跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 21:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳彥彰
研究生(外文):Yanz-Hang Chen
論文名稱:功能性奈米銀粒子修飾之二氧化矽中空微球應用於具低熱傳導之抗菌塗料
論文名稱(外文):Functional Nano-silver particles decorated with silica hollow microspheres used in low thermal conductivity of antibacterial coatings
指導教授:蔡美慧蔡美慧引用關係
指導教授(外文):Mei-Hui Tsai
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:101
中文關鍵詞:中空玻璃球奈米銀導熱抗菌
外文關鍵詞:Hollow glass spheresNano-silverThermal conductivityAntibacterial
相關次數:
  • 被引用被引用:0
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
中空玻璃球外層為玻璃結構內部則為惰性氣體所組成,因此具有質量輕及低熱傳導等特性,故將其添加於樹脂塗料中,能有效提升塗料之隔熱性質,而奈米銀則有非常好的殺菌功能,本研究以中空玻璃球作為載體,將表面以鹼洗的方式改質使其具有-OH官能基,再使用熱迴流法接枝矽氧烷偶合劑(APTES)讓表面帶有-NH2基團,並讓奈米銀粒子利用這些胺官能團來吸附於中空玻璃球上。
研究初期以不同濃度氫氧化鈉及時間變化來作改質,並使用FTIR觀察3450 cm -1羥基吸收變化與SEM表面型態之鑑定及離心回收後計算剩餘量尋找最適當參數,後續接枝矽氧烷偶合劑以FTIR圖得知在2965 cm -1及1488 cm -1出現矽氧烷的特徵峰,證實中空玻璃球已接上-NH2基團,並可讓奈米銀粒子吸附於中空玻璃球上。奈米銀合成在添加保護劑後使粒徑維持在奈米大小與良好的分散性並以TEM、粒徑分析儀分析粒徑大小約落在10-50 nm之間,由UV圖得知奈米銀溶液在波長410 nm出現吸收,最後在使用XPS對奈米銀吸附中空玻璃球進行鑑定及元素組成分析,證實出現中空玻璃球上出現銀的訊號。
在導熱測試中,分別為添加不同含量之中空玻璃球與含有奈米銀的中空玻璃球於塗料中並對不同厚度的導熱係數做比較,當中空玻璃球含量添加到20 wt%於0.3、0.5 mm薄膜時,其導熱係數從0.2 W/m・K約下降至0.145 W/m・K左右,另外發現含有奈米銀的中空微球導熱係數也從原本的0.2 W/m・K約下降至0.135 W/m・K左右,猜想因中空玻璃球上奈米銀的含量少且濃度較低,所以不會因添加銀後其高導熱係數(428 W/m・K)來影響薄膜的導熱性質,而兩者同樣在薄膜厚度為0.1 mm時可由0.2 W/m・K下降至0.084 W/m・K及0.087 W/m・K。以SEM橫截面圖發現微球浮在表面的程度及薄膜中其餘的厚度會對導熱效果造成影響,由面積溫度與時間變化圖中觀察到純塗料塗層表面溫度持續上升與添加奈米銀微球比較溫度穩定,總結以上塗料導熱係數及表面溫度的變化會影響塗料的隔熱效果。
在抗菌試驗中初期抑制細菌的效果受塗料固含量及奈米銀微球接觸大腸桿菌的面積所影響,導致效果不佳,後期則使用菌落數試驗法的方法大幅增加奈米銀微球接觸大腸桿菌的面積後發現在經由時間變化細菌量開始減少直到12小時後完全消失,可證明奈米銀微球能有效地殺死細菌,且作用效果可持續至24小時並無任何細菌再長出。
The outer layer of the hollow glass sphere is composed of an inert gas in-side the glass structure, so it has the characteristics of light weight and low heat conduction, so it can be effectively added to the resin coating to improve the thermal insulation properties of the coating, while the nano-silver is very good bactericidal function, this study uses hollow glass spheres as a carrier, the surface is modified by alkaline washing to have -OH functional groups, and then the hot reflux method is used to graft the silane coupling agent (APTES) to give the surface -NH2 group, The nano-silver particles are then adsorbed onto the hollow glass spheres using these amine functional groups.
At the beginning of the study, different concentrations of sodium hydroxide and time change were used for modification. FTIR was used to observe the 3450 cm -1 hydroxyl absorption change and the SEM surface type identification and the residual amount after centrifugation recovery to find the most suitable parameters. The subsequent grafted silane coupling agent showed the characteristic peak of the silane at 2965 cm-1 and 1488 cm-1 by FTIR diagram, and confirmed that the hollow glass sphere was connected with the -NH2 group and allowed the silver nanoparticles to be coated. Adsorbed on the hollow glass sphere. The nano- silver synthesis was maintained at a nanometer size and good dispersibility after adding a protective agent, and the particle size was analyzed by TEM and particle size analyzer to fall between about 10-50 nm. It was found from the UV diagram that the nano-silver solution was absorbed at a wavelength of 410 nm. Finally, the identification of the nano-silver-adsorbed hollow glass spheres by XPS and elemental composition analysis confirmed that there was a silver signal on the hollow glass sphere.
