|
Alanko, J., Mai, A., Jacquemet, G., Schauer, K., Kaukonen, R., Saari, M., Goud, B., and Ivaska, J. (2015). Integrin endosomal signalling suppresses anoikis. Nature Cell Biology 17, 1412–1421. Arnaout, M.A., Goodman, S.L., and Xiong, J.-P. (2007). Structure and mechanics of integrin-based cell adhesion. Current Opinion in Cell Biology 19, 495–507. Benoit, Y.D., Groulx, J.-F., Gagné, D., and Beaulieu, J.-F. (2012). RGD-Dependent Epithelial Cell-Matrix Interactions in the Human Intestinal Crypt. Journal of Signal Transduction 2012, 1–10. Civera, M., Arosio, D., Bonato, F., Manzoni, L., Pignataro, L., Zanella, S., Gennari, C., Piarulli, U., and Belvisi, L. (2017). Investigating the Interaction of Cyclic RGD Peptidomimetics with αVβ6 Integrin by Biochemical and Molecular Docking Studies. Cancers 9, 128. Demircioglu, F., and Hodivala-Dilke, K. (2016). αvβ3 Integrin and tumour blood vessels—learning from the past to shape the future. Current Opinion in Cell Biology 42, 121–127. Desgrosellier, J.S., and Cheresh, D.A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer 10, 9–22. Dong, X., Hudson, N.E., Lu, C., and Springer, T.A. (2014). Structural determinants of integrin β-subunit specificity for latent TGF-β. Nature Structural & Molecular Biology 21, 1091–1096. Ginsberg, M.H., Partridge, A., and Shattil, S.J. (2005). Integrin regulation. Current Opinion in Cell Biology 17, 509–516. Gupta, S., Pfannkoch, E., and Regnier, F.E. (1983). High-performance cation-exchange chromatography of proteins. Analytical Biochemistry 128, 196–201. Hatley, R.J.D., Macdonald, S.J.F., Slack, R.J., Le, J., Ludbrook, S.B., and Lukey, P.T. (2018). An αv-RGD Integrin Inhibitor Toolbox: Drug Discovery Insight, Challenges and Opportunities. Angewandte Chemie International Edition 57, 3298–3321. Henderson, N.C., and Sheppard, D. (2013). Integrin-mediated regulation of TGFβ in fibrosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1832, 891–896. Humphries, M.D., Stewart, R.D., and Gurney, K.N. (2006). A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia. J. Neurosci. 26, 12921. Hynes, R.O. (2002). Integrins: Bidirectional, Allosteric Signaling Machines. Cell 110, 673–687. John, A.E., Porte, J., Jenkins, G., and Tatler, A.L. (2017). Methods for the Assessment of Active Transforming Growth Factor-β in Cells and Tissues. In Fibrosis, L. Rittié, ed. (New York, NY: Springer New York), pp. 351–365. Kapp, T.G., Fottner, M., Maltsev, O.V., and Kessler, H. (2016). Small Cause, Great Impact: Modification of the Guanidine Group in the RGD Motif Controls Integrin Subtype Selectivity. Angewandte Chemie International Edition 55, 1540–1543. Kotecha, A., Wang, Q., Dong, X., Ilca, S.L., Ondiviela, M., Zihe, R., Seago, J., Charleston, B., Fry, E.E., Abrescia, N.G.A., et al. (2017). Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nature Communications 8, 15408. Leask, A., and Abraham, D.J. (2004). TGF-β signaling and the fibrotic response. The FASEB Journal 18, 816–827. Levental, K.R., Yu, H., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F.T., Csiszar, K., Giaccia, A., Weninger, W., et al. (2009). Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell 139, 891–906. Ley, K., Rivera-Nieves, J., Sandborn, W.J., and Shattil, S. (2016). Integrin-based therapeutics: biological basis, clinical use and new drugs. Nature Reviews Drug Discovery 15, 173–183. Li, C., Wen, A., Shen, B., Lu, J., Huang, Y., and Chang, Y. (2011). FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnology 11, 92. Liu, L., You, Z., Yu, H., Zhou, L., Zhao, H., Yan, X., Li, D., Wang, B., Zhu, L., Xu, Y., et al. (2017). Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nature Materials 16, 1252–1261. Lo, S.H. (2006). Focal adhesions: What’s new inside. Developmental Biology 294, 280–291. Luo, B.