跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余筱筠
研究生(外文):YU, XIAO-YUN
論文名稱:軟質微孔聚氨酯發泡之合成與吸收能量特性之探討
論文名稱(外文):Study on the Synthesis and Characteristic of Flexible Microporous Polyurethane Foam for Shock Absorption
指導教授:施文昌施文昌引用關係
指導教授(外文):SHIH, WEN-CHANG
口試委員:呂春美官振豐
口試委員(外文):LU, CHUN-MEIKUAN, CHEN-FENG
口試日期:2019-07-23
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:126
中文關鍵詞:軟質微孔聚氨酯發泡物理發泡方法壓縮率能量吸收
外文關鍵詞:flexible microporous polyurethane foamphysical blowing methodcompression setshock absorption
相關次數:
  • 被引用被引用:2
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
隨著電子產品的發展空間日漸擴展,我們所需的是功能性高分子發泡材料,其具備質輕、緩衝防震、比強度高、隔音、隔熱等性能。應用最廣泛的高分子發泡材料莫過於聚氨酯,其加工製造方法有物理發泡法、化學發泡法等,在過去專利及文獻中物理發泡較少被討論,故本研究利用液化二苯基甲烷二異氰酸酯(2,4’-MDI/4,4’-MDI)與不同結構與分子量之多元醇(Castor oil / Triol / Polymer polyol)分別使用物理及化學的發泡方式製備軟質微孔聚氨酯緩衝墊,並藉由機械性質、回彈、壓縮率、紅外線光譜、掃描式電子顯微鏡、動態機械分析儀、交聯密度、壓縮循環測試、衝擊吸收測試來找尋聚氨酯緩衝墊的最適化配方以及其在不同發泡方式下一系列的探討與比較。
由實驗結果得知:使用三官能聚醚多元醇(Triol-700)可以提升發泡體結構的負荷力、機械性能以及交聯密度,加上醚基結構柔軟易回復促進受力時削減外力,所以具有較低的壓縮率與回彈性能。低密度的發泡因為泡孔較大與開孔結構,應力在孔洞間流通時可以均勻分散,因此回復能力較好,壓縮率較佳。物理發泡中添加的氫氧化鋁或二氧化矽會增強分子結構的牢固性、耐熱性,即使是在高溫下作用壓縮率反而降低,而在高溫下化學發泡的熱穩定性較差。由於脲基內聚能較高與硬鏈段含量較高的原因促使化學發泡硬度較高,材料剛性較佳,而移除施力後的回復速度也較快,故彈性回復(%)提升,而滯後能量損失(%)則隨之降低。物理發泡內部均一的孔徑,加上聚合物多元醇的極性分子與長支鏈可以提高機械性質與承載能力,使其具有最低的g值與最高的反彈值,表明擁有最佳的吸收能量特性。

With the rapid development of electronic products, what we need is high functionality polymer foam and which is lightweight, high specific strength, energy absorption and heat insulation material. Polyurethane foam is a generally applicative product for cushion pad and it could be made by physical blowing method, chemical blowing method, etc. The physical blowing method was less discussed in the past patents and literatures, therefore this paper aimed at the utilization of liquid methylene diphenyl diisocyanates (2,4’-MDI/4,4’-MDI) with different structures and molecular weights of polyols (Castor oil / Triol / Polymer polyol) to synthesize the flexible microporous polyurethane cushion pads which were employed by two types of blowing methods to probe the polyurethane foams characteristics respectively subsequently by Universal Testing Machine, Attenuated Total Reflectance-Fourier Transform Infrared Analysis, Scanning Electron Microscope, Dynamic Mechanical Analysis, Falling Ball Rebound Test, Compression Set Test, Stress-Strain Hysteresis Loop Test and Dynamic Shock Absorption Test.
