electron Device Letters, vol. 17, no. 11, pp. 503-505, 1996.
[12] T. K. Kim, B. I. Lee, and S. K. Joo, "Low thermal budget polycrystalline silicon thin-film transistors fabricated by metal-induced lateral crystallization," in 56th Annual Device Research Conference Digest (Cat. No.98TH8373), 1998, pp. 100-101.
[13] I. Present, "Cramming more components onto integrated circuits," Readings in computer architecture, vol. 56, 2000.
[14] A. M. Ionescu, "Nanowire transistors made easy," Nature Nanotechnology, vol. 5, p. 178, 03/01/online 2010.
[15] C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J.-P. Colinge, "Junctionless multigate field-effect transistor," Applied Physics Letters, vol. 94, no. 5, 2009.
[16] D.-I. Moon, S.-J. Choi, J. P. Duarte, and Y.-K. Choi, "Investigation of Silicon Nanowire Gate-All-Around Junctionless Transistors Built on a Bulk Substrate," IEEE Transactions on Electron Devices, vol. 60, no. 4, pp. 1355-1360, 2013.
[17] H. B. Chen et al., "Characteristics of Gate-All-Around Junctionless Poly-Si TFTs With an Ultrathin Channel," IEEE Electron Device Letters, vol. 34, no. 7, pp. 897-899, 2013.
[18] J.-P. Colinge et al., "Reduced electric field in junctionless transistors," Applied Physics Letters, vol. 96, no. 7, 2010.
[19] J. P. Colinge et al., "Junctionless Transistors: Physics and Properties," in Semiconductor-On-Insulator Materials for Nanoelectronics Applications(Engineering Materials, 2011, pp. 187-200.
[20] S. Monfray et al., "50 nm-Gate All Around (GAA)-Silicon On Nothing (SON)-devices: a simple way to co-integration of GAA transistors within bulk MOSFET process," in 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303), 2002, pp. 108-109.
[21] B. Doyle et al., "Tri-Gate fully-depleted CMOS transistors: fabrication, design and layout," in 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407), 2003, pp. 133-134.
[22] P. Jong-Tae and J. P. Colinge, "Multiple-gate SOI MOSFETs: device design guidelines," IEEE Transactions on Electron Devices, vol. 49, no. 12, pp. 2222-2229, 2002.
[23] H. Lee et al., "Sub-5nm All-Around Gate FinFET for Ultimate Scaling," in 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers., 2006, pp. 58-59.
[24] Y. Fu-Liang et al., "5nm-gate nanowire FinFET," in Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004., 2004, pp. 196-197.
[25] K. Okano et al., "Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length," in IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., 2005, pp. 721-724.
[26] H. Chenming, "Device challenges and opportunities," in Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004., 2004, pp. 4-5.
[27] H. C. Lin, C. I. Lin, Z. M. Lin, B. S. Shie, and T. Y. Huang, "Characteristics of Planar Junctionless Poly-Si Thin-Film Transistors With Various Channel Thickness," IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 1142-1148, 2013.
[28] K.-M. Chen et al., "Channel Thickness Effect on High-Frequency Performance of Poly-Si Thin-Film Transistors," IEEE Electron Device Letters, vol. 34, no. 8, pp. 1020-1022, 2013.
[29] S.-J. Choi, D.-I. Moon, S. Kim, J. P. Duarte, and Y.-K. Choi, "Sensitivity of Threshold Voltage to Nanowire Width Variation in Junctionless Transistors," IEEE Electron Device Letters, vol. 32, no. 2, pp. 125-127, 2011.
[30] L.-C. Chen et al., "The physical analysis on electrical junction of junctionless FET," AIP Advances, vol. 7, no. 2, 2017.
[31] C. Ya-Chi et al., "Characteristics of a Novel Poly-Si P-Channel Junctionless Thin-Film Transistor With Hybrid P/N-Substrate," IEEE Electron Device Letters, vol. 36, no. 2, pp. 159-161, 2015.
[32] Y. C. Cheng, H. B. Chen, C. Y. Chang, C. H. Cheng, Y. J. Shih, and Y. C. Wu, "A highly scalable poly-Si junctionless FETs featuring a novel multi-stacking hybrid P/N layer and vertical gate with very high Ion/Ioff for 3D stacked ICs," in 2016 IEEE Symposium on VLSI Technology, 2016, pp. 1-2.
[33] C.-H. Kuo, H.-C. Lin, and T.-Y. Huang, "Fabrication and characterization of field-effect transistors with suspended-nanowire channels," Japanese Journal of Applied Physics, vol. 53, no. 5, 2014.
[34] K.-M. Liu, F.-I. Peng, K.-P. Peng, H.-C. Lin, and T.-Y. Huang, "The effects of channel doping concentration for n-type junction-less double-gate poly-Si nanostrip transistors," Semiconductor Science and Technology, vol. 29, no. 5, 2014.
[35] D. R. Hsieh, Y. D. Chan, P. Y. Kuo, and T. S. Chao, "Investigation of Channel Doping Concentration and Reverse Boron Penetration on P-Type Pi-Gate Poly-Si Junctionless Accumulation Mode FETs," IEEE Journal of the Electron Devices Society, vol. 6, pp. 314-319, 2018.
[36] M. Gupta and A. Kranti, "Variation of Threshold Voltage With Temperature in Impact Ionization-Induced Steep Switching Si and Ge Junctionless MOSFETs," IEEE Transactions on Electron Devices, vol. 64, no. 5, pp. 2061-2066, 2017.
[37] S. Ramaswamy and M. J. Kumar, "Junctionless Impact Ionization MOS: Proposal and Investigation," IEEE Transactions on Electron Devices, vol. 61, no. 12, pp. 4295-4298, 2014.
[38] M. Orlowski, S. W. Sun, P. Blakey, and R. Subrahmanyan, "Two-dimensional simulation of band-to-band tunneling in an LDD-MOSFET: explanation of experimental results and prediction of new phenomena," in Digest of Technical Papers.1990 Symposium on VLSI Technology, 1990, pp. 67-68.
[39] T. Sameshima, N. Andoh, and Y. Andoh, "Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon Films by Heat Treatment at 250°C," Japanese Journal of Applied Physics, vol. 44, no. 3, pp. 1186-1191, 2005.
[40] H. Kinoshita, T. H. Huang, and D. L. Kwong, "Modeling of suppressed dopant activation in boron‐ and BF2‐implanted silicon," Journal of Applied Physics, vol. 75, no. 12, pp. 8213-8215, 1994.
[41] R. Trevisoli, R. Trevisoli Doria, M. de Souza, and M. A. Pavanello, "Substrate Bias Influence on the Operation of Junctionless Nanowire Transistors," IEEE Transactions on Electron Devices, vol. 61, no. 5, pp. 1575-1582, 2014.
[42] R. K. Baruah and R. P. Paily, "Impact of active well biasing on process-induced variations of a bulk planer junctionless transistor," in 2016 3rd International Conference on Emerging Electronics (ICEE), 2016, pp. 1-4.
[43] M. P. V. Kumar, J. Y. Lin, K. H. Kao, and T. S. Chao, "Junctionless FETs With a Fin Body for Multi-VTH and Dynamic Threshold Operation," IEEE Transactions on Electron Devices, vol. 65, no. 8, pp. 3535-3542, 2018.
[44] Cheng, Chien-Shan, "A Study of Junctionless Ultra-Thin Poly-Si Nano-belt Transistor with Different Underlying Materials," NCTU Dissertation, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