|
1. Z. M. Xiu, Q. B. Zhng, H. L. Puppla, V. L. Colvin, P. J. Alvarez, Nano Letters, 4271-4275, (2012). 2. H. Palza, International Joural of Molecular Science, 16-2099, (2015). 3. Z. M. Xiu, J. Ma, P. J. Alvarez, Environmental Science & Tech-nology, 45, 9003-9008, (2011). 4. M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez, Aberasturi, I. R. d. Larramendi, T. Rojo, V. Serpooshan, W. J. Park, M. Mahmoudi, Trends in Biotechnology, 30, 499-511, (2012). 5. K. Chaloupka, Y. Malam, A. M. Seifalian, Trends in Biotechnology, 28, 580-588, (2010). 6. T. Q. Huy, N. V. Quy ,L. A. Tuan, Advance in Natural Science: Nanoscience and Nanotechnology, 4, 033-001, (2013). 7. 邱純慧,工業材料雜誌, 129-134,(2014). 8. 王善勤、孫蘭新、宋文章,塗料配方及生產技術,高分子工業雜誌社, (2001). 9. 徐峰、鄒侯招、儲健,環保型無機塗料,化學工業出版社, (2006). 10. 陳樂怡,合成樹脂及塑料手冊,機械工業出版社, (2006). 11. F. N. Mutua, P. Lin, J. K. Koech, Y. Wang, Surface Modification of Hollow Glass Microspheres, Materials Sciences and Applications, 3, 856-860, (2012). 12. Dr. F. Caruso, Hollow Capsule Processing through Colloidal Tem-plating and Self-Assembly Frank Caruso, Chem. Eur. J, No. 3, (2000). 13. A. Coriliano, E. Rizzi, E. Papa, Experimental characterization and numerical simulations of a syntactic-foam/glass-®bre composite sandwich, Composites Science and Technology 60, 2169-2180, (2000). 14. R. Gao, M. Chen, W. Li, S. Zhou, L. Wu, Facile fabrication and some specific properties of polymeric/inorganic bilayer hybrid hollow spheres, J. Mater. Chem A, 1, 2183–2191, (2013). 15. V. Yu. Chukhlanov, E. P. Sysoev, Use of Hollow glass micro-spheres in organosilicon syntact foam plastics, Glass and Ceramics, Vol. 57, Nos. 1 -2, (2000). 16. J. Z. Liang, F. H. Li, Heat transfer in polymer composites filled with inorganic hollow micro-spheres: A theoretical model, Polymer Testing 26, 1025–1030, (2007). 17. I. Sondi, B. S. Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Jour-nal of Colloid and Interface Science 275, 177–182, (2004). 18. M. M. A. Patton, M. M. Hall, J. E. Shelby, Formation of low den-sity polyethylene/hollow glass microspheres composites, Journal of Non-Crystalline Solids 352, 615–619, (2006). 19. J. Z. Liang, F. H. Li, Measurement of thermal conductivity of hol-low glass-bead-filled polypropylene composites, Polymer Testing 25, 527–531, (2006). 20. H. Im, S. C. Roh, C. K. Kim, Fabrication of Novel Polyurethane Elastomer Composites Containing Hollow Glass Microspheres and Their Underwater Applications, Ind. Eng. Chem. Res, 50, 7305–7312, (2011). 21. G. Arslan, M. Ozmen, B. Gunduzi, X. Zhang, M. Ersoz, Surface Modication of Glass Beads with an Aminosilane Monolayer, Turk J Chem 30, 03-210, (2006). 22. Z. G. An, J. J. Zhang, S. L. Pan, Fabrication of glass/Ni–Fe–P ter-nary alloy core/shell composite hollow microspheres through a modified electroless plating process, Applied Surface Science 255, 2219–2224, (2008). 23. B. Bucheli, T. D. Occurrence, Behavior and effects ofnanoparticles in the environment. Environ. Pollut, 150, 5-22, (2007). 24. Wiesner, M. R. Lowry, G. V. Jones, K. L. Hochella, M. F. Di Giu-lio, R. T. Casman, E. Bernhardt, E. S. Decreasing Uncertainties in Assessing Environmental Exposure, Risk, Ecological Implications of Nanomaterials. Environ. Sci. Technol, 43 (17), 6458–6462, (2009). 25. Wijnhoven, S. W. P. Peijnenburg, W. J. G, M. Herberts, C. A. Ha-gens, W. I. Oomen, A. G. Heugens, E. H. W. Roszek, B. Bisschops, J. Gosens, M. Sips, A. J. A, M. Geertsma, R. E. Nano-silver - A re-view of available data and knowledge gaps in human and environ-mental risk assessment. Nanotoxicology, 3(2), 109–138, (2009). 26. M. Scheringer, M. MacLeod, T. Behra, L. Sigg, K. Hungerbuhler, Environmental risks associated with nanoparticulate silver used as biocide. Household Pers. Care Today, 1, 34–37 (2010). 