The experiment results revealed that substituting tri-functionality polyol for castor oil would improve the compression set because of the flexible ether group could reduce external forces. While the cell of low-density foam was big, the stress inside would be free to go anywhere and induce the better recovery capability and compression set property. Adding Al(OH)3 / SiO2 in physical foams could increase the molecular structure and the heat resistance, but on the contrary the heat resistance of the chemical foam was worse. Due to the polar molecules and the branch chains of polymeric polyol, the bearing capacity of the physical foam were more distinguished. Moreover, because of the fine and open cell structures, the g value of physical foam was verified more lower than the chemical foam, hence the energy absorption property of physical foam was better.

中文摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 IX
圖目錄 XI
第一章 前言 1
第二章 相關理論與文獻回顧 3
2.1聚氨酯簡介 3
2.1.1聚氨酯發展歷程 3
2.1.2聚氨酯介紹 4
2.1.3聚氨酯原理與機制 6
2.1.4聚氨酯應用 11
2.2高分子發泡簡介 12
2.2.1高分子發泡機制 12
2.2.2高分子發泡分類 14
2.2.3高分子發泡應用 16
2.3影響發泡特性之因素 17
2.3.1原物料結構對發泡特性之影響 26
2.3.2 脲素含量對發泡特性之影響 28
2.3.3 交聯密度對發泡特性之影響 29
2.3.4 密度對發泡特性之影響 32
2.3.5 孔洞結構對發泡特性之影響 33
2.3.6 溫度對發泡特性之影響 34
2.4 微相分離介紹 36
第三章 實驗內容與方法 41
3.1實驗藥品 41
3.2實驗儀器 45
3.3實驗流程 46
3.4實驗方法 47
3.5實驗配方 59
第四章 結果與討論 66
4.1 不同含量之異氰酸酯與不同種類和含量之多元醇製備微孔發泡材料之探討 67
4.2 化學與物理之聚氨酯發泡的比較及特性探討 75
4.3 影響發泡材料吸收能量之特性探討 84
4.4 緩衝墊之吸收能量特性探討 105
第五章 結論 112
第六章 參考文獻 114


[1]Michael Szycher and P. D. , “Szycher’s handbook of Polyurethanes Second Edition”, Taylor & Francis Group, 2013
[2]徐培林,張淑琴,“聚氨酯材料手册 第2版”,化學工業出版社,2011
[3]J. H. Saunders and K. C. Frisch, “Polyurethanes: Chemistry and Technology PartⅡ”, Interscience Publishers, 1964
[4]蘇一哲,“硬底子 軟實力-永續風潮下高機能聚氨酯(PU)材料的創新發展”,工業材料雜誌,工業技術研究院,2018年01月號373期
[5]R. Bonart, L. Morbitzer and G. J. Hentze, “X-ray investigations concerning the physical structure of cross-linking in urethane elastomers. II. Butanediol as chain extender”, Journal of Macromolecular Science Part B Physics, p337-356, 1969
[6]Stuart L. Cooper and A. V. Tobolsky,“Properties of Linear Elastomeric Polyurethanes”, Journal of Applied Polymer Science, p1837-1844, 1966
[7]林宗慶,“聚胺酯與分解性材料聚摻合之可分解特性研究”,國立勤益科技大學,碩士論文,2010
[8]R. Narayan, D. K. Chattopadhyay, B. Sreedhar, K. V. S. N. Raju, N. N. Mallikarjuna and T. M. Aminabhavi, “Synthesis and characterization of crosslinked polyurethane dispersions based on hydroxylated polyesters”, Journal of Applied Polymer Science, p368-380, 2006
[9]J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam and A. R. Yuvaraj, “Polyurethane types, synthesis and applications-a review”, RSC Advances, 2016
[10]何繼敏,“新型聚合物發泡材料及技術”,化學工業出版社,2008
[11]張京珍,“泡沫塑料成型加工”,化學工業出版社,2005
[12]吳舜英,徐敬一,“塑膠發泡成型技術”,台南復文書局出版社,1997
[13] James F. Stevenson , “Innovation in Polymer Processing Molding”, Hanser/Gardner Publications, 1996
[14]李書銘,“交聯度對天然橡膠動態機械鬆弛行為的影響”,國立台灣大學,碩士論文,2000
[15] A. Batou and S. Adhikari, “Optimal parameters of viscoelastic tuned-mass dampers”, Journal of Sound and Vibration, p17-28,2019
