跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉佑倫
研究生(外文):Yu-Lun Yeh
論文名稱:氮摻雜奈米碳管-鉑奈米粒子複合材料合成及其催化還原對硝基苯酚的應用
論文名稱(外文):Nitrogen CNTs-Pt nanoparticles for Catalytic Reduction of 4-Nitrophenol (4-NP)
指導教授:江偉宏
指導教授(外文):Wei-Hung Chiang
口試委員:王復民游文岳
口試委員(外文):Fu-Ming WangWen-Yueh Yu
口試日期:2018-07-12
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:99
中文關鍵詞:對硝基苯酚氮摻雜奈米碳管
外文關鍵詞:4-NitrophenolNitrogen doped carbon nanotubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
異質元素的奈米碳材摻雜可以改變許多例如光學、物理、化學及結構等特性。改善後的特性能更廣泛的應用在不同領域,像是電子元件、能量儲存或生物醫療等方面。此篇論文沿用本研究室先前發展出有效的方法,在大氣常壓下摻雜硼及氮元素於奈米碳管中,藉由調控溫度達到不同的氮摻雜水平,再結合金屬奈米粒子本身具備的高比表面積及高活性,形成奈米複合材料做為催化劑,應用在對硝基苯酚的還原反應,降低反應中的能量障礙,利用碳材及金屬間的協同作用,達到有效且快速解決環境、農業或工業廢水中酚類污染問題的目的。
此論文主要分為以下部分,第一章奈米複合材料以及對硝基苯酚還原反應的介紹及文獻回顧,包含實驗動機、合成方法的選擇、特性改善、對硝基本酚的動力學探討;第二章奈米複合材料的合成、酚類還原反應的實驗流程以及各種儀器包括穿透式電子顯微鏡、拉曼光譜X光光電子能譜、熱重分析/熱差分析等等的規格及分析條件;第三章奈米複合材料的分析結果,由各種儀器分析獲得形貌分析、尺寸分佈、導電性等特性,再由特性分析的結果延伸至第四章;討論複合材料對還原反應的活性表現以及改變反應物和還原劑對反應速率的影響;最後氮摻雜多壁奈米碳管應用在酚類還原反應的相關討論及參考文獻比較觸媒活性的結果將會呈現在第五章。
Heteroatom doping carbon materials can endow many properties. The improved features can be widely applied in different field. In this thesis, we follows our laboratory has previously developed an effective method to doping boron and nitrogen into the carbon nanotubes under atmospheric pressure, by controlling the temperature to achieve different levels of nitrogen content, and deposit the metal nanoparticles with high specific surface area and high activity on the tubes. The formation of nanocomposite as a catalyst to apply the reduction reaction of 4-nitrophenol(4-NP) to reduce the energy barrier of reaction. Because of synergy effect between the carbon materials and the metal nanoparticles can effectively and fast solve the problem of phenol pollution in waste water.
This thesis is divided into the following parts, the Chapter 1 introduction of nanocomposite materials and the introduction of 4-NP reduction reaction and literature review, including the motivation, the experimental set up, the choice of synthesis methods, the improvement of the properties, the kinetics of the 4-NP; Chapter 2 are synthesis of nanocomposites, experimental procedures for the 4-NP reduction, and various instruments. In the Chapter 3, the analysis results of nanocomposite were analyzed by various instruments to obtain features such as morphology, size distribution, conductivity, etc., and this parts were extended to the Chapter 4; the performance of the various catalyst for the 4-NP reduction reaction. And the effect of the concentration of reactants and reducing agents; the final discussion of the application of nanocomposite in the reduction of phenols and the comparison of activity with references will be presented in Chapter 5.
