跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙家聲
研究生(外文):Chia-Sheng Chao
論文名稱:藉由豬腹主動脈缺血–再灌注傷害模式引發腹腔臟器炎性反應及使用金絲桃治療發炎的機轉
論文名稱(外文):Porcine model intra-abdominal vital organ inflammation induced by abdominal aorta ischemia-reperfusion injury and the anti-inflammation mechanism of hyperin
指導教授:楊世群蔡建松蔡建松引用關係
指導教授(外文):Shyh-Chyun YangChien-Sung Tsai
口試委員:郭武憲施俊哲邱肇基許俊傑
口試委員(外文):Wu-Hsien KuoChun-Che ShihCHAO- CHI CHIUJiunn-Jye Sheu
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:藥學系博士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:173
中文關鍵詞:血管腔內汽球阻斷術腹腔高壓症缺血­再灌注傷害豬模型金絲桃順鉑Nrf2腎衰竭
外文關鍵詞:endovascular balloon occlusionintra-abdominal hypertensionischemia-reperfusion injuryporcine modelhyperincisplatinNrf2kidney injury
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
缺血­再灌注傷害引發嚴重全身發炎反應及造成組織器官病理變化。為了尋求解決臨床困境的可行醫療策略,我們設計了兩個研究如下:
第一部分:利用血管腔內汽球阻斷術阻斷活體幼豬腹主動脈不同時間後,再恢復腹主動脈血流灌注,隨著時間變化,觀察腹腔壓力與各種病、生理指標的改變。十二隻三個月大的肉豬,均等分成三組實驗。A組動物被阻斷腹主動脈三十分鐘後,恢復供血;B組動物被阻斷腹主動脈六十分鐘後,恢復供血;C組動物被阻斷腹主動脈一百二十分鐘後,恢復供血。恢復供血後觀察二十小時,隨時間變化的腹腔壓力、血流動力參數、呼吸及腎功能、以及小腸、腎臟、肺臟組織切片染色,與未阻斷腹主動脈供血前之基準點參數作比較。我們發現:各組動物的腹腔壓力隨著恢復供血時間延長逐漸增加,但是並無組間差異。恢復供血四小時後,與基準點腹腔壓力比較差異明顯(p < 0.001),甚至其中十隻豬腹腔壓力在觀察時間內逐漸超過22毫米汞柱。各組動物的心輸出量維持平穩,但是在恢復供血四小時後,與基準點比較,混合靜脈血氧氣飽和度明顯下降(p < 0.05)。各組動物的血液酸鹼值在恢復供血十分鐘後明顯下降(p < 0.001)。比較各組動物小腸、腎臟、肺臟組織切片染色無差異(p > 0.05)。即使僅僅30分鐘腹主動脈被阻斷後再恢復供血,也會引發腹腔高壓症、多器官衰竭及混合靜脈血氧氣飽和度明顯下降。
第二部分:研究金絲桃對順鉑引發急性腎衰竭小鼠的保護作用。不同劑量的金絲桃給予小鼠三天後,施以順鉑引發急性腎衰竭。再將各組動物的腎臟及血液取出,分別組織切片染色並檢驗BUN、creatinine、reactive oxygen species 及malondialdehyde。另外利用ELISA方法檢測各組動物TNF-α、IL-1β及IL-6。磷酸化的NF-κB、Nrf2和HO-1的表現以西方點墨分析檢驗。結果顯示金絲桃能減少順鉑引發急性腎衰竭小鼠的傷害。金絲桃能減少順鉑引發 BUN、creatinine、reactive oxygen species及malondialdehyde的血中濃度。金絲桃能減少順鉑引發NF-κB活化。同時,金絲桃能提高增強Nrf2和HO-1的表現。總之,金絲桃能藉由抑制發炎、氧化反應,對順鉑引發急性腎衰竭小鼠發生保護作用。
總結以上,缺血­再灌注傷害會引發腹腔高壓症、多器官衰竭等嚴重全身發炎反應及造成組織器官病理變化。而金絲桃具抑制NF-κB活化、增強Nrf2和HO-1的表現。是否金絲桃能引進臨床治療需進一步的豬活體實驗證實。
Ischemia-reperfusion injury (IRI) induced complicated inflammation and pathology of vital organs. For seeking possible strategies to treat IRI, we conduct two studies.