[16] JanKolařík and AlessandroPegoretti, “Proposal of the Boltzmann-like superposition principlefor nonlinear tensile creep of thermoplastics”, Polymer Testing, p596-606, 2008
[17]張驥忠,雷海軍,“橡膠阻尼材料的研究進展”,CPRJ 中国塑料橡胶雜誌,雅式出版社,2017
[18] W. Yu, D. Zhang, M. Du and Q. Zheng, “Role of graded length side chains up to 18 carbons in length on the damping behavior of polyurethane/epoxy interpenetrating polymer networks”, European Polymer Journal, p1731-1741, 2013
[19] 張志凌,溫華昇,楊聯琦,潘旭章,“運動鞋靜態功能性測試之相關探討”,修平人文社會學報 第八期,p47-58,2007
[20] Swigart, J. F., Frdman, A. G. and P. J., “An Energy-Based Method for Testing Cushioning Durability of Running Shoes”, Journal of applied Biomechanics, p27-46, 1993
[21] Chiu H. T. and Shiang T. Z., “Effect of insoles and additional shock absorption foam on the cushioning properties of sport shoes”, Journal of Applied Biomechanics, p19-127, 2007
[22]朱呂民,劉益軍,“聚氨酯泡沫塑料 第三版”,化學工業出版社,2004
[23] Rojek P., Pawlik H. and Prociak A., “Influence of the chemical structure of rapeseed bio-polyols on the properties of viscoelastic polyurethane foams”, Czasopismo Techniczne. Chemia, p277-284, 2010
[24] T. Hirano, Y. Kobayashi and S. Nakada, “High-performance polyol designed with small particle sizes and highly effective polymer content”, PU Technical Conference, p62-70, 2009
[25] Denise B., Jim C. and Michael E., “ Recent advances in polyol technology help improve performance of T-80 VEF foam”, PU 2006 Technical Conference, p417-425, 2006
[26] Raymond N., Wassana A. and Todd G., “MDI-based viscoelastic foam with excellent physical properties/ flame resistance and slab processing flexibility suitable for the furnishings market”, PU 2003 Technical Conference, p311-316, 2003
[27] Rahman, M. M., A. Hasneen, N. J. Jo and H. I. Kim, “Properties of waterborne polyurethane adhesives with aliphatic and aromatic diisocyanate”, Journal of Adhesion Science Technology, p2051-2062, 2011
[28] Marcia C. Delpech and Gisele S. Miranda, “Waterborne polyurethanes influence of chain extender in ftir spectra profiles”,Central European Journal of Engineering, p231–238 , 2012
[29]王蕾婷,胡景灝,“從數據解析鞋類功能性現況及未來研發方針”,鞋技通訊,p30-37,1999
[30] D.K. Chattopadhyay, B. Sreedhar and K.V.S.N. Raju, “Influence of varying hard segments on the properties of chemically crosslinked moisture-cured polyurethane-urea”, Journal of Polymer Science Part B Polymer Physics, p102-118, 2006
[31] ACTTR Technology,“ What Is Crosslink Density? How to Measure It? ”, FAQ NMR Spectroscopy, 2018
[32]張銘,董京榮,趙怡,“全MDI高回弹泡沫乾濕壓縮變形性能的研究”,聚氨酯工業,p17-27,2005
[33] Iyabo Adekogbe, Amyl Ghanem, “Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering”, Biomaterials, p7241-7250, 2005
[34] Robson F. Storey and Douglas C. Hoffman, “Polyurethane networks based on poly (ethylene ether carbonate) diols ”, POLYMER, p2807-2816, 1992
[35] Rachel S. H. W., Mark Ashton and Kalliopi Dodou, “Effect of Crosslinking Agent Concentration on the Properties of Unmedicated Hydrogels”, Pharmaceutics, p305-319, 2015
[36] D. Klempner, Kurt C. Frisch and Eds, “Polymeric Foams”, Hanser Publishers, 1991