摘要 I
ABSTRACT II
ACKNOWLEDGEMENTS III
LIST OF FIGURE VI
LIST OF TABLES IX
LIST OF SCHEMES X
1. INTRODUCTION 1
1.1 INTRODUCTION OF MATERIALS OF CATALYST 1
1.1.1 Carbon nanotubes (CNTs) 1
1.1.2 Doped carbon nanotube 1
1.1.3 Platinum metal nanoparticles 5
1.2 INTRODUCTION OF 4-NITROPHENOL (4-NP) 7
1.2.1 4-Nitrophenol (4-NP) 7
1.2.2 4-NP reaction kinetics 10
1.2.3 4-NP reduction mechanism 16
2. EXPERIMENTAL METHODS 19
2.1 EXPERIMENTAL CHEMICALS 19
2.2 SYNTHESIS PROCESS 19
2.2.1 Doped carbon 19
2.2.2 Platinum nanoparticles deposition on carbon materials 20
2.3 CATALYTIC PROCESS 22
2.3.1 Catalytic reduction reaction of 4-NP 22
2.3.2 Change concentration of reactant (4-NP) 22
2.3.3 Change concentration of reduction agent (NaBH4) 23
2.4 CHARACTERIZATION 23
2.4.1 High temperature furnace 23
2.4.2 Transmission electron microscope (TEM) 23
2.4.3 Raman spectroscopy 24
2.4.4 X-ray diffraction (XRD) 24
2.4.5 X-ray photoelectron spectroscopy (XPS) 24
2.4.6 Thermogravimetric Analyzer (TGA) 25
2.4.7 Ultraviolet-visible spectroscopy (UV-Vis) 25
2.4.8 Four point probe 25
3. CHARACTERIZATION 27
3.1 ANALYSIS OF CARBON MATERIALS 27
3.1.1 Transmission electron microscope (TEM) 27
3.1.2 Raman spectroscopy 30
3.1.3 X-ray photoelectron spectroscopy (XPS) 32
3.1.4 Thermogravimetric analyzer (TGA) 34
3.1.5 Electrical conductivity measurement 35
3.2 ANALYSIS OF COMPOSITES 36
3.2.1 Transmission electron microscope (TEM) 36
3.2.2 Raman spectroscopy 39
3.2.3 X-ray diffraction (XRD) 39
3.2.4 Thermogravimetric analyzer (TGA) 40
4. RESULTS AND DISCUSSION 44
4.1 CATALYTIC PERFORMANCE OF CATALYST 44
4.1.1 Performance of multi-walled carbon nanotube (MWCNTs) 44
4.1.2 Performance of nitrogen doped carbon nanotubes (N-MWCNTs) 46
4.1.3 Performance of deposing Pt NPs on N-MWCNTs (Pt/N-MWNCTs) 50
4.2 CATALYTIC PERFORMANCE IN DIFFERENT CONDITION 52
4.2.1 Change concentration of reactant (4-NP) 52
4.2.2 Change concentration of reducing agent (NaBH4) 57
4.3 ACTIVATION ENERGY 69
4.4 COMPARE WITH REFERENCE 76
4.4.1 Normalized rate constant (kn) 76
4.4.2 Activation Energy (Ea) 77
5. CONCLUSION 78
6. REFERENCE 80
1. Serp, P., Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 2003. 253(2): p. 337-358.
2. <1998_The role of carbon materials in heterogeneous catalysis.pdf>.
3. González, V.J., et al., Biotin molecules on nitrogen-doped carbon nanotubes enhance the uniform anchoring and formation of Ag nanoparticles. Carbon, 2015. 88: p. 51-59.
4. Borowiec, J., et al., Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochimica Acta, 2013. 99: p. 138-144.
5. <2002_Carbon Nanotubes—the Route Toward Applications.pdf>.
6. <2000_Specific surface area of carbon nanotubes and bundles of carbon nanotubes.pdf>. 2000.
7. <2001_Specific surface area of carbon nanotubes and bundles of carbon nanotubes..pdf>. 2001.
8. Martel, R., et al., Single- and multi-wall carbon nanotube field-effect transistors. Applied Physics Letters, 1998. 73(17): p. 2447-2449.
9. <2000_Unusually High Thermal Conductivity in Carbon Nanotubes.pdf>. 2000.
10. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6: p. 183.
11. Kong, X.-k., et al., Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy & Environmental Science, 2013. 6(11): p. 3260.