Part I: Using a porcine model, we evaluated the influence of different endovascular balloon occlusion (EBO) time periods on intra-abdominal pressure (IAP) and the association between various pathophysiologic indicators and reperfusion time. Twelve healthy 3-month-old domestic piglets were subjected to ischemia-reperfusion injury using EBO within the abdominal aorta. Animals were grouped as A, B, and C based on 30, 60, or 120 minutes, respectively, of ischemic time. Changes in IAP, hemodynamic data, respiratory and renal function, and histology after reperfusion were compared with baseline measurements. All pigs gradually developed intra-abdominal hypertension after ischemia-reperfusion injury. IAP increased significantly after 4 hours of reperfusion in all three groups (all P < 0.001) with maximal IAP reaching > 22 mmHg in 10 pigs. However, no significant intergroup differences were found. Cardiac output remained stable but mixed venous oxygen saturation decreased significantly at 4 h after reperfusion (P < 0.05). The pH decreased significantly at 10 min in all three groups (all P < 0.001). Histological changes in small intestine, lung, and kidney occurred secondary to aortic ischemia, however, no significant differences were noted between groups (P > 0.05). EBO within the abdominal aorta induced ischemia-reperfusion injury which led to intra-abdominal hypertension, pathological changes within multiple organs, and decreased mixed venous oxygen saturation after only 30 minutes of abdominal aortic ischemia.
Part II: we investigated the effects of hyperin on cisplatin-induced acute kidney injury (AKI) in mice. The renal tissue damage induced by cisplatin was detected by H&E staining. Blood urea nitrogen (BUN), creatinine, reactive oxygen species (ROS), and malondialdehyde (MDA) were also detected. Further, the effects of hyperin on cisplatin-induced TNF-α, IL-1ß and IL-6 were detected by ELISA. In addition, the phosphorylation of nuclear factor kappa B (NF-κB) and the expression of nuclear factor E2-related factor-2 (Nrf2) and HO-1 were detected by western blot analysis. The results showed that hyperin attenuated histological changes of kidney induced by cisplatin. The levels of BUN, creatinine, ROS, MDA, TNF-α, IL-1ß and IL-6 induced by cisplatin were also inhibited by hyperin. Cisplatin-induced NF-κB activation was inhibited by hyperin. Additionally, hyperin was found to up-regulate the expression of Nrf2 and HO-1. In conclusion, the results suggest that hyperin protects against cisplatin-induced AKI by inhibiting inflammatory and oxidant response.
In conclusion, IRI of abdomen aorta could induced severe systemic inflammatory response and even distal organ injury. Nevertheless, hyperin could inhibit NF-κB activation, and up-regulate the expression of Nrf2 and HO-1. Further experiment should be conducted to examine hyperin protective effect in porcine model.