[37] Kurt C. Frisch, D. Klempner, G. Prentice and Eds, “Recycling of polyurethanes”, Technomic Pub. Co. Inc. , 1999
[38] J. Macknight and M. Yang, “Property-structure Relationships in Polyurethanes: Infrared studies”, J. Polym. Sci., Symp, p833, 1973
[39] Nontawat Kraitape and Chanchai Thongpin, “Influence of recycled polyurethane polyol on the properties of flexible polyurethane foams”, Energy Procedia, p186-197, 2016
[40] Lin Zhu and Richard P.Wool, “Nanoclay reinforced bio-based elastomers: Synthesis and characterization” , Polymer, p8106-8115, 2006
[41] Matthias Jaunich, Wolfgang Stark and Dietmar Wolff, “Comparison of low temperature properties of different elastomer materials investigated by a new method for compression set measurement” , Polymer Testing, p987-992, 2012
[42] M. R. M. Rejab, M. S. M. Sani, M. M. Noor, K. Kadirgama, M. M. Rahman and A. Alias, “Mechanical behaviour of polymeric foam core at various orientation angles”, High Performance Structures and Materials V, p429-438, 2010
[43] Zhiyuan Lan, Rahul Daga, Robert Whitehouse, Stephen McCarthy and Daniel Schmidt, “Structure–properties relations in flexible polyurethane foams containing a novel bio-based crosslinker”, Polymer, p2635-2644, 2014
[44] Williams M.L., Landel R.F. and Ferry J.D., “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids”, Journal of the American Chemical Society,p3701-3707, 1955
[45] Zhang Qianhe Yu, “Method of preparing full MDI polyurethane slow rebound foam”, Beijin Keju Chemical New Mater, Patent, CN100497430 (C), 2006
[46] Chee K K, et al., “Kinetics of Phase Separation in Segmented Polyurethanes”, Journal of Applied Polymer Science, p2529, 1984
[47] Y. Xiao, L. Jiang, Z. Liu, Y. Yuan, P. Yan, C. Zhou and J. Lei, “Effect of phase separation on the crystallization of soft segments of green waterborne polyurethanes”, Polymer Testing 60, p160-165, 2017
[48]張威,王煥,許戈文,“改性陽離子水性聚氨酯研究進展”,碩士論文,安徽大學化學化工學院,2013
[49]楊濤鋒,陳大俊,李瑤君,“熔紡氨綸的結構與性能”,紡織學報,2000
[50] Zhao X., Du L. and Zhang X., “Brief Review of Relations of Structure and Microphase Separation of Polyurethane”, Polyurethane Industry, p7, 2001
[51] J. Macknight and M. Yang, “Property-structure Relationships in Polyurethanes: Infrared studies”, Journal of Applied Polymer Science, p833, 1973
[52] L.S. Teo, C.Y. Chen and J.F. Kuo, “Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethane-urea)s” Macromolecules, p1793-1799, 1997
[53] G.C. Pimentel and C.H. Sederholm, “Correlation of infrared stretching frequencies and hydrogen bond distances in crystals”, Journal of Chemical Physics, p639-641, 1956
[54] X. Huang, C. F. H., X. Peng, J. Xie, J. Qi, Y. Jiang, H. Xiao and S. Nie, “Thermal stability analysis of polyurethane foams made from microwave liquefaction bio-polyols with and without solid residue”, BioResources, p3346-3361, 2018
[55] Mike Ebert, Bob Ward, James Anderson, Rick McVenes, Ken Stokes, “In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking”, Journal of Biomedical Materials Research Part A, p175-184, 2005