In the thermal conductivity test, different levels of hollow glass spheres and hollow glass spheres containing nano-silver were added to the coating and the thermal conductivity of different thicknesses was compared. When the hollow glass sphere content was added to 20 wt% at 0.3, 0.5 mm. In the case of a film, the thermal conductivity decreases from about 0.2 W/m・K to about 0.145 W/m・K, and the thermal conduc-tivity of the hollow microspheres containing nano silver is also reduced from the original 0.2 W/m·K to 0.135 W/m・K or so, it is suspected that the content of nano silver on the hollow glass sphere is small and the concentration is low, so the thermal conductivity of the film is not affected by the high thermal conductivity (428 W/m・K) after the addition of silver, and both are also in the film thickness. When it is 0.1 mm, it can be reduced from 0.2 W/m・K to 0.084 W/m・K and 0.087 W/m・K. The SEM cross-sectional view shows that the degree of floating of the microspheres on the surface and the remaining thickness of the film will affect the thermal conductivity. The surface temperature and time change of the coating show that the surface temperature of the pure coating coating continues to rise and the nano-silver is added. The ball is relatively stable in temperature, and it is concluded that the thermal conductivity of the coating and the change in surface temperature will affect the thermal in-sulation effect of the coating.
The effect of initial inhibition of bacteria in the antibacterial test is affected by the solid content of the coating and the area of the contact with E. coli by the nano-silver microspheres, resulting in poor effect. In the later stage, the colony number test method is used to greatly increase the contact of the nano-silver microspheres with the large intestine. After the area of the bacillus, it was found that the amount of bacteria began to decrease over time until the disappearance of the completely after 12 hours, which proved that the nano-silver microspheres can effectively kill the bacteria, and the effect lasts for 24 hours without any bacteria growing again.