12. Catalyis with 2D materials and their heterostructures.pdf>. 2016.
13. Kitano, H., K. Tachimoto, and Y. Anraku, Functionalization of single-walled carbon nanotube by the covalent modification with polymer chains. J Colloid Interface Sci, 2007. 306(1): p. 28-33.
14. Shen, J., et al., Study on amino-functionalized multiwalled carbon nanotubes. Materials Science and Engineering: A, 2007. 464(1-2): p. 151-156.
15. Men, X.H., et al., Functionalization of carbon nanotubes to improve the tribological properties of poly(furfuryl alcohol) composite coatings. Composites Science and Technology, 2008. 68(3-4): p. 1042-1049.
16. Li, Y.-H., T.-H. Hung, and C.-W. Chen, A first-principles study of nitrogen- and boron-assisted platinum adsorption on carbon nanotubes. Carbon, 2009. 47(3): p. 850-855.
17. Li, X., et al., Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nat Commun, 2014. 5: p. 3688.
18. Gao, Y., et al., Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew Chem Int Ed Engl, 2013. 52(7): p. 2109-13.
19. Du, Y.K., et al., Thermal decomposition behaviors of PVP coated on platinum nanoparticles. Journal of Applied Polymer Science, 2006. 99(1): p. 23-26.
20. Sarkar, S., et al., Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. Journal of Nanoparticle Research, 2012. 14(2).
21. Biffis, A., et al., Microgel-stabilized gold nanoclusters: Powerful “quasi-homogeneous” catalysts for the aerobic oxidation of alcohols in water. Journal of Catalysis, 2007. 251(1): p. 1-6.
22. Biffis, A., N. Orlandi, and B. Corain, Microgel-Stabilized Metal Nanoclusters: Size Control by Microgel Nanomorphology. Advanced Materials, 2003. 15(18): p. 1551-1555.
23. Patterson, H.H., et al., Nanoclusters of silver doped in zeolites as photocatalysts. Catalysis Today, 2007. 120(2): p. 168-173.
24. Gac, W., et al., The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts. Journal of Molecular Catalysis A: Chemical, 2007. 268(1-2): p. 15-23.
25. <1999_Combustion synthesis of nanometal particles supported on α-Al2O3 CO oxidation and NO reduction catalysts.pdf>. 1999.
26. 2007, <207_Sonochemical Insertion of Silver Nanoparticles into Two-Dimensional Mesoporous Alumina.pdf>.
27. <2000_Oxidation of CH4 and C3H8 over combustion synthesized nanosize metal particles supported on α-Al2O3.pdf>. 2000.
28. <2007_In-Situ Loading of Noble Metal Nanoparticles on Hydroxyl-Group-Rich Titania Precursor and Their Catalytic Applications.pdf>.
29. Lu, J., et al., In situ UV–vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. Journal of Catalysis, 2005. 232(1): p. 85-95.
30. Pretreatment of Gold Nanoparticle Multi-Walled Carbon Nanotube Conposites for Catalytic Activity toward Hydrogen Generation Reaction.pdf>. 2017.
31. Liu, Y., et al., Golden Carbon Nanotube Membrane for Continuous Flow Catalysis. Industrial & Engineering Chemistry Research, 2017. 56(11): p. 2999-3007.
32. Li, J., C.-y. Liu, and Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry, 2012. 22(17): p. 8426.
33. Li, Y., et al., Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol. Catalysis Communications, 2015. 58: p. 21-25.
34. Wu, Y.-g., et al., Ni/graphene Nanostructure and Its Electron-Enhanced Catalytic Action for Hydrogenation Reaction of Nitrophenol. The Journal of Physical Chemistry C, 2014. 118(12): p. 6307-6313.
35. Liu, C., et al., A novel one-step synthesis method for cuprous nanoparticles on multi-walled carbon nanotubes with high catalytic activity. Ceramics International, 2016. 42(15): p. 17916-17919.
36. Xia, J., et al., Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions. Applied Catalysis B: Environmental, 2016. 180: p. 408-415.