27. B. Nowack, Nanosilver revisited downstream. Science, 330, 1054–1055, (2010). 28. T. M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol, 42 (11), 4133–4139, (2008). 29. L.Geranio, M. Heuberger, B.Nowack, Behavior of silver nanotex-tiles during washing. Environ. Sci Technol, 43, 8113–8118, (2009). 30. E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra, Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol, 42 (23), 8959–8964, (2008). 31. R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller, R. Vonbank, M. Boller, M. Burkhardt, Release of silver nanopa ticles from outdoor facades. Environ. Pollut, 158 (9), 2900–2905, (2010). 32. M.C. Lea, A. R. T. L, On Allotropic Forms of Silver, American Journal of Science, (1889). 33. G. FrensJ. Th. G. Overbeek, Carey Lea's colloidal silver, Volume 233, Issue 1–2, 922–929, (1969). 34. I. Sondi, B. S. Sondi, Silver nanoparticles as antimicrobial agent: a case study on E.coli as a modl for Gram-negative bacteria, J. Col-loid. Interface. Sei. 275, 177-182, (2004). 35. S. Jing, S. Xing, L. Yu, C. Zhao, Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles col-loid, Mater. Lett. 61, 4528-4530, (2007). 36. C. R. K. Rao, D. C. Trivedi, Synthesis and characterization of fatty acids passivated silver nanoparticles-their interaction with PPt, Synthetic Metals 155, 324-327, (2005). 37. P. Rita, D. David, V. A. Donaji, R. G. Geonel, S. J. Patricia, Syn-thesis and direct interactions of silver colloidal nanoparticles with pollutant gases, Colloid Polym. Sci. Online, (2007). 38. I. S. Dan, V. Goia, E. Matijevic, Preparation of highly concentrated stable dispersions of uniform silver nanoparticles, Journal of Col-loid and Interface Science 260, 75–81, (2003). 39. E. R. León1, R. I. Palomares, R. E. Navarro, R. H. Urbina, J. Tánori, C. I. Palomares, A. Maldonado, Synthesis of silver nano-particles using reducing agents obtained from natural sources (Ru-mex hymenosepalus extracts), Rodríguez-León et al. Nanoscale Research Letters, 8:318, (2013). 40. Y. Xu, D. D. L. Chung, C. Mroz, Composites: Part A, 32, 1749-1757, (2001). 41. D. Yorifuji, S. Ando, Macromolecules, 43, 7583-7593, (2010). 42. R. R. Heikes, R. W. Ure, Thermoelectricity: science and engineer-ing: Interscience Publishers, (1961).. 43. H. Dong, L. H. Fan, C. P. Wong, In Proceedings of 55th Electronic Components and Technology Conference, land2, 1451, (2005). 44. Y. S. Xu, D. D. L. Chung, Compons. Interfaces, 7, 243, (2000). 45. W. Y. Peng, X. Y. Huang, J. H. Yu, P. K. Jiang, W. H. Liu, Com-posites Part A, 41, 1201, (2010). 46. B. Lee, G. Dai, J. Mater. Sci, 44, 4848, (2009). 47. J. Z. Liang , F. H. Li, Measurement of thermal conductivity of ho llow glass-bead-filled polypropylene composites, Polymer Testing 25, 527–531, (2006). 48. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of e nhanced antibacterial effects of novel silver nanoparticles, Nanotechnology 18, 225103, (2007). 49. J. R. Nakkala, R. Mata, S. R. Sadras, Green synthesized nano silver: Synthesis, physicochemical profiling, antibacterial, anticancer ac-tivities and biological in vivo toxicity, Journal of Colloid and In-terface Science 499, 33–45, (2017). 50. J. J. Wu, G. J. Lee, Y. S. Chen, T. L. Hu, The synthesis of nano-silver/polypropylene plastics for antibacterial application, Current Applied Physics 12, S89-S95, (2012). 51. S. Seuss, M. Heinloth, A. R. Boccaccini, Development of bioactive composite coatings based on combination of PEEK, bioactive glass and Ag nanoparticles with antibacterial properties, Surface & Coatings Technology 301, 100–105, (2016). 52. X. Liu, K. Gan, H. Liu, X. Song, T. C. C. Liu, Antibacterial prop-erties of nano-silver coated PEEK prepared through magnetron sputtering, Dental Materials 33, 348-360, (2017).
|