跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴芷涵
研究生(外文):Lai, Chih-Han
論文名稱:室內LED光源應用正交分頻多工技術之高速可見光通訊
論文名稱(外文):High-Speed Indoor LED-based Visible Light Communication using Orthogonal Frequency Division Multiplexing Modulation
指導教授:陳智弘陳智弘引用關係
指導教授(外文):Chen, Jyehong
口試委員:賴暎杰馮開明魏嘉建
口試委員(外文):Lai, Yin-ChiehFeng, Kai-MingWei, Chia-Chien
口試日期:2017-08-14
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:72
中文關鍵詞:可見光通訊無線光通訊正交分頻多工技術多重輸入輸出技術發光二極體
外文關鍵詞:Visible light communicationOptical wireless communicationOFDM modulationMultiple-Input Multiple-OutputLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:419
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
由於行動數據資料使用量快速的增長,使得目前使用的射頻頻譜資源正在大量的減少,可預測不久的將來將會面臨資源匱乏的窘境。因此無線網路服務提供商正在尋找可替代補充的技術。而可見光通訊技術綜合使用現成的商用發光二極體(LED)以及可見光頻段頻譜不需使用執照費用等優點,被視為無線區域網路的潛力發展技術。然而商用的白色磷光LED有較窄的調變頻寬難以支持>Gbps的系統傳輸速度。
在本篇論文中,使用前向等化電路應用有較高頻譜使用效率的正交分頻多工調變技術以及自適應位元負載演算法,在22多重輸入輸出成像系統中,達到>Gbps傳輸速度。接著在第二部分,使用紅,綠,藍發光二極體(RGB LEDs)在22多重輸入輸出成像系統架構下,使用正交分頻多工調變技術以及自適應位元負載演算法並以偏振片技術做訊號解調,系統達到單一波長2.12 Gbit/s傳輸速度。在第三部份中,建構了可見光通訊模擬環境,在44多重輸入輸出非成像系統架構下,以zero-forcing演算法以及 singular value decomposition演算法做訊號解調,分別達到429.6 Mbit/s以及 439.3 Mbit/s的系統傳輸速度。
Driven by the enormous growth of mobile data, as expected, the depleting radio frequency (RF) bandwidth has intensified the competetion among wireless service providers and eventaully turned into a hot potato. Using the off-the-shelf phosphor light-emitting diodes (LEDs) and license-free band, visible light communication (VLC) has been emerging as an complementary technology for wireless access network. Typically, however, phosphor LEDs exhibit narrow modulation bandwidth (few to ten MHz) and therby are difficult to support >Gbps traffic rate. Extending modulation bandwidth by using pre-equalizer and applying spectral-efficient modulation scheme might be the key to high-speed VLC, First, by the use of the pre-equalizer and orthogonal frequency division multiplexing (OFDM) modulation with bit-loading algorithm, we demonstrated >Gbps data throughput under a under 2×2 imaging multiple input and multiple output (MIMO) configuration. Second, using commercial red-green-blue (RGB) LEDs, optical polarizers, and OFDM modulation with bit-loading algorithm, we successfully achieved a high data rate per wavelength of 2.12 Gbit/s under a 2×2 imaging MIMO wavelength division multiplexing (WDM) configuration. In the third part, using OFDM modulation and bit-loading algorithm, we compared zero-forcing (ZF) and singular value decomposition (SVD) as MIMO demultiplexing algorithms under a non-imaging 4×4 MIMO configuration by building a VLC simulation environment. Simulation results show total data rates of 429.6 Mbit/s and 439.3 Mbit/s by the use of ZF algorithm and SVD algorithm, respectively.