Contents
Certificate & statements
Abstract in Chinese..................... I
Abstract................................ III
Acknowledgements in Chinese............. VI
Acknowledgements........................ VII
Contents................................ VIII

1. Introduction 1

2. Porcine model intra-abdominal vital organ inflammation induced by abdominal aorta Ischemia-reperfusion injury
2.1 Introduction 8
2.2 Materials and methods 11
2.2.1 Animal preparation 11
2.2.2 Measurements 15
2.2.3 Data Analysis 19
2.3 Results 20
2.3.1 Baseline characteristics and survival time 20
2.3.2 IAP after reperfusion 30
2.3.3 Hemodynamic data after reperfusion 32
2.3.4 Respiratory function after reperfusion 38
2.3.5 Renal function after reperfusion 42
2.3.6 Biochemical findings 46
2.3.7 Histopathologic findings 48
2.4 Discussion 50
2.5 Summary 57

3. The anti-inflammation mechanism of hyperin
3.1 Introduction 58
3.2 Materials and methods 60
3.2.1 Animal preparation 60
3.2.2 Reagents 60
3.2.3 Acute kidney injury model 61
3.2.4 Renal function 61
3.2.5 Histological analysis 61
3.2.6 Cytokines measurements 62
3.2.7 ROS and MDA assay 62
3.2.8 Western blot analysis 63
3.2.9 Cell culture and treatment 63
3.2.10 Data Analysis 64
3.3 Results 64
3.3.1 Hyperin attenuates CP-induced BUN and creatinine levels
64
3.3.2 Effects of hyperin on CP-mediated kidney histopathology
66
3.3.3 Hyperin inhibits CP-induced TNF-α, IL-6 and IL-1β production
68
3.3.4 Effects of hyperin on ROS and MDA levels 70
3.3.5 Hyperin inhibits CP-induced NF-κB activation 72
3.3.6 Effects of hyperin on Nrf2 and HO-1 expression 73
3.4 Discussion 76
3.5 Summary 78

4. Conclusion 79

References 83

List of Tables
Table 2-1 22
Table 2-2 23
Table 2-3 24
Table 2-4 26
Table 4-1 81
Table 4-2 81

List of Figures
Figure 1-1 2
Figure 1-2 4
Figure 1-3 6
Figure 2-1 14
Figure 2-2 17
Figure 2-3 18
Figure 2-4 21
Figure 2-5 31
Figure 2-6 (A) 33
Figure 2-6 (B) 34
Figure 2-6 (C) 35
Figure 2-6 (D 36
Figure 2-6 (E) 37
Figure 2-7 (A) 39
Figure 2-7 (B) 40
Figure 2-7 (C) 41
Figure 2-8 (A) 43
Figure 2-8 (B) 44
Figure 2-8 (C) 45
Figure 2-9 47
Figure 2-10 49
Figure 3-1 59
Figure 3-2 65
Figure 3-3 67
Figure 3-4 69
Figure 3-5 71
Figure 3-6 73
Figure 3-7 74
Figure 3-8 75


Appendix
1. Pictures in laboratory 100
2. Author related articles 108
1.Ames A 3rd, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 1968;52:437-53.
2.Lehr HA, Menger MD, Granger DN. Ischemia-reperfusion injury: enthusiasm in laboratory research but dilemma in clinical trials? Circulation 1994;90:1580.
3.Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 2004;49:1359-77.
4.Granger DN, Höllwarth ME, Parks DA. Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand Suppl 1986;548:47-63.
5.Angelova PR, Horrocks MH, Klenerman D, Gandhi S, Abramov AY, Shchepinov MS. Lipid peroxidation is essential for alpha-synuclein-induced cell death. J Neurochem 2015;133:582-9.
6.Grisham MB, Granger DN, Lefer DJ. Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. Free Radic Biol Med 1998;25:404-33.
7.Panés J, Perry M, Granger DN. Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. Br J Pharmacol 1999;126:537-50.
8.Carden DL, Smith JK, Korthuis RJ. Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle. Role of granulocyte adherence. Circ Res. 1990;66:1436-44.
9.Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989;320:365-76.
10.Bagge U, Amundson B, Lauritzen C. White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock. Acta Physiol Scand 1980;108:159-63.
11.Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 2001;94:1133-8.
12.Wink DA, Mitchell JB. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 1998;25:434-56.
13.Gauthier TW, Davenpeck KL, Lefer AM. Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. Am J Physiol 1994;267:G562-8.
14.Barnes PJ. Nuclear factor-kappa B. Int J Biochem Cell Biol 1997;29:867-70.
15.Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 1997;17:3-9.
16.Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med 2011;17:1391-401.
17.Holcomb JB, McMullin NR, Pearse L, Caruso J, Wade CE, Oetjen-Gerdes L, Champion HR, Lawnick M, Farr W, Rodriguez S, Butler FK. Causes of death in U.S. Special Operations Forces in the global war on terrorism: 2001-2004. Ann Surg 2007;245:986-91.