37. <2006_Preparation and characterization of highly dispersed platinum nanoparticles supported on carbon nanotubes.pdf>.
38. Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells.pdf>. 2003.
39. <1979_Pollution property.pdf>.
40. Bastami, T.R. and M.H. Entezari, Activated carbon from carrot dross combined with magnetite nanoparticles for the efficient removal of p-nitrophenol from aqueous solution. Chemical Engineering Journal, 2012. 210: p. 510-519.
41. Biodegradation of p-Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor. Environ. Sci. Technol.
42. Tang, L., et al., Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect. Applied Surface Science, 2015. 333: p. 220-228.
43. Bakheet, B., et al., Inhibition of polymer formation in electrochemical degradation of p-nitrophenol by combining electrolysis with ozonation. Chemical Engineering Journal, 2014. 252: p. 17-21.
44. Gu, S., et al., Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles. The Journal of Physical Chemistry C, 2014. 118(32): p. 18618-18625.
45. Blaser, H.U., Chemistry. A golden boost to an old reaction. Science, 2006. 313(5785): p. 312-3.
46. Silver nanoparticle catalyzed reduction of aromatic nitro compounds. 2002.
47. Synthesis of p-Aminophenol by Catalytic Hydrogenation of p-Nitrophenol.pdf>. 2003.
48. Gangula, A., et al., Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir, 2011. 27(24): p. 15268-74.
49. Jana, S., et al., Synthesis of silver nanoshell-coated cationic polystyrene beads: A solid phase catalyst for the reduction of 4-nitrophenol. Applied Catalysis A: General, 2006. 313(1): p. 41-48.
50. Saha, S., et al., Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir, 2010. 26(4): p. 2885-93.
51. Fedorczyk, A., et al., Kinetic studies of catalytic reduction of 4-nitrophenol with NaBH4 by means of Au nanoparticles dispersed in a conducting polymer matrix. Journal of Solid State Electrochemistry, 2015. 19(9): p. 2849-2858.
52. Kumar, A., et al., Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium: equilibrium and kinetics. J Hazard Mater, 2007. 147(1-2): p. 155-66.
53. Soft Matter and Functional Materials, H.-Z.B.f.r.M.u.E., Hahn-Meitner-Platz Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles
Immobilized in Spherical Polyelectrolyte Brushes. Phys. Chem., 2010. 114(19).
54. Zhao, P., et al., Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordination Chemistry Reviews, 2015. 287: p. 114-136.
55. Cai, R., et al., Performance of Preformed Au/Cu Nanoclusters Deposited on MgO Powders in the Catalytic Reduction of 4-Nitrophenol in Solution. Small, 2018: p. 1703734.
56. Youzhi, G., et al., Fabrication of thermosensitive hydrogel-supported Ni nanoparticles with tunable catalytic activity for 4-nitrophenol. Journal of Materials Science, 2015. 51(6): p. 3200-3210.
57. Mahmoud, M.A., B. Garlyyev, and M.A. El-Sayed, Determining the Mechanism of Solution Metallic Nanocatalysis with Solid and Hollow Nanoparticles: Homogeneous or Heterogeneous. The Journal of Physical Chemistry C, 2013. 117(42): p. 21886-21893.
58. Antonels, N.C. and R. Meijboom, Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir-Hinshelwood approach. Langmuir, 2013. 29(44): p. 13433-42.
59. Fenger, R., et al., Size dependent catalysis with CTAB-stabilized gold nanoparticles. Phys Chem Chem Phys, 2012. 14(26): p. 9343-9.
60. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes.pdf>. 2010.
61. Wunder, S., et al., Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-Induced Surface Restructuring. ACS Catalysis, 2011. 1(8): p. 908-916.
62. Esumi, K., K. Miyamoto, and T. Yoshimura, Comparison of PAMAM–Au and PPI–Au Nanocomposites and Their Catalytic Activity for Reduction of 4-Nitrophenol. Journal of Colloid and Interface Science, 2002. 254(2): p. 402-405.