[56]范昌霖,“不同多元醇與親水基結構製備水性聚氨酯之特性研究”,碩士論文,國立勤益科技大學,2018
[57] B. J. Ramirez, Vijay Gupta, “High tear strength polyurea foams with low compression set and shrinkage properties at elevated temperatures”, International Journal of Mechanical Sciences, p 29-34, 2019
[58] Minoru Shimbo, Daniel F. Baldwin and Nam P. Suh, “マイクロセルラープラスチックの機械的・粘弾的特性に及 ぼすセルサィズの影響”, Seikei-Kakou, p863-868,1994
[59] C. Zhang, Y. Xia, Ruqi Chen, S. Huh, P. A. J. and M. R. K., “Soy-castor oil based polyols prepared using a solvent-free and catalyst-free method and polyurethanes therefrom”, Green Chemistry, p1477-1484, 2013
[60] Chaoqun Zhang and Michael R. Kessler, “Bio-based Polyurethane Foam Made from Compatible Blends of Vegetable-Oil-based Polyol and Petroleum-based Polyol”, ACS Sustainable Chem. Eng., p743-49, 2015
[61] H. Lim, S. H. K. and B. K. Kim., “Effect of silicone surfactant in rigid polyurethane foams”,Express polymer letters, p194-200, 2008
[62] Yanzhou Lei, Shengtai Zhou, Huawei Zou and Mei Liang, “Effect of Crosslinking Density on Resilient Performance of Low-Resilience Flexible Polyurethane Foams”,Polymer Engineering and Science, p308-314, 2015
[63] P. Jutrzenka Trzebiatowska, A. Santamaria Echart, T. Calvo Correas, A. Eceiza and J. Datta, “The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations”, Progress in Organic Coatings, p41-48, February 2018
[64] A. Saetung, A. Rungvichaniwat, I. Campistron, P. Klinpituksa, A. Laguerre, P. Phinyocheep, O. Doutres and J. ois Pilard, “Preparation and physico-mechanical, thermal and acoustic properties of flexible polyurethane foams based on hydroxytelechelic natural rubber”, Journal of Applied Polymer Science, p828-837, 2010
[65] A. A. Septevani, D. A.C. Evans, C. Chaleat, D. J. Martin and P. K. Annamalai, “A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam”, Industrial Crops and Products, p16-26, 2015
[66]黃俋強,“熱塑性聚胺酯發泡的加工技術及特性之探討與研究”,國立勤益科技大學,碩士論文,2013
[67] P. Viot, F. Beani and J. L. Lataillade, “Polymeric foam behavior under dynamic compressive loading”, Journal of Materials Science, p5829-5837, 2005
[68] Gabriel Rokicki and Anna Piotrowska, “A new route to polyurethanes from ethylene carbonate, diamines and diols”, Polymer, p2927-2935, 2002
[69] E. C. L. Cardoso, S. R. Scagliusi, G. F. Moraes, L. S. Ono, D.F. Parra and A. B. Lugão, “Density crosslink study of gamma irradiated LDPE predicted by gel-fraction/swelling and glass transition temperature characterization”, ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR, p24-28, 2011
[70] S. Nozaki, S. Masuda, K. Kamitani, K. Kojio, A. Takahara, G. K., D. H., K. M., K. M. and S. Y., “Superior Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure”, Macromolecules, p1008-1015, 2017
[71]蔡育安,“聚丙烯發泡材料之撞擊能量吸收特性”,國立台灣大學,碩士論文,2013
[72] Umud Esat Ozturk and Gunay Anlas, “Energy absorption calculations in multiple compressive loading of polymeric foams”, Materials & Design, p15-22, 2009
[73]劉洋子健,“耐水解熱塑性聚氨酯的合成與研究”,北京化工大學,碩士論文,2018
[74]李惠明,唐詠雅,郭秀雲,“小小橡胶,减震防灾大有用”,CPRJ 中国塑料橡胶雜誌,雅式出版社,2017

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