ABSTRACT .................................................................................................. i
ACKNOWLEDGMENTS ..........................................................................iii
TABLE OF CONTENTS ..........................................................................v
LIST OF FIGURES ...................................................................................viii
LIST OF TABLES......................................................................................xii

Chapter 1. ....................................................................................................1
1.1 Overview: Growth of the Internet Traffic ..................................................... 1
1.2 Wireless Local Area Network ....................................................................... 2
1.2.1 Requirement of Wireless LAN .................................................... 3
1.2.2 Wi-Fi, 60GHz (V band) and Visible Light Communication ....... 3
1.2.3 State-of-the-Art Indoor Visible Light Communication ............... 6

Chapter 2. ....................................................................................................8
2.1 Imaging Optical System................................................................................ 9
2.2 Non-Imaging Optical System........................................................................ 9
2.2.1 Transmitter ................................................................................. 10
2.2.2 Channel ...................................................................................... 11
2.2.3 Receiver ..................................................................................... 13

Chapter 3. ..................................................................................................16
3.1 Basic Light-Emitting Diode Principles ....................................................... 17
3.1.1 Characteristics of Phosphorescent LEDs and RGB LEDs ......... 18
3.2 DSP-based Optical MIMO Techniques ...................................................... 20
3.2.1 Quadrature Amplitude Modulation ............................................ 21
3.2.2 Orthogonal Frequency Division Multiplexing ........................... 23
3.2.3 Bit-loading Algorithm ................................................................ 26
3.2.4 MIMO Multiplexing and Demultiplexing Principle .................. 28
3.2.4.1 Using Zero-Forcing Scheme ..................................29
3.2.4.2 Using Singular Value Decomposition Scheme ......32
3.3 Optical Polarizer-based MIMO Techniques ............................................... 34

Chapter 4. ..................................................................................................36
4.1 Phosphorescent LED-based VLC Under 2×2 Imaging MIMO Configuration Using OFDM with Bit-Loading Algorithm .............................. 37
4.1.1 Using DSP-based Technique ..................................................... 38
4.2 Phosphorescent LED-based VLC Under 2×2 Non-Imaging MIMO Configuration Using OFDM with Bit-Loading Algorithm .............................. 42
4.2.1 Using DSP-based Technique ..................................................... 43
4.2.2 Using Optical Polarizer-based Technique.................................. 46
4.2.3 Investigating Upper bound of Optical Polarizer Technique ...... 49
4.3 RGB LED-based VLC Under 2×2 Imaging MIMO Configuration Using Optical Polarizer............................................................................................... 53
4.4 Simulation Results Based on Indoor VLC 4×4 Non-Imaging MIMO Model Using OFDM with Bit-Loading Algorithm .......................................... 55

Chapter 5. ..................................................................................................63

Reference ...................................................................................................66
[1] Cisco, white paper, “Cisco Global Cloud Index: Forecast and Methodology, 2016-2021”, 2017, Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
[2] Qualcomm, “IEEE 802.11ac: The next Evolution of Wi-Fi Standards”, 2012, Available: https://www.qualcomm.com/documents/qualcomm-research-ieee80211ac-next-evolution-wi-fi
[3] WLAN Radio Frequency Design Considerations, Cisco, Available: http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Mobility/emob41dg/emob41dg-wrapper/ch3_WLAN.pdf
[4] Michael,” How does 802.11n get to 600M bps ?” 2007, Available: https://wirevolution.com/2007/09/07/how-does-80211n-get-to-600mbps/
[5] L. Hanzo, H. Haas, S. Imre, D. O'Brien, M. Rupp and L. Gyongyosi, "Wireless Myths, Realities, and Futures: From 3G/4G to Optical and Quantum Wireless," in Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1853-1888, May 13 2012.
[6] Vubiq Networks, white paper,”The Benefits of 60 GHz BroadbandWireless Communication Technology” , Available: https://arstechnica.com/gadgets/2016/12/802-11ad-wifi-guide-review/
[7] IEEE 802.15 Working group for Wireless Personal Area Networks, Available: http://www.ieee802.org/15/pub/IEEE%20802_15%20WPAN%2015_7%20Revision1%20Task%20Group.htm
[8] H. Haas, L. Yin, Y. Wang and C. Chen, "What is LiFi?," in Journal of Lightwave Technology, vol. 34, no. 6, pp. 1533-1544, March15, 15 2016.
[9] H. Le Minh et al., "High-Speed Visible Light Communications Using Multiple-Resonant Equalization," in IEEE Photonics Technology Letters, vol. 20, no. 14, pp. 1243-1245, July15, 2008.
[10] J. Vučić et al., "230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs," 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference, San Diego, CA, 2010, pp. 1-3.
[11] A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury and E. Ciaramella, "1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation," in IEEE Photonics Journal, vol. 4, no. 5, pp. 1465-1473, Oct. 2012.
[12] G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, "3.4 Gbit/s visible optical wireless transmission based on RGB LED," Opt. Express 20, B501-B506 (2012)
[13] H. Chun et al., "LED Based Wavelength Division Multiplexed 10 Gb/s Visible Light Communications," in Journal of Lightwave Technology, vol. 34, no. 13, pp. 3047-3052, July1, 1 2016.