-H., and Springer, T.A. (2006). Integrin structures and conformational signaling. Current Opinion in Cell Biology 18, 579–586. Maltsev, O.V., Marelli, U.K., Kapp, T.G., Di Leva, F.S., Di Maro, S., Nieberler, M., Reuning, U., Schwaiger, M., Novellino, E., Marinelli, L., et al. (2016). Stable Peptides Instead of Stapled Peptides: Highly Potent αvβ6-Selective Integrin Ligands. Angewandte Chemie International Edition 55, 1535–1539. Margadant, C., and Sonnenberg, A. (2010). Integrin–TGF‐β crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11, 97. Nagae, M., Re, S., Mihara, E., Nogi, T., Sugita, Y., and Takagi, J. (2012). Crystal structure of α5β1 integrin ectodomain: Atomic details of the fibronectin receptor. J Cell Biol 197, 131. Nieberler, M., Reuning, U., Reichart, F., Notni, J., Wester, H.-J., Schwaiger, M., Weinmüller, M., Räder, A., Steiger, K., and Kessler, H. (2017). Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers 9, 116. Niu, G., and Chen, X. (2011). Why Integrin as a Primary Target for Imaging and Therapy. 18. Rafii, S., Butler, J.M., and Ding, B.-S. (2016). Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325. Reynolds, A.R., Hart, I.R., Watson, A.R., Welti, J.C., Silva, R.G., Robinson, S.D., Da Violante, G., Gourlaouen, M., Salih, M., Jones, M.C., et al. (2009). Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nature Medicine 15, 392–400. Rockey, D.C., Bell, P.D., and Hill, J.A. (2015). Fibrosis — A Common Pathway to Organ Injury and Failure. New England Journal of Medicine 372, 1138–1149. Rodriguez-Nieves, J.A., and Macoska, J.A. (2013). Prostatic fibrosis, lower urinary tract symptoms and BPH. Nature Reviews Urology 10, 546–550. Rowedder, J.E., Ludbrook, S.B., and Slack, R.J. (2017). Determining the True Selectivity Profile of αv Integrin Ligands Using Radioligand Binding: Applying an Old Solution to a New Problem. SLAS DISCOVERY: Advancing Life Sciences R&D 22, 962–973. Seguin, L., Desgrosellier, J.S., Weis, S.M., and Cheresh, D.A. (2015). Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends in Cell Biology 25, 234–240. Steri, V., Ellison, T.S., Gontarczyk, A.M., Weilbaecher, K., Schneider, J.G., Edwards, D., Fruttiger, M., Hodivala-Dilke, K.M., and Robinson, S.D. (2014). Acute Depletion of Endothelial β3-Integrin Transiently Inhibits Tumor Growth and Angiogenesis in MiceNovelty and Significance. Circulation Research 114, 79–91. Takada, Y., Ye, X., and Simon, S. (2007). The integrins. Genome Biology 8, 215. Weller, M., Nabors, L.B., Gorlia, T., Leske, H., Rushing, E., Bady, P., Hicking, C., Perry, J., Hong, Y.-K., Roth, P., et al. (2016). Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome. Oncotarget 7. Wolfenson, H., Lavelin, I., and Geiger, B. (2013). Dynamic Regulation of the Structure and Functions of Integrin Adhesions. Developmental Cell 24, 447–458. Wynn, T. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology 214, 199–210. Wynn, T.A., and Ramalingam, T.R. (2012). Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Medicine 18, 1028–1040. Xiong, J.-P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A. (2002). Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand. 296, 6. 何艾樺 (2017). 設計具有專一性辨識整合蛋白αIIbβ3與低出血性風險之去整合突變蛋白 = Design of Integrin αIIbβ3-Specific Disintegrin Variants with a Low Risk of Bleeding. 陳柔瑞 (2016). 去整合蛋白的KGD迴圈、C端區域以及二聚體對於整合蛋白交互作用所扮演的角色 = The Roles of the KGD Loop, C-terminus, and Dimeric Forms of Disintegrins in the Interactions of Integrins. 張耀宗 (2014). 馬來腹蛇蛇毒蛋白其RGD loop、 linker區域與C端突變蛋白的結構與辨識整合蛋白活性的關聯性研究 = Structure-activity relationships of the RGD loop, linker region, and C-terminus of Rhodostomin mutants in the recognition of integrins. 楊智凱 (2014). 探討C端區域在馬來腹蛇蛇毒蛋白中對於整合蛋白辨識所扮演的角色 = The Role of C-terminal Region of Rhodostomin in the Recognition of Integrins. 詹秉澤 (2012). 利用馬來腹蛇蛇毒蛋白作為架構設計針對整合蛋白αvβx與α5β1之專一性拮抗物 = Development of Integrins αvβx and α5β1-specific Antagonists Using Rhodostomin as a Scaffold. 梁天豪 (2012). 利用馬來腹蛇蛇毒蛋白探討去整合蛋白C端序列對於整合蛋白的辨識及受質誘導結合位的表現 = The Use of Rhodostomin to Study the Effect of C-terminal Region of Disintegrin on Recognition and Ligand-Induced Binding Site of Integrins. 郭芷歆 (2010). 探討ARGDMX motif在Rhodostomin中對於辨識整合蛋白αvβ3、αIIbβ3和α5β1所扮演的角色 = The Role of the ARGDMX Motif of Rhodostomin in Recognition of Integrins αvβ3, αIIbβ3 and α5β1.
|