63. Peña-Alonso, R., et al., A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells. Journal of Power Sources, 2007. 165(1): p. 315-323.
64. <2009_Synthesis of Rod-Shaped Gold Nanorattles with Improved Plasmon Sensitivity and catalytic Acitivity.pdf>. 2009.
65. Chiang, W.-H., et al., Growth control of single-walled, double-walled, and triple-walled carbon nanotube forests by a priori electrical resistance measurement of catalyst films. Carbon, 2011. 49(13): p. 4368-4375.
66. Chiang, W.-H., et al., Controllable boron doping of carbon nanotubes with tunable dopant functionalities: an effective strategy toward carbon materials with enhanced electrical properties. RSC Advances, 2015. 5(118): p. 97579-97588.
67. Preparation and characterization of highly dispersed platinum nanoparticles supported on carbon nanotubes.pdf>. 2006.
68. <2005_Temperature and Flow Rate of NH3 Effects on Nitrogen Content and Doping Environments of carbon nanotubes grown by injection CVD method.pdf>. 2005.
69. Kim, K.-E., et al., Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene. Chemical Physics Letters, 2005. 401(4-6): p. 459-464.
70. Yadav, R.M., et al., Effect of Growth Temperature on Bamboo-shaped Carbon-Nitrogen (C-N) Nanotubes Synthesized Using Ferrocene Acetonitrile Precursor. Nanoscale Res Lett, 2008. 4(3): p. 197-203.
71. <2009_Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties.pdf>. 2009.
72. <2004_n-Type Field-Effect Transistors Made of an Individual N-doped MWCNTs.pdf>.
73. Kong, X.K., C.L. Chen, and Q.W. Chen, Doped graphene for metal-free catalysis. Chem Soc Rev, 2014. 43(8): p. 2841-57.
74. Chiou, J.R., et al., One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J Hazard Mater, 2013. 248-249: p. 394-400.
75. Liu, P. and M. Zhao, Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Applied Surface Science, 2009. 255(7): p. 3989-3993.
76. <2007_Kinetics of Catalytic Hydrolysis of Stabilized Sodium Borohydride Solutions.pdf>.
77. Liu, B.H. and Z.P. Li, A review: Hydrogen generation from borohydride hydrolysis reaction. Journal of Power Sources, 2009. 187(2): p. 527-534.
78. Gao, L., et al., Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ Sci Technol, 2014. 48(17): p. 10191-7.
79. Pandey, S. and S.B. Mishra, Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydr Polym, 2014. 113: p. 525-31.
80. Ghosh, S., Bimetallic Pt?Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Applied Catalysis A: General, 2004. 268(1-2): p. 61-66.
81. Wu, W., et al., A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry A, 2015. 3(7): p. 3450-3455.
82. Mohan, S., et al., Completely green synthesis of silver nanoparticle decorated MWCNT and its antibacterial and catalytic properties. Pure and Applied Chemistry, 2016. 88(1-2).
83. Zhang, P., et al., In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale, 2011. 3(8): p. 3357-63.
84. Yang, M.-Q., et al., A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds. CrystEngComm, 2013. 15(34): p. 6819.
85. Ji, Z., et al., Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. Journal of Materials Chemistry, 2012. 22(8): p. 3471.
86. Wang, X., et al., Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. Journal of Materials Science, 2014. 49(14): p. 5056-5065.
87. Naik, B., et al., Synthesis of Ag nanoparticles within the pores of SBA-15: An efficient catalyst for reduction of 4-nitrophenol. Catalysis Communications, 2011. 12(12): p. 1104-1108.
88. Deng, Y.C., Yue; Sun, Zhenkun, Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure A highly integrated catalyst system. ACS, 2010. 132(24): p. 8466-8473.
89. Zhang, S., et al., In situ assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction. Nanoscale, 2014. 6(19): p. 11181-8.
90. High Catalytic Activity of Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes. 2005.
91. Zeng, J., et al., A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett, 2010. 10(1): p. 30-5.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top