摘要 I
Abstract III
致謝 VI
目錄 VII
圖目錄 X
表目錄 XIV
第 一 章 緒論 1
1-1 前言 1
1-2研究動機與目的 4
第 二 章 文獻回顧 6
2-1塗料之介紹 6
2-1-1塗料簡介 6
2-1-2內外牆塗料 8
2-2中空玻璃球 10
2-2-1中空玻璃球混摻有機材料 11
2-2-2中空玻璃球表面改質 17
2-3奈米銀 21
2-3-1奈米銀簡介 21
2-3-2奈米銀現代發展 22
2-3-3奈米銀的合成 23
2-4導熱機制 30
2-4-1導熱原理 30
2-4-2薄膜複合材料之導熱係數探討 33
2-4-3中空玻璃球導熱係數 35
2-5抗菌機制 38
2-5-1奈米銀之抗菌探討 38
2-5-2薄膜複合材料之抗菌方法 43
第 三 章 實驗方法 49
3-1實驗藥品 49
3-2實驗器材及儀器 51
3-3實驗步驟 54
3-3-1中空玻璃球表面改質 54
3-3-2中空玻璃球接枝矽氧烷偶合劑 56
3-3-3奈米銀合成 58
3-3-4奈米銀微球製備 59
3-3-5奈米複合材料薄膜之製備 60
3-3-6奈米銀微球/樹酯複合材料之抗菌試驗 61
第 四 章 結果與討論 65
4-1中空玻璃球之鑑定 65
4-1-1由氫氧化鈉改質中空玻璃球對時間做變化 65
4-1-2由1M NaOH及不同時間改質離心回收後之SEM 67
4-1-3由三小時改質中空玻璃球對不同氫氧化鈉濃度做變化之FTIR 75
4-1-4氫氧化鈉濃度2M及三小時改質並接枝矽氧烷偶合劑之FTIR 76
4-1-5使用氫氧化鉀取代改質並採取抽氣過濾法收集 78
4-1-6中空玻璃球官能基鑑定之FTIR 81
4-2奈米銀吸附中空玻璃球之鑑定 82
4-2-1奈米銀濃度之ICP分析 82
4-2-2奈米銀吸收與粒徑大小分析 83
4-2-3中空玻璃球表面鑑定之SEM 85
4-2-4X光電子能譜儀(XPS)鑑定 86
4-3奈米銀/中空玻璃球應用於塗料之測試 88
4-3-1導熱測試 88
4-3-2抗菌測試-抑菌 92
4-3-3抗菌試驗-殺菌 93
第五章 結論 95
參考文獻 96
1. Z. M. Xiu, Q. B. Zhng, H. L. Puppla, V. L. Colvin, P. J. Alvarez, Nano Letters, 4271-4275, (2012).
2. H. Palza, International Joural of Molecular Science, 16-2099, (2015).
3. Z. M. Xiu, J. Ma, P. J. Alvarez, Environmental Science & Tech-nology, 45, 9003-9008, (2011).
4. M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez, Aberasturi, I. R. d. Larramendi, T. Rojo, V. Serpooshan, W. J. Park, M. Mahmoudi, Trends in Biotechnology, 30, 499-511, (2012).
5. K. Chaloupka, Y. Malam, A. M. Seifalian, Trends in Biotechnology, 28, 580-588, (2010).
6. T. Q. Huy, N. V. Quy ,L. A. Tuan, Advance in Natural Science: Nanoscience and Nanotechnology, 4, 033-001, (2013).
7. 邱純慧,工業材料雜誌, 129-134,(2014).
8. 王善勤、孫蘭新、宋文章,塗料配方及生產技術,高分子工業雜誌社, (2001).
9. 徐峰、鄒侯招、儲健,環保型無機塗料,化學工業出版社, (2006).
10. 陳樂怡,合成樹脂及塑料手冊,機械工業出版社, (2006).
11. F. N. Mutua, P. Lin, J. K. Koech, Y. Wang, Surface Modification of Hollow Glass Microspheres, Materials Sciences and Applications, 3, 856-860, (2012).
12. Dr. F. Caruso, Hollow Capsule Processing through Colloidal Tem-plating and Self-Assembly Frank Caruso, Chem. Eur. J, No. 3, (2000).
13. A. Coriliano, E. Rizzi, E. Papa, Experimental characterization and numerical simulations of a syntactic-foam/glass-®bre composite sandwich, Composites Science and Technology 60, 2169-2180, (2000).
14. R. Gao, M. Chen, W. Li, S. Zhou, L. Wu, Facile fabrication and some specific properties of polymeric/inorganic bilayer hybrid hollow spheres, J. Mater. Chem A, 1, 2183–2191, (2013).
15. V. Yu. Chukhlanov, E. P. Sysoev, Use of Hollow glass micro-spheres in organosilicon syntact foam plastics, Glass and Ceramics, Vol. 57, Nos. 1 -2, (2000).
16. J. Z. Liang, F. H. Li, Heat transfer in polymer composites filled with inorganic hollow micro-spheres: A theoretical model, Polymer Testing 26, 1025–1030, (2007).
17. I. Sondi, B. S. Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Jour-nal of Colloid and Interface Science 275, 177–182, (2004).
18. M. M. A. Patton, M. M. Hall, J. E. Shelby, Formation of low den-sity polyethylene/hollow glass microspheres composites, Journal of Non-Crystalline Solids 352, 615–619, (2006).
19. J. Z. Liang, F. H. Li, Measurement of thermal conductivity of hol-low glass-bead-filled polypropylene composites, Polymer Testing 25, 527–531, (2006).
20. H. Im, S. C. Roh, C. K. Kim, Fabrication of Novel Polyurethane Elastomer Composites Containing Hollow Glass Microspheres and Their Underwater Applications, Ind. Eng. Chem. Res, 50, 7305–7312, (2011).
21. G. Arslan, M. Ozmen, B. Gunduzi, X. Zhang, M. Ersoz, Surface Modication of Glass Beads with an Aminosilane Monolayer, Turk J Chem 30, 03-210, (2006).
22. Z. G. An, J. J. Zhang, S. L. Pan, Fabrication of glass/Ni–Fe–P ter-nary alloy core/shell composite hollow microspheres through a modified electroless plating process, Applied Surface Science 255, 2219–2224, (2008).
23. B. Bucheli, T. D. Occurrence, Behavior and effects ofnanoparticles in the environment. Environ. Pollut, 150, 5-22, (2007).
24. Wiesner, M. R. Lowry, G. V. Jones, K. L. Hochella, M. F. Di Giu-lio, R. T. Casman, E. Bernhardt, E. S. Decreasing Uncertainties in Assessing Environmental Exposure, Risk, Ecological Implications of Nanomaterials. Environ. Sci. Technol, 43 (17), 6458–6462, (2009).
25. Wijnhoven, S. W. P. Peijnenburg, W. J. G, M. Herberts, C. A. Ha-gens, W. I. Oomen, A. G. Heugens, E. H. W. Roszek, B. Bisschops, J. Gosens, M. Sips, A. J. A, M. Geertsma, R. E. Nano-silver - A re-view of available data and knowledge gaps in human and environ-mental risk assessment. Nanotoxicology, 3(2), 109–138, (2009).