18.Settervall CH1, Domingues Cde A, Sousa RM, Nogueira Lde S. Preventable trauma deaths. Rev Saude Publica 2012;46:367-75.
19.Eastridge BJ1, Mabry RL, Seguin P, Cantrell J, Tops T, Uribe P, Mallett O, Zubko T, Oetjen-Gerdes L, Rasmussen TE, Butler FK, Kotwal RS, Holcomb JB, Wade C, Champion H, Lawnick M, Moores L, Blackbourne LH. Death on the battlefield (2001-2011): implications for the future of combat casualty care. J Trauma Acute Care Surg 2012;73:S431-7.
20.Hughes CW. Use of an intra-aortic balloon catheter tamponade for controlling intra-abdominal hemorrhage in man. Surgery 1954;36:65-8.
21.Assar AN, Zarins CK. Endovascular proximal control of ruptured abdominal aortic aneurysms: the internal aortic clamp. J Cardiovasc Surg 2009;50:381-5.
22.Martinelli T, Thony F, Decléty P, Sengel C, Broux C, Tonetti J, Payen JF, Ferretti G. Intra-aortic balloon occlusion to salvage patients with life-threatening hemorrhagic shocks from pelvic fractures. J Trauma 2010;68:942-8.
23.Stannard A, Eliason JL, Rasmussen TE.Resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct for hemorrhagic shock. J Trauma 2011;71:1869-72.
24. Berland TL, Veith FJ, Cayne NS, Mehta M, Mayer D, Lachat M. Technique of supraceliac balloon control of the aorta during endovascular repair of ruptured abdominal aortic aneurysms. J Vasc Surg 2013;57:272-5.
25. Raux M, Marzelle J, Kobeiter H, Dhonneur G, Allaire E, Cochennec F, Becquemin JP, Desgranges P. Endovascular balloon occlusion is associated with reduced intraoperative mortality of unstable patients with ruptured abdominal aortic aneurysm but fails to improve other outcomes. J Vasc Surg 2015;61:304-8.
26.Suk P, Cundrle I Jr, Hruda J, Vocilková L, Konecny Z, Vlasin M, Matejovic M, Pavlik M, Zvoníček V, Sramek V. Porcine model of ruptured abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg 2012;43:698-704.
27.Bown MJ, Cooper NJ, Sutton AJ, Prytherch D, Nicholson ML, Bell PR, Sayers RD. The post-operative mortality of ruptured abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg 2004;27:65-74.
28.Resection of aneurysms of abdominal aorta and restoration of continuity with homograft. J Am Med Assoc 1953;153:1523.
29.De Bakey ME, Cooley DA. Surgical treatment of aneurysm of abdominal aorta by resection and restoration of continuity with homograft. Surg Gynecol Obstet 1953;97:257-66.
30.Malina M, Veith F, Ivancev K, Sonesson B. Balloon occlusion of the aorta during endovascular repair of ruptured abdominal aortic aneurysm. J Endovasc Ther 2005;12:556-9.
31. Avaro JP, Mardelle V, Roch A, Gil C, de Biasi C, Oliver M, Fusai T, Thomas P. Forty-minute endovascular aortic occlusion increases survival in an experimental model of uncontrolled hemorrhagic shock caused by abdominal trauma. J Trauma 2011;71:720-5; discussion 725-6.
32.Krug A, Du Mesnil de Rochemont, Korb G. Blood supply of the myocardium after temporary coronary occlusion. Circ Res 1966;19:57-62.
33.Gong G, Wang P, Ding W, Zhao Y, Li J, Zhu Y. A modified model of the abdominal compartment syndrome. J Trauma 2011;70:775-81.
34. Lima RA, Schanaider A, Santana MC, de Oliveira MG, Capelozzi VL, Rocco PR. Developing a new experimental model of abdominal compartment syndrome. Rev Col Bras Cir 2011;38:417-21.
