跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡昇珈
研究生(外文):Sheng-Jia Tsai
論文名稱:想像運動腦電波之一維即時游標控制
論文名稱(外文):Real-Time Control of One-Dimensional Cursor Movement Using Motor Imagery EEG
指導教授:吳育德
指導教授(外文):Yu-Te Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:51
中文關鍵詞:腦機介面想像運動即時游標控制
外文關鍵詞:BCIMotor ImageryReal-Time Cursor Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
想像運動一直是腦機介面的應用中備受重視的一個主題,本研究藉由觀察想像左右手運動的腦電波在C3和C4之特定頻帶範圍內的能量變化,讓個別受試者使用此二通道在此頻率範圍內能量的相減(C3-C4)作為各自的左與右的判斷標準,並且通過LabVIEW軟體與OpenBCI腦波儀建構一個即時的游標操控系統。此游標控制系統也在受試者自由左右控制之前,提供一個半控制的訓練,只會對判斷正確的腦波有反應,供受試者專注在產生正確的腦波以控制游標移動,並且在實驗的過程中將逐步調整判斷標準,以提升受試者對此系統與腦波的控制。
共十位受試者參與本研究,受試者的表現優劣存在個體之間的差異,我們提出r-F圖作為選定Mu與Beta頻帶範圍內相對重要的頻率的方法。也提出FA index作為判斷左右手能量差(power difference)分布圖的差異程度與mean correlation coefficient作為左與右手的能量差(power difference)大小關係。 並且發現在沒有回饋階段收到的受試者腦波計算出的FA index和mean correlation coefficient分別對有回饋控制的表現優劣均有著線性關係,此線性關係可用以預期受試者在做想像運動的表現狀況。
Motor Imagery has been an important role in developing the application of Brain Computer Interface. Based on the power changes at C3 and C4 in the task of left hand and right hand motor imagery, we developed an EEG-based real-time cursor control system based on LabVIEW and OpenBCI amplifier. The recognizing criteria of left hand and right hand motor imagery was computed from the power at C3 minus that at C4 in specific frequency band. The experimental protocol consisted of no-feedback stage, semi-control stage and self-control stage. In the no-feedback stage, the cursor moved in constant speed and subjects were asked to conduct motor imagery, pretending the cursor was controlled by themselves. In the semi-control stage, the cursor moved toward the correct direction only when the direction of imaged movement was correctly recognized, otherwise the cursor stayed stationary. The purpose of such a design was to encourage subjects to focus on the correctly recognized imaged movement and ignore the incorrect ones. In the self-control stage, the cursor movement was totally controlled by subjects.
Ten subjects participated in this study, and there exists individual difference among subjects. We found that, in the no feedback stage, the mean correlation coefficients across the selected frequency band in the r-F plots, and the FA index that measured the separation of two distributions of the task power difference can be two effective indexes to predict the subject performance in the semi-control stage because of the linearity between these two indexes and accuracy of semi-control.
致謝...i
中文摘要...ii
Abstract...iii
Contents...iv
List of Figures...vi
List of Tables...vii

Chapter 1 Introduction...1
1.1 Brain Computer Interface(BCI)...1
1.2 Electroencephalographic...2
1.3 Motor Imagery...3
1.4 Aims of this Thesis...5
1.5 Thesis Organization...5

Chapter 2 Material and Methods...6
2.1 Subjects...6
2.2 Data Acquisition...6
2.3 Equipment...7
2.4 Experimental Description and Protocol...8
2.5 Data Processing...13
2.5.1 Autoregressive model (AR model)...14
2.5.2 correlation coefficient – frequency plot (r-F plot)...15
2.5.3 Frequency Selection and Classification...17
2.5.4 Far-Apart index (FA index)...18

Chapter 3 Results...20
3.1 The Results in no-feedback stage of each subject...20
3.2 The 2 indexes from No-Feedback are both linear with performance
of each subject in the Semi-Control stage...26
3.3 The Accuracy in the Self-Control stage is generally smaller than
Semi-Control stage...31
3.4 The frequency response(FR) of AR model of each segment...33

Chapter 4 Discussion...39
4.1 Three Stages of experiment...39
4.2 The r-F plots are different in each subject...39

Chapter 5 Conclusions...41

Chapter 6 Future Work...42

References...43

Appendix...46



List of Figures

Figure 1-1 10-20 system...3
Figure 1-2 ERD/ERS of different subjects...4
Figure 2.1 Bipolar montage of electrodes...7
Figure 2.2 The experimental equipment...8
Figure 2.3 The display of cursor feedback experiment...9
Figure 2.4 Flow diagram of three stages in the one-day experiment...11
Figure 2.5 Task in one trial of No-Feedback...12
Figure 2.6 r-F plot...16
Figure 2.7 Histogram of task power differences in imaging left and right movement...18
Figure 3.1 Positively linear relation between FA index and accuracy in semi-control stage...29
Figure 3.2 Negatively linear relation between averaged correlation coefficient and accuracy in semi-control stage...29
Figure 3.3 Positively linear relation between FA index and the best mean accuracy in semi-control stage...30
Figure 3.4 Negatively linear relation between averaged correlation coefficient and beast mean accuracy in semi-control stage...30
Figure 3.5 Best performance in Semi-Control and Self-Control stages...33