[14] Z. Sun et al., "A Power-Type Single GaN-Based Blue LED With Improved Linearity for 3 Gb/s Free-Space VLC Without Pre-equalization," in IEEE Photonics Journal, vol. 8, no. 3, pp. 1-8, June 2016.
[15] Giulio Cossu, Wajahat Ali, Raffaele Corsini, and Ernesto Ciaramella, "Gigabit-class optical wireless communication system at indoor distances (1.5 – 4 m)," Opt. Express 23, 15700-15705 (2015)
[16] X. Huang, J. Shi, J. Li, Y. Wang and N. Chi, "A Gb/s VLC Transmission Using Hardware Preequalization Circuit," in IEEE Photonics Technology Letters, vol. 27, no. 18, pp. 1915-1918, Sept.15, 15 2015.
[17] X. Huang et al., "2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED," in IEEE Photonics Journal, vol. 7, no. 5, pp. 1-8, Oct. 2015.
[18] G. Cossu, R. Corsini, A. M. Khalid and E. Ciaramella, "Bi-directional 400 Mbit/s LED-based optical wireless communication for non-directed line-of-sight transmission," OFC 2014, San Francisco, CA, 2014, pp. 1-3.
[19] C. H. Yeh, C. W. Chow, H. Y. Chen, J. Chen, and Y. L. Liu, "Adaptive 84.44−190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance," Opt. Express 22, 9783-9788 (2014)
[20] Occupational-Safety-and-Health-Branch-Labour-Department, “Simple Guide to Health Risk Assessment - Office Environment Series OE 2/99,” 1998.
[21] T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron., vol. 50, no. 1, pp.100–107, Feb. 2004.
[22] L. Zeng, D. O'Brien, H. Le-Minh, K. Lee, D. Jung and Y. Oh, "Improvement of Date Rate by using Equalization in an Indoor Visible Light Communication System," 2008 4th IEEE International Conference on Circuits and Systems for Communications, Shanghai, 2008, pp. 678-682.
[23] L. Zeng et al., "High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting," in IEEE Journal on Selected Areas in Communications, vol. 27, no. 9, pp. 1654-1662, December 2009.
[24] J. Grubor, S. Randel, K. D. Langer and J. W. Walewski, "Broadband Information Broadcasting Using LED-Based Interior Lighting," in Journal of Lightwave Technology, vol. 26, no. 24, pp. 3883-3892, Dec.15, 2008.
[25] V. Jungnickel, V. Pohl, S. Nonnig and C. von Helmolt, "A physical model of the wireless infrared communication channel," in IEEE Journal on Selected Areas in Communications, vol. 20, no. 3, pp. 631-640, Apr 2002.th
[26] A. Jovicic, J. Li and T. Richardson, "Visible light communication: opportunities, challenges and the path to market," in IEEE Communications Magazine, vol. 51, no. 12, pp. 26-32, December 2013.
[27] C. H. Yeh et al., "Theory and Technology for Standard WiMAX Over Fiber in High Speed Train Systems," in Journal of Lightwave Technology, vol. 28, no. 16, pp. 2327-2336, Aug.15, 2010.
[28] N. Chi, Y. Zhou, J. Shi, Y. Wang, and X. Huang, "Enabling Technologies for High Speed Visible Light Communication," in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th1E.3.
[29] Y. Wang, L. Tao, X. Huang, J. Shi and N. Chi, "Enhanced Performance of a High-Speed WDM CAP64 VLC System Employing Volterra Series-Based Nonlinear Equalizer," in IEEE Photonics Journal, vol. 7, no. 3, pp. 1-7, June 2015.
[30] J. Vucic, C. Kottke, S. Nerreter, K. D. Langer and J. W. Walewski, "513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED," in Journal of Lightwave Technology, vol. 28, no. 24, pp. 3512-3518, Dec.15, 2010.
[31] Y. Wang and N. Chi, "Demonstration of High-Speed 2 × 2 Non-Imaging MIMO Nyquist Single Carrier Visible Light Communication With Frequency Domain Equalization," in Journal of Lightwave Technology, vol. 32, no. 11, pp. 2087-2093, June1, 2014.