35.Malbrain ML, Cheatham ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, Balogh Z, Leppäniemi A, Olvera C, Ivatury R, D''Amours S, Wendon J, Hillman K, Johansson K, Kolkman K, Wilmer A. Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. I. Definitions. Intensive Care Med 2006;32:1722-32.
36.Papavramidis TS, Marinis AD, Pliakos I, Kesisoglou I, Papavramidou N. Abdominal compartment syndrome - Intra-abdominal hypertension: Defining, diagnosing, and managing. J Emerg Trauma Shock 2011;4:279-91.
37.Kubiak BD, Albert SP, Gatto LA, Vieau CJ, Roy SK, Snyder KP, Maier KG, Nieman GF. A clinically applicable porcine model of septic and ischemia-reperfusion-induced shock and multiple organ injury. J Surg Res 2011;166:e59-69.
38. Olofsson PH, Berg S, Ahn HC, Brudin LH, Vikström T, Johansson KJ. Gastrointestinal microcirculation and cardiopulmonary function during experimentally increased intra-abdominal pressure. Crit Care Med 2009;37:230-9.
39.Buckley NM, Frasier ID. Regional circulatory responses to intestinal work in developing swine. Am J Physiol 1990;258:H1119-25.
40.Buckley NM, Frasier ID. Regional circulatory responses to hindlimb work in developing swine. Biol Neonate 1990;58:208-19.
41.Krouzecky A, Matejovic M, Radej J, Rokyta R Jr, Novak I. Perfusion pressure manipulation in porcine sepsis: effects on intestinal hemodynamics. Physiol Res 2006;55:527-33.
42.Gonzalez LM, Moeser AJ, Blikslager AT. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research. Am J Physiol Gastrointest Liver Physiol 2015;308:G63-75.
43.Macedo E, Mehta RL. Preventing Acute Kidney Injury. Crit Care Clin 2015;31:773-84.
44.Roberts G, Phillips D, McCarthy R, Bolusani H, Mizen P, Hassan M, Hooper R, Saddler K, Hu M, Lodhi S, Toynton E, Geen J, Lodhi V, Grose C, Phillips A. Acute kidney injury risk assessment at the hospital front door: what is the best measure of risk? Clin Kidney J 2015;8:673-80.
45.Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 2009;53:961-73.
46.Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ, Bihorac A. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation 2009;119:2444-53.
47. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 2009;27:1227-34.
48.Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. Toxins 2010;2:2490-518.
49.Sanz AB, Sanchez-Niño MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. NF-kappaB in renal inflammation. J Am Soc Nephrol 2010;21:1254-62.
50. Haddad JJ. Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation. Biochem Biophys Res Commun 2002;296:847-56.
51.Wang J, Guo C, Wei Z, He X, Kou J, Zhou E, Yang Z, Fu Y. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-kappaB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells. J Dairy Sci 2016;99:3016-22.
52.Fan YF, Chen ZW, Guo Y, Wang QH, Song B. Cellular mechanisms underlying Hyperin-induced relaxation of rat basilar artery. Fitoterapia 2011;82:626-31.
53.Li FR, Yu FX, Yao ST, Si YH, Zhang W, Gao LL. Hyperin extracted from Manchurian rhododendron leaf induces apoptosis in human endometrial cancer cells through a mitochondrial pathway. Asian Pac J Cancer Prev 2012;13:3653-6.
54.Lee S, Park HS, Notsu Y, Ban HS, Kim YP, Ishihara K, Hirasawa N, Jung SH, Lee YS, Lim SS, Park EH, Shin KH, Seyama T, Hong J, Ohuchi K. Effects of hyperin, isoquercitrin and quercetin on lipopolysaccharide-induced nitrite production in rat peritoneal macrophages. Phytother Res 2008;22:1552-6.
55.Huang C, Yang Y, Li WX, Wu XQ, Li XF, Ma TT, Zhang L, Meng XM, Li J. Hyperin attenuates inflammation by activating PPAR-gamma in mice with acute liver injury (ALI) and LPS-induced RAW264.7 cells. Int Immunopharmacol 2015;29:440-7.