List of Tables

Table 3.1 r-F plot and histogram of each subject...24
Table 3.2 Results in No-Feedback stage...25
Table 3.3 Mean value of task power difference of each subject in no-feedback stage...25
Table 3.4 Performance in the semi-control stage...27
Table 3.5 Best performance in Semi-Control stage...28
Table 3.6 Performance in Self-Control stage...32
Table 3.7 Description of the plots in the Table 3.8...34
Table 3.8 Average of frequency response of left and right motor imagery at C3 and C4 in no-feedback stage...38
1. Jonathan R. Wolpaw and Dennis J. McFarland, “Control of a two-dimensional movement signal by a noninvasive BCI in human”, PNAS, vol.101, no.51, 17849–17854, Dec.21, 2004.
2. Dennis J McFarland ,William A Sarnacki and Jonathan R. Wolpaw, “Electroencephalographic (EEG) control of three-dimensional movement”, JOURNAL OF NEURAL ENGINEERING, vol.7, no.3, May 2010.
3. Jonathan R.Wolpaw, Dennis J. McFarland Gregory W. Neat and Catherine A. Forneris, “An EEG-based brain-computer interface for cursor control”, Electroencephalography and clinical Neurophysiologv, 78:252-259, 1991.
4. Jonathan R. Wolpaw, Niels Birbaumer, Dennis J. McFarlanda, Gert Pfurtschellere, Theresa M. Vaughan, “Brain–computer interfaces for communication and control”, Clinical Neurophysiology 113, 767–791, 2002.
5. Domen Novak, Roland Sigrist, Nicolas J. Gerig, Dario Wyss, René Bauer, Ulrich Götz and Robert Riener “Benchmarking Brain-Computer Interfaces Outside the Laboratory: The Cybathlon 2016”, Frontiers in Neuroscience, Vol.11, Article 756, 11 January 2018
6. Ning-Han Liu, Cheng-Yu Chiang and Hsuan-Chin Chu “Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors”, Sensors 2013, 13, 10273-10286, 9 August 2013
7. Aboul Ella Hassanien and Ahmad Taher Azar, Brain-Computer Interfaces Current Trends and Applications, Springer International Publishing Switzerland, 2015
8. György Buzsáki, Rhythms of the Brain, Oxford University Press, Inc., New York, 2006
9. Kayvan Najarian, Robert Splinter, Biomedical Signal and Image Processing 2nd edition, Taylor & Francis Group, LLC, 2012
10. Paul L. Nunez, Ramesh Srinivasan, Electric Fields of the Brain The Neurophysics of EEG 2nd edition, Oxford University Press, Inc., New York, 2006
11. Th. Mulder “Motor imagery and action observation: cognitive tools for rehabilitation”, Journal of Neural Transmission (2007) 114: 1265–1278
12. Robert Leeb, Student Member, Felix Lee, Claudia Keinrath, Reinhold Scherer, Horst Bischof, Member, and Gert Pfurtscheller, Member, “Brain–Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment”, IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 15, NO. 4, DECEMBER 2007
13. Han-Jeong Hwang, Kiwoon Kwon, Chang-Hwang Im “Neurofeedback-based motor imagery training for brain–computer interface (BCI)”, Journal of Neuroscience Methods (2009),179, 150–156,
14. WILLIAM N. KUHLMAN “EEG FEEDBACK TRAINING: ENHANCEMENT OF SOMATOSENSORY CORTICAL ACTIVITY”, Electroencephalography and Clinical Neurophysiology, 1978, 45:290--294
15. Dennis J. McFarland, Lynn M. McCane, and Jonathan R. Wolpaw “EEG-Based Communication and Control: Short-Term Role of Feedback”, IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 6, NO. 1, MARCH 1998
16. Steven M.Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, 1993
17. G. Pfurtscheller, F.H. Lopes da Silva “Event-related EEG/MEG synchronization and desynchronization: basic principles”, Clinical Neurophysiology 110 (1999) 1842-1857
18. Zhichuan Tang, Shouqian Sun, Sanyuan Zhang , Yumiao Chen , Chao Li and Shi Chen “A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control”, Sensors 2016, 16, 2050
19. Mahta Mousavi, Adam S. Koerner, Qiong Zhang, Eunho Noh & Virginia R. deSa, “Improving motor imagery BCI with user response to feedback”, Brain-Computer Interfaces, 2017, VOL. 4, NOS. 1–2, 74–86
20. G. Pfurtscheller, Ch. Neuper, D. Flotzinger, M. Pregenzer “EEG-based discrimination between imagination of right and left hand movement”, Electroencephalography and clinical Neurophysiology 103 (1997) 642-651
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top