26. M. Scheringer, M. MacLeod, T. Behra, L. Sigg, K. Hungerbuhler, Environmental risks associated with nanoparticulate silver used as biocide. Household Pers. Care Today, 1, 34–37 (2010).
27. B. Nowack, Nanosilver revisited downstream. Science, 330, 1054–1055, (2010).
28. T. M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol, 42 (11), 4133–4139, (2008).
29. L.Geranio, M. Heuberger, B.Nowack, Behavior of silver nanotex-tiles during washing. Environ. Sci Technol, 43, 8113–8118, (2009).
30. E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra, Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol, 42 (23), 8959–8964, (2008).
31. R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller, R. Vonbank, M. Boller, M. Burkhardt, Release of silver nanopa ticles from outdoor facades. Environ. Pollut, 158 (9), 2900–2905, (2010).
32. M.C. Lea, A. R. T. L, On Allotropic Forms of Silver, American Journal of Science, (1889).
33. G. FrensJ. Th. G. Overbeek, Carey Lea's colloidal silver, Volume 233, Issue 1–2, 922–929, (1969).
34. I. Sondi, B. S. Sondi, Silver nanoparticles as antimicrobial agent: a case study on E.coli as a modl for Gram-negative bacteria, J. Col-loid. Interface. Sei. 275, 177-182, (2004).
35. S. Jing, S. Xing, L. Yu, C. Zhao, Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles col-loid, Mater. Lett. 61, 4528-4530, (2007).
36. C. R. K. Rao, D. C. Trivedi, Synthesis and characterization of fatty acids passivated silver nanoparticles-their interaction with PPt, Synthetic Metals 155, 324-327, (2005).
37. P. Rita, D. David, V. A. Donaji, R. G. Geonel, S. J. Patricia, Syn-thesis and direct interactions of silver colloidal nanoparticles with pollutant gases, Colloid Polym. Sci. Online, (2007).
38. I. S. Dan, V. Goia, E. Matijevic, Preparation of highly concentrated stable dispersions of uniform silver nanoparticles, Journal of Col-loid and Interface Science 260, 75–81, (2003).
39. E. R. León1, R. I. Palomares, R. E. Navarro, R. H. Urbina, J. Tánori, C. I. Palomares, A. Maldonado, Synthesis of silver nano-particles using reducing agents obtained from natural sources (Ru-mex hymenosepalus extracts), Rodríguez-León et al. Nanoscale Research Letters, 8:318, (2013).
40. Y. Xu, D. D. L. Chung, C. Mroz, Composites: Part A, 32, 1749-1757, (2001).
41. D. Yorifuji, S. Ando, Macromolecules, 43, 7583-7593, (2010).
42. R. R. Heikes, R. W. Ure, Thermoelectricity: science and engineer-ing: Interscience Publishers, (1961)..
43. H. Dong, L. H. Fan, C. P. Wong, In Proceedings of 55th Electronic Components and Technology Conference, land2, 1451, (2005).
44. Y. S. Xu, D. D. L. Chung, Compons. Interfaces, 7, 243, (2000).
45. W. Y. Peng, X. Y. Huang, J. H. Yu, P. K. Jiang, W. H. Liu, Com-posites Part A, 41, 1201, (2010).
46. B. Lee, G. Dai, J. Mater. Sci, 44, 4848, (2009).
47. J. Z. Liang , F. H. Li, Measurement of thermal conductivity of ho llow glass-bead-filled polypropylene composites, Polymer Testing 25, 527–531, (2006).
48. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of e nhanced antibacterial effects of novel silver nanoparticles, Nanotechnology 18, 225103, (2007).
49. J. R. Nakkala, R. Mata, S. R. Sadras, Green synthesized nano silver: Synthesis, physicochemical profiling, antibacterial, anticancer ac-tivities and biological in vivo toxicity, Journal of Colloid and In-terface Science 499, 33–45, (2017).
50. J. J. Wu, G. J. Lee, Y. S. Chen, T. L. Hu, The synthesis of nano-silver/polypropylene plastics for antibacterial application, Current Applied Physics 12, S89-S95, (2012).
51. S. Seuss, M. Heinloth, A. R. Boccaccini, Development of bioactive composite coatings based on combination of PEEK, bioactive glass and Ag nanoparticles with antibacterial properties, Surface & Coatings Technology 301, 100–105, (2016).
52. X. Liu, K. Gan, H. Liu, X. Song, T. C. C. Liu, Antibacterial prop-erties of nano-silver coated PEEK prepared through magnetron sputtering, Dental Materials 33, 348-360, (2017).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