56.Zhao H, Zhao M, Wang Y, Li F, Zhang Z. Glycyrrhizic Acid Attenuates Sepsis-Induced Acute Kidney Injury by Inhibiting NF-kappaB Signaling Pathway. Evid Based Complement Alternat Med 2016;2016:8219287.
57. Shinomol GK, Muralidhara. Differential induction of oxidative impairments in brain regions of male mice following subchronic consumption of Khesari dhal (Lathyrus sativus) and detoxified Khesari dhal. Neurotoxicology 2007;28:798-806.
58.Qi S, Wu D. Bone marrow-derived mesenchymal stem cells protect against cisplatin-induced acute kidney injury in rats by inhibiting cell apoptosis. Int J Mol Med 2013;32:1262-72.
59.Ozkok A, Ravichandran K, Wang Q, Ljubanovic D, Edelstein CL. NF-kappaB transcriptional inhibition ameliorates cisplatin-induced acute kidney injury (AKI). Toxicol Lett 2016;240:105-13.
60.Zhang J, Zhang Y, Xiao F, Liu Y, Wang J, Gao H, Rong S, Yao Y, Li J, Xu G. The peroxisome proliferator-activated receptor gamma agonist pioglitazone prevents NF-kappaB activation in cisplatin nephrotoxicity through the reduction of p65 acetylation via the AMPK-SIRT1/p300 pathway. Biochem Pharmacol 2016;101:100-11.
61.Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 2013;83:1029-41.
62.Kang L, Zhao H, Chen C, Zhang X, Xu M, Duan H. Sappanone A protects mice against cisplatin-induced kidney injury. Int Immunopharmacol 2016;38:246-51.
63.Fu Y, Hu X, Cao Y, Zhang Z, Zhang N. Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in Human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts. Free Radic Biol Med 2015;89:777-85.
64.Fu Y, Tian Y, Wei Z, Liu H, Song X, Liu W, Zhang W, Wang W, Cao Y, Zhang N. Liver X receptor agonist prevents LPS-induced mastitis in mice. Int Immunopharmacol 2014;22:379-83.
65.Domitrovic R, Cvijanovic O, Pernjak-Pugel E, Skoda M, Mikelic L, Crncevic-Orlic Z. Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis. Food Chem Toxicol 2013;62:397-406.
66.Ma P, Zhang S, Su X, Qiu G, Wu Z. Protective effects of icariin on cisplatin-induced acute renal injury in mice. Am J Transl Res 2015;7:2105-14.
67.Kim TW, Kim YJ, Kim HT, Park SR, Lee MY, Park YD, Lee CH, Jung JY. NQO1 Deficiency Leads Enhanced Autophagy in Cisplatin-Induced Acute Kidney Injury Through the AMPK/TSC2/mTOR Signaling Pathway. Antioxid Redox Signal 2016;24:867-83.
68.Yuan Y, Wang H, Wu Y, Zhang B, Wang N, Mao H, Xing C. P53 Contributes to Cisplatin Induced Renal Oxidative Damage via Regulating P66shc and MnSOD. Cell Physiol Biochem 2015;37:1240-56.
69.Arjumand W, Seth A, Sultana S. Rutin attenuates cisplatin induced renal inflammation and apoptosis by reducing NFkappaB, TNF-alpha and caspase-3 expression in wistar rats. Food Chem Toxicol 2011;49:2013-21.
70.Bouaicha N, Maatouk I. Microcystin-LR and nodularin induce intracellular glutathione alteration, reactive oxygen species production and lipid peroxidation in primary cultured rat hepatocytes. Toxicol Lett 2004;148:53-63.
71.Dotan Y, Lichtenberg D, Pinchuk I. Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res 2004;43:200-27.
72.Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004;10:549-57.
73.Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 2009;47:1304-9.
74.Fetoni AR, Paciello F, Mezzogori D, Rolesi R, Eramo SL, Paludetti G, Troiani D. Molecular targets for anticancer redox chemotherapy and cisplatin-induced ototoxicity: the role of curcumin on pSTAT3 and Nrf-2 signalling. Br J Cancer 2015;113:1434-44.