[32] M. Z. Afgani, H. Haas, H. Elgala and D. Knipp, "Visible light communication using OFDM," 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006., Barcelona, 2006, pp. 6 pp.-134.
[33] J. Campello, “Optical discrete bit loading for multicarrier modulation systems,” in Proc. International Symposium on Information Theory (ISIT), Cambridge, Massachusetts, United States, Aug 1998, pp. 193.
[34] A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury and E. Ciaramella, "1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation," in IEEE Photonics Journal, vol. 4, no. 5, pp. 1465-1473, Oct. 2012.
[35] Q. H. Spencer, A. L. Swindlehurst and M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels," in IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461-471, Feb. 2004.
[36] C. Lin, A. Ng’oma, W. Lee, C. Wei, C. Wang, T. Lu, J. Chen, W. Jiang, and C. Ho, "2 × 2 MIMO radio-over-fiber system at 60 GHz employing frequency domain equalization," Opt. Express 20, 562-567 (2012).
[37] I-Cheng Lu, Yen-Liang Liu and Chih-Han Lai, "High-speed 2×2 MIMO-OFDM visible light communication employing phosphorescent LED," 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, 2016, pp. 222-224.
[38] Dominic O'Brien ; Hoa Le Minh ; Lubin Zeng ; Grahame Faulkner ; Kyungwoo Lee ; Daekwang Jung ; YunJe Oh ; Eun Tae Won; Indoor visible light communications: challenges and prospects. Proc. SPIE 7091, Free-Space Laser Communications VIII, 709106 (August 19, 2008);
[39] T. Fath and H. Haas, "Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments," in IEEE Transactions on Communications, vol. 61, no. 2, pp. 733-742, February 2013.
[40] Y. Hong, T. Wu and L. K. Chen, "On the Performance of Adaptive MIMO-OFDM Indoor Visible Light Communications," in IEEE Photonics Technology Letters, vol. 28, no. 8, pp. 907-910, April15, 15 2016.
[41] Y. Hong, L. K. Chen and J. Zhao, "Experimental demonstration of performance-enhanced MIMO-OFDM visible light communications," 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, 2017, pp. 1-3.
[42] I. Lu, C. Lai, C. Yeh, and J. Chen, "6.36 Gbit/s RGB LED-based WDM MIMO Visible Light Communication System Employing OFDM Modulation," in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.39.
[43] ITU-T Recommendation G.975.1, Appendix I.9, 2004.
Lo´pez-Herna´ndez FJ, Pe´rez-Jime´nez R, Santamarı´a A; Ray-tracing algorithms for fast calculation of the channel impulse response on diffuse ir wireless indoor channels. Opt. Eng. 0001;39(10):2775-2780.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 四千億位元高速正交分頻分波多工之長距被動光網路
2. 混和型拉曼/摻鉺光纖放大器之高速正交分頻多工系統被動光網路系統
3. 混和型拉曼/摻鉺光纖放大器之高速正交分頻 多工系統被動光網路系統應用雪崩式光電二極體與人工神經網路
4. 藉由正規化和剪裁方式降低非線性均衡器之複雜度技術並應用於850奈米垂直共振腔面射型雷射光連結系統
5. 應用LASSO和QR正交化分解來達成低複雜度的Volterra濾波器並應用在長距離被動式光纖系統中
6. 高資訊量傳輸應用於資料中心之光連結系統應用非線性失真補償技術基於波長850奈米及940奈米垂直共振腔面射型雷射
7. 基於波長850奈米垂直共振腔面射型雷射之高速率距離乘積光連結系統應用非線性失真補償技術
8. 高速且長距離之正交分頻多工強度調變直接偵測系統中的非線性失真補償
9. 短距離光連結系統以波長850奈米垂直共振腔體面射型雷射為基礎應用非線性失真補償技術
10. 在光互連系統採用垂直共振腔面射型雷射並作非線性失真補償技術
11. 以多目標基因演算法來降低非線性等化器之複雜度與其 應用在超過10 公里高速光連接系統
12. 高速正交分頻多工長距離被動光網路系統透過降低OFDM過高峰均功率比技術
13. 運用創新之混合型人工神經網路架構於高速正交分頻多工被動光網路系統
14. 矽晶光電同調收發傳輸系統數位訊號處理技術應用
15. 開發類神經網路非線性分類器及降低其複雜度之方法並應用於高速光傳輸系統