跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游皓翔
研究生(外文):Yu, Hao-Hsiang
論文名稱:應用於W頻帶的互補式金氧半製程之移相器設計
論文名稱(外文):W-band Phase Shifter Design in CMOS process
指導教授:胡樹一
指導教授(外文):Hu, Shu-I
口試委員:胡樹一
口試委員(外文):Hu, Shu-I
口試日期:2018-01-11
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:48
中文關鍵詞:移相器可變增益放大器耦合器CMOS 積體電路W頻帶相位陣列
外文關鍵詞:Phase shiftersVariable gain amplifierCouplersCMOS integrated circuitsW bandPhase array
相關次數:
  • 被引用被引用:0
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文介紹一種數控式移相器的電路架構,並說明在毫米波訊號的應用中,移相器如何以積體電路形式實作。內文將分析移相器的操作原理與子電路的電路特性。本文使用台積電的65nm CMOS與40nm CMOS製程實作主動式數控寬帶移相器。電路工作於W頻段,橫跨77GHz至110GHz。移相器可由三位元的數位訊號以時序輸入的方式,在0˚至360˚之間可提供32個不同的相位延遲輸出,其輸出角度彼此間隔皆為11.25º。以40nm CMOS製程將移相器、混頻器、三倍頻器與中頻放大器整合為寬帶接收機。透過本文的接收機電路,可同時改變輸入訊號的相位延遲並且將頻率降至中頻,證明此電路的高整合度。最後以兩種不同的製程實作結果,討論移相器的電路特性以及不同子電路架構下的優缺點。
Architecture for digital-control phase shifters is introduced in this thesis. The implementation of the phase shifter in W-band integrated circuits is discussed. The operational principles of the phase shifter and the characteristics of the sub-circuits are examined. Two processes, TSMC 65nm-CMOS and TSMC 40nm-CMOS, are proposed to fabricate the phase shifter. The phase shifter fed with three-bit digital signals in time sequence can offers 32 phase delay outputs within the range from 0˚ to 360˚ in a step of 11.25˚. A broadband receiver comprising the phase shifter, a mixer, a tripler, and an IF amplifier was designed and fabricated in a single chip through the 40nm-version process. The receiver offers tunable phase delays and simultaneous down-conversion for the signals. This result demonstrates the feature of high integration of the proposed phase shifter. At the end, based on the fabrication results of the phase shifters by the two proposed processes, the advantages and disadvantages of their characteristics and associated sub-circuit structures are discussed.
目錄

中文摘要 ……………………………………………………………… i
英文摘要 ……………………………………………………………… ii
目錄 ……………………………………………………………………iii
圖目錄 …………………………………………………………………iv
1. 序論……………………………………………………….… 1
1.1 毫米波的應用與現況…………………………………… 1
1.2 毫米波通訊與雷達系統之應用………………………… 2
1.3 研究動機………………………………………………… 3
2. 移相器設計原理與簡介……………………………………. 4
2.1 移相器設計原理…………………………………….…… 4
2.2 移相器架構設計…………………………………….…… 6
3. 移相器實作於65奈米CMOS製程…… ……………………. 8
3.1 VGA的操作原理與電路架構…………………………… 8
3.2 VGA的增益選擇與分析………………………………… 11
3.3 四相位被動電路………………………………………… 13
3.4 分量相加與相位翻轉電路………………………………. 17
3.5 模擬結果與電路佈局……………………………………. 21
4. 移相器整合於40奈米CMOS製程的寬頻接收機 ……… 26
4.1 接收機電路架構………………………………………… 26
4.2 VGA的電流補償………………………………………… 27
4.3 數位邏輯設計與改進……………………………………. 29
4.4 混頻器與三倍頻器設計…………………………………. 31
4.5 電路模擬結果與佈局圖…………………………………. 35
5. 研究成果分析與結論………………………………………. 39
5.1 移相器的模擬結果分析………………………………… 39
5.2 研究結論與規格比較…………………………………… 41
6. 未來展望…………………………………………………… 43
7. 文獻參考…………………………………………………… 46
[1] P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech., pp. 910-928, no. 3, vol. 50, Mar. 2002.
[2] D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Select. Topics Quantum Electron., pp. 679–692, vol. 2, Sept. 1996.