75.Liu M, Grigoryev DN, Crow MT, Haas M, Yamamoto M, Reddy SP, Rabb H. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int 2009;76:277-85.
76.Chao CS, Chang YP, Chin HK, Chin J. A patient with abdominal compartment syndrome and perforated transverse colon successfully managed with ECMO. Ann Acad Med Singapore 2011;40:554-5.
77.De Laet IE, Ravyts M, Vidts W, Valk J, De Waele JJ, Malbrain ML. Current insights in intra-abdominal hypertension and abdominal compartment syndrome: open the abdomen and keep it open! Langenbecks Arch Surg 2008;393:833-47.
78.Malbrain ML, De laet IE. Intra-abdominal hypertension: evolving concepts. Clin Chest Med 2009;30:45-70, viii.
79.Malbrain ML, Vidts W, Ravyts M, De Laet I, De Waele J. Acute intestinal distress syndrome: the importance of intra-abdominal pressure. Minerva Anestesiol 2008;74:657-73.
80.Malbrain ML. Abdominal pressure in the critically ill: measurement and clinical relevance. Intensive Care Med 1999;25:1453-8.
81.Malbrain ML, Chiumello D, Pelosi P, Wilmer A, Brienza N, Malcangi V, Bihari D, Innes R, Cohen J, Singer P, Japiassu A, Kurtop E, De Keulenaer BL, Daelemans R, Del Turco M, Cosimini P, Ranieri M, Jacquet L, Laterre PF, Gattinoni L. Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med 2004;30:822-9.
82.Kirkpatrick AW, Ball CG, Nickerson D, D''Amours SK. Intraabdominal hypertension and the abdominal compartment syndrome in burn patients. World J Surg 2009;33:1142-9.
83.Balogh Z, McKinley BA, Holcomb JB, Miller CC, Cocanour CS, Kozar RA, Valdivia A, Ware DN, Moore FA. Both primary and secondary abdominal compartment syndrome can be predicted early and are harbingers of multiple organ failure. J Trauma 2003;54:848-59; discussion 859-61.
84. Malbrain M. Abdominal compartment syndrome. F1000 Med Rep 2009;16:1.
85.Kron IL, Harman PK, Nolan SP. The measurement of intra-abdominal pressure as a criterion for abdominal re-exploration. Ann Surg 1984;199:28-30.
86.Toens C, Schachtrupp A, Hoer J, Junge K, Klosterhalfen B, Schumpelick V. A porcine model of the abdominal compartment syndrome. Shock 2002;18:316-21.
87.Paal P, Neurauter A, Loedl M, Pehbock D, Herff H, von Goedecke A, Lindner KH, Wenzel V. Effects of stomach inflation on haemodynamic and pulmonary function during cardiopulmonary resuscitation in pigs. Resuscitation 2009;80:365-71.
88.Schachtrupp A, Lawong G, Afify M, Graf J, Toens C, Schumpelick V. Fluid resuscitation preserves cardiac output but cannot prevent organ damage in a porcine model during 24 h of intraabdominal hypertension. Shock 2005;24:153-8.
89.Benninger E, Laschke MW, Cardell M, Keel M, Seifert B, Trentz O, Menger MD, Meier C. Intra-abdominal pressure development after different temporary abdominal closure techniques in a porcine model. J Trauma 2009;66:1118-24.
90.Schachtrupp A, Wauters J, Wilmer A. What is the best animal model for ACS? Acta Clin Belg 2007;62 Suppl 1:225-32.
91.Buckley NM, Brazeau P, Frasier ID. Intestinal and femoral blood flow autoregulation in developing swine. Biol Neonate 1986;49:229-40.
92.Anttila V, Haapanen H, Yannopoulos F, Herajarvi J, Anttila T, Juvonen T. Review of remote ischemic preconditioning: from laboratory studies to clinical trials. Scand Cardiovasc J 2016;50:355-361.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top