跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴昌駿
研究生(外文):Chang-Jun Lai
論文名稱:應用田口法於藍色螢光有機發光二極體製程參數最佳化之研究
論文名稱(外文):Optimization of Blue Fluorescent Organic Light Emitting Diodes Process by Using Taguchi Method
指導教授:莊賦祥莊賦祥引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:93
中文關鍵詞:田口法變異數分析反應曲面法最佳化螢光有機發光二極體
外文關鍵詞:Taguchi MethodAnalysis of Variance (ANOVA)Response Surface Methodology (RSM)OptimizationFluorescent OLED
相關次數:
  • 被引用被引用:2
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究一開始係使用具高Tg之電洞傳輸材料(HTG-1、HTG-2)來取代一般電洞傳輸材料(NPB),製備基本綠色螢光有機發光二極體,利用材料具有高Tg之特性來提升元件熱穩定性,以防止元件發光時內部所累積之焦耳熱使材料結晶化進而影響元件發光效率,經實驗證明當使用高Tg材料HTG-1時其元件有較好之發光特性。接著將此高Tg之電洞傳輸材料導入藍色螢光結構中,並應用田口法與實驗計劃法進行實驗的規劃與配置來製備藍色螢光有機發光二極體,在製程中以有效且快速的方式來調變元件結構參數,將元件驅動電壓、發光亮度、發光效率及元件色座標值設定為輸出目標函數,利用統計檢定的方法藉由反應曲面法將實驗結果進行變異數分析分析,檢定對輸出目標函數之影響因子,並由迴歸分析推演出方程式,來預測元件結構最佳參數組合,有效的達到所設定之最佳元件發光特性。經由分析後所建議之最佳參數組合進行實際驗證,其元件於電流密度50 mA/cm2下其驅動電壓為8.28 V,發光亮度為4701 cd/m2,發光效率為9.48 cd/A。另外亦改變電子傳輸材料及微調有機層厚度來提升電子注入的效果,並藉由控制元件中載子再結合區於發光層中間以擴大發光區域,進而大幅提升元件發光效率。結果顯示,元件在電流密度50 mA/cm2下,驅動電壓為8.99 V,發光亮度為5634 cd/m2,發光效率為11.52 cd/A。

In this study, we used hole transport materials (HTG-1 and HTG-2) with high glass transition temperature (Tg) to replace NPB of green OLED devices, experimental results high Tg of hole transport material HTG-1 can reduced to operate the OLED elements in a long time, the heat generated by components within the organic material to crystallized effect and increase luminance efficiency. By using, the high Tg of hole transport material applied in structure, and using Taguchi’s parametric design method OLED device with blue emitting-light can be fabricated, then relevant theory of statistical techniques was employed to discuss the influence of individual process parameters. Optimum process parameters were be forecast by verifying the factors of output quality characteristics by Analysis of Variance (ANOVA) and deducing response surface equation by Regression Analysis. Finally, by optimizing device structure, the driving voltage was 8.28 V, luminance of 4701 cd/m2 and luminance efficiency of 9.48 cd/A at the current density of 50 mA/cm2 can be achieved.
In addition, we also change electron transport materials and adjustment organic layer thickness to improve charge carrier injection and confine triplet excitons in emitting layer, and then controlle the excitons generation zone in the middle of the emitting material layer and extended the recombination zone were achieved. Experimental results demonstrated that the blue OLED with current density of 50 mA/cm2, the driving voltage was 8.99 V, luminance of 4701 cd/m2 and luminance efficiency reached 9.48 cd/A can be fabricated.


摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章緒論 1
1.1前言 1
1.2有機發光二極體之優點與展望 1
1.3文獻探討 2
1.4研究動機與目的 5
第二章 理論與基礎 7
2.1 有機發光二極體發光機制 7
2.2 有機發光二極體能量轉移機制 12
2.3 有機發光二極體元件之基本結構 15
2.4 有機發光二極體光電特性 21
2.5 田口實驗計劃法概論 22
2.6統計檢定理論 25
第三章 實驗方法與步驟 32
3.1有機發光二極體元件製作流程 32
3.2 陽極ITO圖案化製作與前處理 36
3.3 蒸鍍有機薄膜層 39
3.4 蒸鍍金屬薄膜層作為陰極 42
3.5 元件量測 44
3.6田口法實驗設計與規劃步驟 46
第四章 結果與討論 48
4.1綠色螢光有機發光二極體之研究 48
4.2 藍色螢光有機發光二極體元件結構最佳參數之研究 53
4.3提升藍色螢光有機發光二極體發光效率之研究 70
第五章 結論 84
參考文獻 86
附錄A、F分配表 89
Extended Abstract 90
簡歷 93



[1]M. Pope, H. Kallmann, P. Magnante,“Electroluminescence in Organic Crystals”, J. Chem. Phys., vol.38, pp.2042-2043, 1963.
[2]C. W. Tang, Vanslyke, S.A, “Organic electroluminescent diodes”,Appl. Phys. Lett., vol.51, pp.913-915, 1987.
[3]J.M. Liu, “Studies on modifications of ITO surfaces in OLED devices by Taguchi methods”, Materials Science & Engineering B, B85, pp.209-211, 2001.
[4]江季哲, “模糊田口法於多重品質特性製程上之研究-以液晶顯示器製程為例, 國立高雄大學亞太工商管理學系工管組碩士論文”, 第39-43頁, 民國97年6月.
[5]楊淳守, “應用田口方法之渦流風扇噪音研究, 國立高雄應用科技大學模具工程系碩士論文”, 第37-41頁, 民國97年6月.
[6]許耀仁, “田口方法在逆向工程之CAD模型重建及製造最佳化參數設計,國立雲林科技大學機械工程系碩士論文”, 第51-54頁, 民國91年6月.
[7]張良漢, “應用田口法於精細覆晶構裝之最佳化設計”, 國立成功大學工程科學系碩士論文, 第120-124頁, 民國98年7月.
[8]W. D. Ho and M. S. Chang, ”Use of Taguchi method to develop arobust design for the magnesium alloy die casting process” , Materials Science and Engineering, vol.A379, pp.366-371, 2004.
[9]黃佩婷, “銅箔基板之鑽孔加工製程穩定度與參數最佳化研究”, 明新科技大學精密機電工程研究所碩士論文, 民國99年6月.
[10]K. U. Haq, "Blue organic light-emitting diodes with low driving voltage and enhanced power efficiency based on MoO3 as hole injection layer and optimized charge balance”, Journal of Non-Crystalline Solids, vol.356, pp.1012-1015, 2010.
[11]Q. Xue, “Combination of heterojunction and mixed-host structures in one blue fluorescent organic light emitting diode to improve the power efficiency“ , Thin Solid Films, Vol.519, pp.3816-3818, 2011.
[12]J. Huang, “Unsymmetrically amorphous 9,10-disubstituted anthracene derivatives for high-efficiency blue organic electroluminescence devices”, Dyes and Pigments, vol.89, pp.155-161, 2011
[13]T. Peng, “High-efficiency and deep-blue fluorescent organic light-emitting diodes with the easily controlled doping concentrations”, Organic Electronics, vol.12, pp.1068-1072, 2011.
[14]J. Lee, J.-I. Lee, J. Y. Lee, and H. Y. Chu, “Stable efficiency roll-off in blue phosphorescent organic light-emitting diodes by host layer engineering”, Org. Electro. vol.10, pp.1529-1533, 2009.
[15]A. Kraft, A. C. Grimsdale, and A. B. Holmes, “ChemInform Abstract: Electroluminescent Conjugated Polymers — Seeing Polymers in a New Light”, Angew. Chem. Int. Ed., vol.37, p.402, 1998
[16]J. Yang and J. Shen, “Doping effects in organic electroluminescent devices”, J. Appl. Phys., vol.84, pp.71-76, 1998.
[17]K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi and K. Seki, “Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy”, J. Appl. Phys., vol.83, pp.4928-4938, 1998.
[18]A. L. Burin, M. A. Patner, “Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes”, J. Phys. Chem. A, vol.104, pp.4704-4710, 2000.
[19]S. A. Jenekhe, S. Yi, “Efficient photovoltaic cells from semiconducting polymer heterojunctions”, Appl. Phys. Lett., vol.77, pp.2635-2637, 2000.