[3] S. Hunsche, M. C. Nuss, “Terahertz ‘T-ray’ tomography,” 1998 Proceeding of Millimeter Submillimeter Waves Application Conference, pp. 426–433, July 1998.
[4]C. Y. Chen, Y. S. Wang, Y. H. Lin, Y. H. Hsiao, Y. C. Wu and H. Wang, "A 36–40 GHz full 360° ultra-low phase error passive phase shifter with a novel phase compensation technique," 2017 European Radar Conference (EURAD), Nuremberg, Germany, 2017, pp. 397-400.
[5] D. Pepe, D. Zito, “A 78.8‒92.8 GHz 4-bit 0‒360º active phase shifter in 28nm FDSOI CMOS with 2.3dB average peak gain,” European SSCC, 2015.
[6] Y. Yu, P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher and A. H. M. van Roermund, "A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems," in IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1697-1709, Sept. 2010.
[7] A. Babakhani, X. Guan, A. Komijani, A. Natarajan, and A. Hajimiri, “A 77-GHz Phased-Array Transceiver with On-Chip Antennas in Silicon: Receiver and Antennas”, IEEE Journal of Solid-State Circuits, vol. 41, pp. 2795-2806, Dec. 2006.
[8] Y. Yang, C. Gu, Y. Li, R. Gale and C. Li, "Doppler Radar Motion Sensor With CMOS Digital DC-Tuning VGA and Inverter-Based Sigma-Delta Modulator," in IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 11, pp. 2666-2674, Nov. 2014.
[9]T. B. Kumar, K. Ma and K. S. Yeo, "A 4 GHz 60 dB Variable Gain Amplifier With Tunable DC Offset Cancellation in 65 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 1, pp. 37-39, Jan. 2015.
[10]Yanjie Wang, B. Afshar, Tuan-Yi Cheng, V. Gaudet and A. M. Niknejad, "A 2.5mW inductorless wideband VGA with dual feedback DC-offset correction in 90nm CMOS technology," 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, 2008, pp. 91-94.
[11]Kian Sen Ang and I. D. Robertson, "Analysis and design of impedance-transforming planar Marchand baluns," in IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 2, pp. 402-406, Feb 2001.
[12]I. Gertman and E. Socher, "CMOS distributed amplifiers using high-pass and low-pass artificial transmission lines," 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013), Tel Aviv, 2013, pp. 1-5.
[13]C. S. Aitchison, "The Artificial Transmission Line as an Indirect Optical Modulator," 1991 21st European Microwave Conference, Stuttgart, Germany, 1991, pp. 1323-1328.
[14]K. L. Wu, K. T. Lai, R. Hu, C. F. Jou, D. C. Niu and Y. S. Shiao, "77–110 GHz 65-nm CMOS Power Amplifier Design," in IEEE Transactions on Terahertz Science and Technology, vol. 4, no. 3, pp. 391-399, May 2014.
[15] L. Zhou, C. C. Wang, Z. Chen and P. Heydari, "A W-band CMOS Receiver Chipset for Millimeter-Wave Radiometer Systems," in IEEE J. of Solid-State Circuits, vol. 46, no. 2, pp. 378-391, Feb. 2011.
[16] S. T. Nicolson et al., “Single-chip W-band SiGe HBT transceivers and receivers for doppler radar and millimeter-wave imaging,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2206–2217, Oct. 2008.

[17]R. Hu, "Wide-band matched LNA design using transistor's intrinsic gate-drain capacitor," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 3, pp. 1277-1286, March 2006.
[18]M. Varonen et al., "A 75–116-GHz LNA with 23-K noise temperature at 108 GHz," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, 2013, pp. 1-3.
[19]S. Weinreb, R. Lai, N. Erickson, T. Gaier and J. Wielgus, "W-band InP wideband MMIC LNA with 30 K noise temperature," 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282), Anaheim, CA, USA, 1999, pp. 101-104 vol.1.
[20]K. A. Townsend, J. W. Haslett and J. Nielsen, "A CMOS Integrated Power Detector for UWB," 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, 2007, pp. 3039-3042.
[21]S. Sakphrom and A. Thanachayanont, "A low-power CMOS RF power detector," 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012), Seville, 2012, pp. 177-180.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top