[20]G. G. malliaras, J. C. Scott, “The roles of injection and mobility in organic light emitting diodes”, J. Appl. Phys., vol.83, pp.5399-5403, 1998.
[21]C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films”, J. Appl. Phys., vol. 65, pp.3610-3616, 1989.
[22]H. Kanno, Y. Hamada, and H. Takahashi, “Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays”, IEEE J. Select. Topics in Quantum Electron., vol.10, pp.30-36, 2004.
[23]M. Klessinger, J. Michl, “Excited States and Photochemistry of Organic Molecules”, VCH Publishers”, VCH Publishers, New York, 1995.
[24]T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron‐beam‐evaporated indium tin oxide films as studied by x‐ray photoelectron spectroscopy and work‐function measurements”, J. Appl. Phys., vol.73, pp.4344-4350, 1993.
[25]H. K. Kim, K. S. Lee, and J. H. Kwon, “Transparent indium zinc oxide top cathode prepared by plasma damage-free sputtering for top-emitting organic light-emitting diodes”, Appl. Phys. Lett., vol.88, pp.012103-012103-3, 2006.
[26]B. Kumar, H. Gong, and R. Akkipeddi, “High mobility undoped amorphous indium zinc oxide transparent thin films”, J. Appl. Phys., vol.98, pp.073703-073703-5, 2005.
[27]M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, “Improvement of organic electroluminescent device performance by in situ plasma treatment of indium–tin-oxide surface”, Journal of Luminescence, vol.87-89, pp.1165-1167, 2000.
[28]J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast and F. Cacialli, “Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance”, J. Appl. Phys., vol.84, pp.6859-6870, 1998.
[29]Y. Iwama, D. C. Cho, T. Mori and T. Mizutani, “Electroluminescence properties of organic light-emitting diodes using ITO with different surface treatments”, Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, pp.718-721, 2003.
[30]C. Qiu, H. Peng, H. Chen, Z. Xie, M. Wong, H. S. Kwok, “Top-Emitting OLED Using Praseodymium Oxide Coated Platinum as Hole Injectors”, IEEE Trans. Electron. Dev., vol.51, pp.1207-1210, 2004.
[31]R. B. Pode, C. J. Lee, D. G. Moon, J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer”, Appl. Phys. Lett., vol.84, pp.4614-4616, 2004.
[32]H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study”, J. Appl. Phys., vol.94, pp.5290-5296, 2003.
[33]C. Ganzorig, K. Suga, M. Fujihira, “Alkali metal acetates as effective electron injection layers for organic electroluminescent devices”, Mater. Sci. Eng. B, vol.85, pp.140-143, 2001.
[34]C. Ganzorig, M. Fujihira, “Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition”, Appl. Phys. Lett., vol. 85, pp.4774-4776, 2004.
[35]G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, N. Peyghambarian, “Highly efficient and bright organic electroluminescent devices with an aluminum cathode”, Appl. Phys. Lett., vol. 71, pp.1762-1764, 1997.
[36]李輝煌, “田口方法品質設計的原理與實務”, 高麗圖書有限公司, 2004.
[37]Myers, R. H., Montgomery, D. C., “Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edition”, John Wiley and Sons. New York, 2002.
[38]黎正中(Zheng-Zhong Li), 陳源樹(Yuan-Shu Chen) 譯, “Design and Analysis of Experiments”, 高立圖書有限公司, 2003.
[39]Z. C. Lin, C. Y. Ho, “Analysis and Application of Grey Relation and ANOVA in Chemical Mechanical Polishing Process Parameters”, Advanced Manufacturing Technology, vol.21, pp.10-14, 2003.
[40]R. H. Young, J. J. Fitzgerald, “Dipole Moments of Hole-Transporting Materials and Their Influence on Hole Mobility in Molecularly Doped Polymers”, J.Phys.Chem., vol.99, pp.4230-4240, 1995.
[41]S. H. Kim, and J. Jang and J. Y. Lee, “High efficiency phosphorescent organic light-emitting diodes using carbazole-type triplet exciton blocking layer”, Appl. Phys. Lett., vol.90, pp.223505-223505-3, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